1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include <map>
11 #include <set>
12 
13 #include "Plugins/Language/CPlusPlus/CPlusPlusLanguage.h"
14 #include "Plugins/Language/ObjC/ObjCLanguage.h"
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/RegularExpression.h"
17 #include "lldb/Core/Section.h"
18 #include "lldb/Core/Stream.h"
19 #include "lldb/Core/Timer.h"
20 #include "lldb/Symbol/ObjectFile.h"
21 #include "lldb/Symbol/Symbol.h"
22 #include "lldb/Symbol/SymbolContext.h"
23 #include "lldb/Symbol/Symtab.h"
24 
25 using namespace lldb;
26 using namespace lldb_private;
27 
28 Symtab::Symtab(ObjectFile *objfile)
29     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(),
30       m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
31       m_name_indexes_computed(false) {}
32 
33 Symtab::~Symtab() {}
34 
35 void Symtab::Reserve(size_t count) {
36   // Clients should grab the mutex from this symbol table and lock it manually
37   // when calling this function to avoid performance issues.
38   m_symbols.reserve(count);
39 }
40 
41 Symbol *Symtab::Resize(size_t count) {
42   // Clients should grab the mutex from this symbol table and lock it manually
43   // when calling this function to avoid performance issues.
44   m_symbols.resize(count);
45   return m_symbols.empty() ? nullptr : &m_symbols[0];
46 }
47 
48 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
49   // Clients should grab the mutex from this symbol table and lock it manually
50   // when calling this function to avoid performance issues.
51   uint32_t symbol_idx = m_symbols.size();
52   m_name_to_index.Clear();
53   m_file_addr_to_index.Clear();
54   m_symbols.push_back(symbol);
55   m_file_addr_to_index_computed = false;
56   m_name_indexes_computed = false;
57   return symbol_idx;
58 }
59 
60 size_t Symtab::GetNumSymbols() const {
61   std::lock_guard<std::recursive_mutex> guard(m_mutex);
62   return m_symbols.size();
63 }
64 
65 void Symtab::SectionFileAddressesChanged() {
66   m_name_to_index.Clear();
67   m_file_addr_to_index_computed = false;
68 }
69 
70 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) {
71   std::lock_guard<std::recursive_mutex> guard(m_mutex);
72 
73   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
74   s->Indent();
75   const FileSpec &file_spec = m_objfile->GetFileSpec();
76   const char *object_name = nullptr;
77   if (m_objfile->GetModule())
78     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
79 
80   if (file_spec)
81     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
82               file_spec.GetPath().c_str(), object_name ? "(" : "",
83               object_name ? object_name : "", object_name ? ")" : "",
84               (uint64_t)m_symbols.size());
85   else
86     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
87 
88   if (!m_symbols.empty()) {
89     switch (sort_order) {
90     case eSortOrderNone: {
91       s->PutCString(":\n");
92       DumpSymbolHeader(s);
93       const_iterator begin = m_symbols.begin();
94       const_iterator end = m_symbols.end();
95       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
96         s->Indent();
97         pos->Dump(s, target, std::distance(begin, pos));
98       }
99     } break;
100 
101     case eSortOrderByName: {
102       // Although we maintain a lookup by exact name map, the table
103       // isn't sorted by name. So we must make the ordered symbol list
104       // up ourselves.
105       s->PutCString(" (sorted by name):\n");
106       DumpSymbolHeader(s);
107       typedef std::multimap<const char *, const Symbol *,
108                             CStringCompareFunctionObject>
109           CStringToSymbol;
110       CStringToSymbol name_map;
111       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
112            pos != end; ++pos) {
113         const char *name = pos->GetName().AsCString();
114         if (name && name[0])
115           name_map.insert(std::make_pair(name, &(*pos)));
116       }
117 
118       for (CStringToSymbol::const_iterator pos = name_map.begin(),
119                                            end = name_map.end();
120            pos != end; ++pos) {
121         s->Indent();
122         pos->second->Dump(s, target, pos->second - &m_symbols[0]);
123       }
124     } break;
125 
126     case eSortOrderByAddress:
127       s->PutCString(" (sorted by address):\n");
128       DumpSymbolHeader(s);
129       if (!m_file_addr_to_index_computed)
130         InitAddressIndexes();
131       const size_t num_entries = m_file_addr_to_index.GetSize();
132       for (size_t i = 0; i < num_entries; ++i) {
133         s->Indent();
134         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
135         m_symbols[symbol_idx].Dump(s, target, symbol_idx);
136       }
137       break;
138     }
139   }
140 }
141 
142 void Symtab::Dump(Stream *s, Target *target,
143                   std::vector<uint32_t> &indexes) const {
144   std::lock_guard<std::recursive_mutex> guard(m_mutex);
145 
146   const size_t num_symbols = GetNumSymbols();
147   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
148   s->Indent();
149   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
150             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
151   s->IndentMore();
152 
153   if (!indexes.empty()) {
154     std::vector<uint32_t>::const_iterator pos;
155     std::vector<uint32_t>::const_iterator end = indexes.end();
156     DumpSymbolHeader(s);
157     for (pos = indexes.begin(); pos != end; ++pos) {
158       size_t idx = *pos;
159       if (idx < num_symbols) {
160         s->Indent();
161         m_symbols[idx].Dump(s, target, idx);
162       }
163     }
164   }
165   s->IndentLess();
166 }
167 
168 void Symtab::DumpSymbolHeader(Stream *s) {
169   s->Indent("               Debug symbol\n");
170   s->Indent("               |Synthetic symbol\n");
171   s->Indent("               ||Externally Visible\n");
172   s->Indent("               |||\n");
173   s->Indent("Index   UserID DSX Type            File Address/Value Load "
174             "Address       Size               Flags      Name\n");
175   s->Indent("------- ------ --- --------------- ------------------ "
176             "------------------ ------------------ ---------- "
177             "----------------------------------\n");
178 }
179 
180 static int CompareSymbolID(const void *key, const void *p) {
181   const user_id_t match_uid = *(const user_id_t *)key;
182   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
183   if (match_uid < symbol_uid)
184     return -1;
185   if (match_uid > symbol_uid)
186     return 1;
187   return 0;
188 }
189 
190 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
191   std::lock_guard<std::recursive_mutex> guard(m_mutex);
192 
193   Symbol *symbol =
194       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
195                           sizeof(m_symbols[0]), CompareSymbolID);
196   return symbol;
197 }
198 
199 Symbol *Symtab::SymbolAtIndex(size_t idx) {
200   // Clients should grab the mutex from this symbol table and lock it manually
201   // when calling this function to avoid performance issues.
202   if (idx < m_symbols.size())
203     return &m_symbols[idx];
204   return nullptr;
205 }
206 
207 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
208   // Clients should grab the mutex from this symbol table and lock it manually
209   // when calling this function to avoid performance issues.
210   if (idx < m_symbols.size())
211     return &m_symbols[idx];
212   return nullptr;
213 }
214 
215 //----------------------------------------------------------------------
216 // InitNameIndexes
217 //----------------------------------------------------------------------
218 void Symtab::InitNameIndexes() {
219   // Protected function, no need to lock mutex...
220   if (!m_name_indexes_computed) {
221     m_name_indexes_computed = true;
222     Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
223     // Create the name index vector to be able to quickly search by name
224     const size_t num_symbols = m_symbols.size();
225 #if 1
226     m_name_to_index.Reserve(num_symbols);
227 #else
228     // TODO: benchmark this to see if we save any memory. Otherwise we
229     // will always keep the memory reserved in the vector unless we pull
230     // some STL swap magic and then recopy...
231     uint32_t actual_count = 0;
232     for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
233          pos != end; ++pos) {
234       const Mangled &mangled = pos->GetMangled();
235       if (mangled.GetMangledName())
236         ++actual_count;
237 
238       if (mangled.GetDemangledName())
239         ++actual_count;
240     }
241 
242     m_name_to_index.Reserve(actual_count);
243 #endif
244 
245     NameToIndexMap::Entry entry;
246 
247     // The "const char *" in "class_contexts" must come from a
248     // ConstString::GetCString()
249     std::set<const char *> class_contexts;
250     UniqueCStringMap<uint32_t> mangled_name_to_index;
251     std::vector<const char *> symbol_contexts(num_symbols, nullptr);
252 
253     for (entry.value = 0; entry.value < num_symbols; ++entry.value) {
254       const Symbol *symbol = &m_symbols[entry.value];
255 
256       // Don't let trampolines get into the lookup by name map
257       // If we ever need the trampoline symbols to be searchable by name
258       // we can remove this and then possibly add a new bool to any of the
259       // Symtab functions that lookup symbols by name to indicate if they
260       // want trampolines.
261       if (symbol->IsTrampoline())
262         continue;
263 
264       const Mangled &mangled = symbol->GetMangled();
265       entry.cstring = mangled.GetMangledName().GetCString();
266       if (entry.cstring && entry.cstring[0]) {
267         m_name_to_index.Append(entry);
268 
269         if (symbol->ContainsLinkerAnnotations()) {
270           // If the symbol has linker annotations, also add the version without
271           // the
272           // annotations.
273           entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
274                                           entry.cstring))
275                               .GetCString();
276           m_name_to_index.Append(entry);
277         }
278 
279         const SymbolType symbol_type = symbol->GetType();
280         if (symbol_type == eSymbolTypeCode ||
281             symbol_type == eSymbolTypeResolver) {
282           if (entry.cstring[0] == '_' && entry.cstring[1] == 'Z' &&
283               (entry.cstring[2] != 'T' && // avoid virtual table, VTT structure,
284                                           // typeinfo structure, and typeinfo
285                                           // name
286                entry.cstring[2] != 'G' && // avoid guard variables
287                entry.cstring[2] != 'Z'))  // named local entities (if we
288                                           // eventually handle eSymbolTypeData,
289                                           // we will want this back)
290           {
291             CPlusPlusLanguage::MethodName cxx_method(
292                 mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus));
293             entry.cstring = ConstString(cxx_method.GetBasename()).GetCString();
294             if (entry.cstring && entry.cstring[0]) {
295               // ConstString objects permanently store the string in the pool so
296               // calling
297               // GetCString() on the value gets us a const char * that will
298               // never go away
299               const char *const_context =
300                   ConstString(cxx_method.GetContext()).GetCString();
301 
302               if (entry.cstring[0] == '~' ||
303                   !cxx_method.GetQualifiers().empty()) {
304                 // The first character of the demangled basename is '~' which
305                 // means we have a class destructor. We can use this information
306                 // to help us know what is a class and what isn't.
307                 if (class_contexts.find(const_context) == class_contexts.end())
308                   class_contexts.insert(const_context);
309                 m_method_to_index.Append(entry);
310               } else {
311                 if (const_context && const_context[0]) {
312                   if (class_contexts.find(const_context) !=
313                       class_contexts.end()) {
314                     // The current decl context is in our "class_contexts" which
315                     // means
316                     // this is a method on a class
317                     m_method_to_index.Append(entry);
318                   } else {
319                     // We don't know if this is a function basename or a method,
320                     // so put it into a temporary collection so once we are done
321                     // we can look in class_contexts to see if each entry is a
322                     // class
323                     // or just a function and will put any remaining items into
324                     // m_method_to_index or m_basename_to_index as needed
325                     mangled_name_to_index.Append(entry);
326                     symbol_contexts[entry.value] = const_context;
327                   }
328                 } else {
329                   // No context for this function so this has to be a basename
330                   m_basename_to_index.Append(entry);
331                 }
332               }
333             }
334           }
335         }
336       }
337 
338       entry.cstring =
339           mangled.GetDemangledName(symbol->GetLanguage()).GetCString();
340       if (entry.cstring && entry.cstring[0]) {
341         m_name_to_index.Append(entry);
342 
343         if (symbol->ContainsLinkerAnnotations()) {
344           // If the symbol has linker annotations, also add the version without
345           // the
346           // annotations.
347           entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
348                                           entry.cstring))
349                               .GetCString();
350           m_name_to_index.Append(entry);
351         }
352       }
353 
354       // If the demangled name turns out to be an ObjC name, and
355       // is a category name, add the version without categories to the index
356       // too.
357       ObjCLanguage::MethodName objc_method(entry.cstring, true);
358       if (objc_method.IsValid(true)) {
359         entry.cstring = objc_method.GetSelector().GetCString();
360         m_selector_to_index.Append(entry);
361 
362         ConstString objc_method_no_category(
363             objc_method.GetFullNameWithoutCategory(true));
364         if (objc_method_no_category) {
365           entry.cstring = objc_method_no_category.GetCString();
366           m_name_to_index.Append(entry);
367         }
368       }
369     }
370 
371     size_t count;
372     if (!mangled_name_to_index.IsEmpty()) {
373       count = mangled_name_to_index.GetSize();
374       for (size_t i = 0; i < count; ++i) {
375         if (mangled_name_to_index.GetValueAtIndex(i, entry.value)) {
376           entry.cstring = mangled_name_to_index.GetCStringAtIndex(i);
377           if (symbol_contexts[entry.value] &&
378               class_contexts.find(symbol_contexts[entry.value]) !=
379                   class_contexts.end()) {
380             m_method_to_index.Append(entry);
381           } else {
382             // If we got here, we have something that had a context (was inside
383             // a namespace or class)
384             // yet we don't know if the entry
385             m_method_to_index.Append(entry);
386             m_basename_to_index.Append(entry);
387           }
388         }
389       }
390     }
391     m_name_to_index.Sort();
392     m_name_to_index.SizeToFit();
393     m_selector_to_index.Sort();
394     m_selector_to_index.SizeToFit();
395     m_basename_to_index.Sort();
396     m_basename_to_index.SizeToFit();
397     m_method_to_index.Sort();
398     m_method_to_index.SizeToFit();
399 
400     //        static StreamFile a ("/tmp/a.txt");
401     //
402     //        count = m_basename_to_index.GetSize();
403     //        if (count)
404     //        {
405     //            for (size_t i=0; i<count; ++i)
406     //            {
407     //                if (m_basename_to_index.GetValueAtIndex(i, entry.value))
408     //                    a.Printf ("%s BASENAME\n",
409     //                    m_symbols[entry.value].GetMangled().GetName().GetCString());
410     //            }
411     //        }
412     //        count = m_method_to_index.GetSize();
413     //        if (count)
414     //        {
415     //            for (size_t i=0; i<count; ++i)
416     //            {
417     //                if (m_method_to_index.GetValueAtIndex(i, entry.value))
418     //                    a.Printf ("%s METHOD\n",
419     //                    m_symbols[entry.value].GetMangled().GetName().GetCString());
420     //            }
421     //        }
422   }
423 }
424 
425 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
426                                     bool add_demangled, bool add_mangled,
427                                     NameToIndexMap &name_to_index_map) const {
428   if (add_demangled || add_mangled) {
429     Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
430     std::lock_guard<std::recursive_mutex> guard(m_mutex);
431 
432     // Create the name index vector to be able to quickly search by name
433     NameToIndexMap::Entry entry;
434     const size_t num_indexes = indexes.size();
435     for (size_t i = 0; i < num_indexes; ++i) {
436       entry.value = indexes[i];
437       assert(i < m_symbols.size());
438       const Symbol *symbol = &m_symbols[entry.value];
439 
440       const Mangled &mangled = symbol->GetMangled();
441       if (add_demangled) {
442         entry.cstring =
443             mangled.GetDemangledName(symbol->GetLanguage()).GetCString();
444         if (entry.cstring && entry.cstring[0])
445           name_to_index_map.Append(entry);
446       }
447 
448       if (add_mangled) {
449         entry.cstring = mangled.GetMangledName().GetCString();
450         if (entry.cstring && entry.cstring[0])
451           name_to_index_map.Append(entry);
452       }
453     }
454   }
455 }
456 
457 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
458                                              std::vector<uint32_t> &indexes,
459                                              uint32_t start_idx,
460                                              uint32_t end_index) const {
461   std::lock_guard<std::recursive_mutex> guard(m_mutex);
462 
463   uint32_t prev_size = indexes.size();
464 
465   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
466 
467   for (uint32_t i = start_idx; i < count; ++i) {
468     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
469       indexes.push_back(i);
470   }
471 
472   return indexes.size() - prev_size;
473 }
474 
475 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
476     SymbolType symbol_type, uint32_t flags_value,
477     std::vector<uint32_t> &indexes, uint32_t start_idx,
478     uint32_t end_index) const {
479   std::lock_guard<std::recursive_mutex> guard(m_mutex);
480 
481   uint32_t prev_size = indexes.size();
482 
483   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
484 
485   for (uint32_t i = start_idx; i < count; ++i) {
486     if ((symbol_type == eSymbolTypeAny ||
487          m_symbols[i].GetType() == symbol_type) &&
488         m_symbols[i].GetFlags() == flags_value)
489       indexes.push_back(i);
490   }
491 
492   return indexes.size() - prev_size;
493 }
494 
495 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
496                                              Debug symbol_debug_type,
497                                              Visibility symbol_visibility,
498                                              std::vector<uint32_t> &indexes,
499                                              uint32_t start_idx,
500                                              uint32_t end_index) const {
501   std::lock_guard<std::recursive_mutex> guard(m_mutex);
502 
503   uint32_t prev_size = indexes.size();
504 
505   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
506 
507   for (uint32_t i = start_idx; i < count; ++i) {
508     if (symbol_type == eSymbolTypeAny ||
509         m_symbols[i].GetType() == symbol_type) {
510       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
511         indexes.push_back(i);
512     }
513   }
514 
515   return indexes.size() - prev_size;
516 }
517 
518 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
519   if (!m_symbols.empty()) {
520     const Symbol *first_symbol = &m_symbols[0];
521     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
522       return symbol - first_symbol;
523   }
524   return UINT32_MAX;
525 }
526 
527 struct SymbolSortInfo {
528   const bool sort_by_load_addr;
529   const Symbol *symbols;
530 };
531 
532 namespace {
533 struct SymbolIndexComparator {
534   const std::vector<Symbol> &symbols;
535   std::vector<lldb::addr_t> &addr_cache;
536 
537   // Getting from the symbol to the Address to the File Address involves some
538   // work.
539   // Since there are potentially many symbols here, and we're using this for
540   // sorting so
541   // we're going to be computing the address many times, cache that in
542   // addr_cache.
543   // The array passed in has to be the same size as the symbols array passed
544   // into the
545   // member variable symbols, and should be initialized with
546   // LLDB_INVALID_ADDRESS.
547   // NOTE: You have to make addr_cache externally and pass it in because
548   // std::stable_sort
549   // makes copies of the comparator it is initially passed in, and you end up
550   // spending
551   // huge amounts of time copying this array...
552 
553   SymbolIndexComparator(const std::vector<Symbol> &s,
554                         std::vector<lldb::addr_t> &a)
555       : symbols(s), addr_cache(a) {
556     assert(symbols.size() == addr_cache.size());
557   }
558   bool operator()(uint32_t index_a, uint32_t index_b) {
559     addr_t value_a = addr_cache[index_a];
560     if (value_a == LLDB_INVALID_ADDRESS) {
561       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
562       addr_cache[index_a] = value_a;
563     }
564 
565     addr_t value_b = addr_cache[index_b];
566     if (value_b == LLDB_INVALID_ADDRESS) {
567       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
568       addr_cache[index_b] = value_b;
569     }
570 
571     if (value_a == value_b) {
572       // The if the values are equal, use the original symbol user ID
573       lldb::user_id_t uid_a = symbols[index_a].GetID();
574       lldb::user_id_t uid_b = symbols[index_b].GetID();
575       if (uid_a < uid_b)
576         return true;
577       if (uid_a > uid_b)
578         return false;
579       return false;
580     } else if (value_a < value_b)
581       return true;
582 
583     return false;
584   }
585 };
586 }
587 
588 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
589                                       bool remove_duplicates) const {
590   std::lock_guard<std::recursive_mutex> guard(m_mutex);
591 
592   Timer scoped_timer(LLVM_PRETTY_FUNCTION, LLVM_PRETTY_FUNCTION);
593   // No need to sort if we have zero or one items...
594   if (indexes.size() <= 1)
595     return;
596 
597   // Sort the indexes in place using std::stable_sort.
598   // NOTE: The use of std::stable_sort instead of std::sort here is strictly for
599   // performance,
600   // not correctness.  The indexes vector tends to be "close" to sorted, which
601   // the
602   // stable sort handles better.
603 
604   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
605 
606   SymbolIndexComparator comparator(m_symbols, addr_cache);
607   std::stable_sort(indexes.begin(), indexes.end(), comparator);
608 
609   // Remove any duplicates if requested
610   if (remove_duplicates)
611     std::unique(indexes.begin(), indexes.end());
612 }
613 
614 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name,
615                                              std::vector<uint32_t> &indexes) {
616   std::lock_guard<std::recursive_mutex> guard(m_mutex);
617 
618   Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
619   if (symbol_name) {
620     const char *symbol_cstr = symbol_name.GetCString();
621     if (!m_name_indexes_computed)
622       InitNameIndexes();
623 
624     return m_name_to_index.GetValues(symbol_cstr, indexes);
625   }
626   return 0;
627 }
628 
629 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name,
630                                              Debug symbol_debug_type,
631                                              Visibility symbol_visibility,
632                                              std::vector<uint32_t> &indexes) {
633   std::lock_guard<std::recursive_mutex> guard(m_mutex);
634 
635   Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
636   if (symbol_name) {
637     const size_t old_size = indexes.size();
638     if (!m_name_indexes_computed)
639       InitNameIndexes();
640 
641     const char *symbol_cstr = symbol_name.GetCString();
642 
643     std::vector<uint32_t> all_name_indexes;
644     const size_t name_match_count =
645         m_name_to_index.GetValues(symbol_cstr, all_name_indexes);
646     for (size_t i = 0; i < name_match_count; ++i) {
647       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
648                              symbol_visibility))
649         indexes.push_back(all_name_indexes[i]);
650     }
651     return indexes.size() - old_size;
652   }
653   return 0;
654 }
655 
656 uint32_t
657 Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name,
658                                            SymbolType symbol_type,
659                                            std::vector<uint32_t> &indexes) {
660   std::lock_guard<std::recursive_mutex> guard(m_mutex);
661 
662   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
663     std::vector<uint32_t>::iterator pos = indexes.begin();
664     while (pos != indexes.end()) {
665       if (symbol_type == eSymbolTypeAny ||
666           m_symbols[*pos].GetType() == symbol_type)
667         ++pos;
668       else
669         pos = indexes.erase(pos);
670     }
671   }
672   return indexes.size();
673 }
674 
675 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
676     const ConstString &symbol_name, SymbolType symbol_type,
677     Debug symbol_debug_type, Visibility symbol_visibility,
678     std::vector<uint32_t> &indexes) {
679   std::lock_guard<std::recursive_mutex> guard(m_mutex);
680 
681   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
682                                   symbol_visibility, indexes) > 0) {
683     std::vector<uint32_t>::iterator pos = indexes.begin();
684     while (pos != indexes.end()) {
685       if (symbol_type == eSymbolTypeAny ||
686           m_symbols[*pos].GetType() == symbol_type)
687         ++pos;
688       else
689         pos = indexes.erase(pos);
690     }
691   }
692   return indexes.size();
693 }
694 
695 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
696     const RegularExpression &regexp, SymbolType symbol_type,
697     std::vector<uint32_t> &indexes) {
698   std::lock_guard<std::recursive_mutex> guard(m_mutex);
699 
700   uint32_t prev_size = indexes.size();
701   uint32_t sym_end = m_symbols.size();
702 
703   for (uint32_t i = 0; i < sym_end; i++) {
704     if (symbol_type == eSymbolTypeAny ||
705         m_symbols[i].GetType() == symbol_type) {
706       const char *name = m_symbols[i].GetName().AsCString();
707       if (name) {
708         if (regexp.Execute(name))
709           indexes.push_back(i);
710       }
711     }
712   }
713   return indexes.size() - prev_size;
714 }
715 
716 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
717     const RegularExpression &regexp, SymbolType symbol_type,
718     Debug symbol_debug_type, Visibility symbol_visibility,
719     std::vector<uint32_t> &indexes) {
720   std::lock_guard<std::recursive_mutex> guard(m_mutex);
721 
722   uint32_t prev_size = indexes.size();
723   uint32_t sym_end = m_symbols.size();
724 
725   for (uint32_t i = 0; i < sym_end; i++) {
726     if (symbol_type == eSymbolTypeAny ||
727         m_symbols[i].GetType() == symbol_type) {
728       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false)
729         continue;
730 
731       const char *name = m_symbols[i].GetName().AsCString();
732       if (name) {
733         if (regexp.Execute(name))
734           indexes.push_back(i);
735       }
736     }
737   }
738   return indexes.size() - prev_size;
739 }
740 
741 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
742                                    Debug symbol_debug_type,
743                                    Visibility symbol_visibility,
744                                    uint32_t &start_idx) {
745   std::lock_guard<std::recursive_mutex> guard(m_mutex);
746 
747   const size_t count = m_symbols.size();
748   for (size_t idx = start_idx; idx < count; ++idx) {
749     if (symbol_type == eSymbolTypeAny ||
750         m_symbols[idx].GetType() == symbol_type) {
751       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
752         start_idx = idx;
753         return &m_symbols[idx];
754       }
755     }
756   }
757   return nullptr;
758 }
759 
760 size_t
761 Symtab::FindAllSymbolsWithNameAndType(const ConstString &name,
762                                       SymbolType symbol_type,
763                                       std::vector<uint32_t> &symbol_indexes) {
764   std::lock_guard<std::recursive_mutex> guard(m_mutex);
765 
766   Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
767   // Initialize all of the lookup by name indexes before converting NAME
768   // to a uniqued string NAME_STR below.
769   if (!m_name_indexes_computed)
770     InitNameIndexes();
771 
772   if (name) {
773     // The string table did have a string that matched, but we need
774     // to check the symbols and match the symbol_type if any was given.
775     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
776   }
777   return symbol_indexes.size();
778 }
779 
780 size_t Symtab::FindAllSymbolsWithNameAndType(
781     const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type,
782     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
783   std::lock_guard<std::recursive_mutex> guard(m_mutex);
784 
785   Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
786   // Initialize all of the lookup by name indexes before converting NAME
787   // to a uniqued string NAME_STR below.
788   if (!m_name_indexes_computed)
789     InitNameIndexes();
790 
791   if (name) {
792     // The string table did have a string that matched, but we need
793     // to check the symbols and match the symbol_type if any was given.
794     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
795                                        symbol_visibility, symbol_indexes);
796   }
797   return symbol_indexes.size();
798 }
799 
800 size_t Symtab::FindAllSymbolsMatchingRexExAndType(
801     const RegularExpression &regex, SymbolType symbol_type,
802     Debug symbol_debug_type, Visibility symbol_visibility,
803     std::vector<uint32_t> &symbol_indexes) {
804   std::lock_guard<std::recursive_mutex> guard(m_mutex);
805 
806   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
807                                           symbol_visibility, symbol_indexes);
808   return symbol_indexes.size();
809 }
810 
811 Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name,
812                                                SymbolType symbol_type,
813                                                Debug symbol_debug_type,
814                                                Visibility symbol_visibility) {
815   std::lock_guard<std::recursive_mutex> guard(m_mutex);
816 
817   Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION);
818   if (!m_name_indexes_computed)
819     InitNameIndexes();
820 
821   if (name) {
822     std::vector<uint32_t> matching_indexes;
823     // The string table did have a string that matched, but we need
824     // to check the symbols and match the symbol_type if any was given.
825     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
826                                            symbol_visibility,
827                                            matching_indexes)) {
828       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
829       for (pos = matching_indexes.begin(); pos != end; ++pos) {
830         Symbol *symbol = SymbolAtIndex(*pos);
831 
832         if (symbol->Compare(name, symbol_type))
833           return symbol;
834       }
835     }
836   }
837   return nullptr;
838 }
839 
840 typedef struct {
841   const Symtab *symtab;
842   const addr_t file_addr;
843   Symbol *match_symbol;
844   const uint32_t *match_index_ptr;
845   addr_t match_offset;
846 } SymbolSearchInfo;
847 
848 // Add all the section file start address & size to the RangeVector,
849 // recusively adding any children sections.
850 static void AddSectionsToRangeMap(SectionList *sectlist,
851                                   RangeVector<addr_t, addr_t> &section_ranges) {
852   const int num_sections = sectlist->GetNumSections(0);
853   for (int i = 0; i < num_sections; i++) {
854     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
855     if (sect_sp) {
856       SectionList &child_sectlist = sect_sp->GetChildren();
857 
858       // If this section has children, add the children to the RangeVector.
859       // Else add this section to the RangeVector.
860       if (child_sectlist.GetNumSections(0) > 0) {
861         AddSectionsToRangeMap(&child_sectlist, section_ranges);
862       } else {
863         size_t size = sect_sp->GetByteSize();
864         if (size > 0) {
865           addr_t base_addr = sect_sp->GetFileAddress();
866           RangeVector<addr_t, addr_t>::Entry entry;
867           entry.SetRangeBase(base_addr);
868           entry.SetByteSize(size);
869           section_ranges.Append(entry);
870         }
871       }
872     }
873   }
874 }
875 
876 void Symtab::InitAddressIndexes() {
877   // Protected function, no need to lock mutex...
878   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
879     m_file_addr_to_index_computed = true;
880 
881     FileRangeToIndexMap::Entry entry;
882     const_iterator begin = m_symbols.begin();
883     const_iterator end = m_symbols.end();
884     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
885       if (pos->ValueIsAddress()) {
886         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
887         entry.SetByteSize(pos->GetByteSize());
888         entry.data = std::distance(begin, pos);
889         m_file_addr_to_index.Append(entry);
890       }
891     }
892     const size_t num_entries = m_file_addr_to_index.GetSize();
893     if (num_entries > 0) {
894       m_file_addr_to_index.Sort();
895 
896       // Create a RangeVector with the start & size of all the sections for
897       // this objfile.  We'll need to check this for any FileRangeToIndexMap
898       // entries with an uninitialized size, which could potentially be a
899       // large number so reconstituting the weak pointer is busywork when it
900       // is invariant information.
901       SectionList *sectlist = m_objfile->GetSectionList();
902       RangeVector<addr_t, addr_t> section_ranges;
903       if (sectlist) {
904         AddSectionsToRangeMap(sectlist, section_ranges);
905         section_ranges.Sort();
906       }
907 
908       // Iterate through the FileRangeToIndexMap and fill in the size for any
909       // entries that didn't already have a size from the Symbol (e.g. if we
910       // have a plain linker symbol with an address only, instead of debug info
911       // where we get an address and a size and a type, etc.)
912       for (size_t i = 0; i < num_entries; i++) {
913         FileRangeToIndexMap::Entry *entry =
914             m_file_addr_to_index.GetMutableEntryAtIndex(i);
915         if (entry->GetByteSize() == 0) {
916           addr_t curr_base_addr = entry->GetRangeBase();
917           const RangeVector<addr_t, addr_t>::Entry *containing_section =
918               section_ranges.FindEntryThatContains(curr_base_addr);
919 
920           // Use the end of the section as the default max size of the symbol
921           addr_t sym_size = 0;
922           if (containing_section) {
923             sym_size =
924                 containing_section->GetByteSize() -
925                 (entry->GetRangeBase() - containing_section->GetRangeBase());
926           }
927 
928           for (size_t j = i; j < num_entries; j++) {
929             FileRangeToIndexMap::Entry *next_entry =
930                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
931             addr_t next_base_addr = next_entry->GetRangeBase();
932             if (next_base_addr > curr_base_addr) {
933               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
934 
935               // Take the difference between this symbol and the next one as its
936               // size,
937               // if it is less than the size of the section.
938               if (sym_size == 0 || size_to_next_symbol < sym_size) {
939                 sym_size = size_to_next_symbol;
940               }
941               break;
942             }
943           }
944 
945           if (sym_size > 0) {
946             entry->SetByteSize(sym_size);
947             Symbol &symbol = m_symbols[entry->data];
948             symbol.SetByteSize(sym_size);
949             symbol.SetSizeIsSynthesized(true);
950           }
951         }
952       }
953 
954       // Sort again in case the range size changes the ordering
955       m_file_addr_to_index.Sort();
956     }
957   }
958 }
959 
960 void Symtab::CalculateSymbolSizes() {
961   std::lock_guard<std::recursive_mutex> guard(m_mutex);
962 
963   if (!m_symbols.empty()) {
964     if (!m_file_addr_to_index_computed)
965       InitAddressIndexes();
966 
967     const size_t num_entries = m_file_addr_to_index.GetSize();
968 
969     for (size_t i = 0; i < num_entries; ++i) {
970       // The entries in the m_file_addr_to_index have calculated the sizes
971       // already
972       // so we will use this size if we need to.
973       const FileRangeToIndexMap::Entry &entry =
974           m_file_addr_to_index.GetEntryRef(i);
975 
976       Symbol &symbol = m_symbols[entry.data];
977 
978       // If the symbol size is already valid, no need to do anything
979       if (symbol.GetByteSizeIsValid())
980         continue;
981 
982       const addr_t range_size = entry.GetByteSize();
983       if (range_size > 0) {
984         symbol.SetByteSize(range_size);
985         symbol.SetSizeIsSynthesized(true);
986       }
987     }
988   }
989 }
990 
991 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
992   std::lock_guard<std::recursive_mutex> guard(m_mutex);
993   if (!m_file_addr_to_index_computed)
994     InitAddressIndexes();
995 
996   const FileRangeToIndexMap::Entry *entry =
997       m_file_addr_to_index.FindEntryStartsAt(file_addr);
998   if (entry) {
999     Symbol *symbol = SymbolAtIndex(entry->data);
1000     if (symbol->GetFileAddress() == file_addr)
1001       return symbol;
1002   }
1003   return nullptr;
1004 }
1005 
1006 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1007   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1008 
1009   if (!m_file_addr_to_index_computed)
1010     InitAddressIndexes();
1011 
1012   const FileRangeToIndexMap::Entry *entry =
1013       m_file_addr_to_index.FindEntryThatContains(file_addr);
1014   if (entry) {
1015     Symbol *symbol = SymbolAtIndex(entry->data);
1016     if (symbol->ContainsFileAddress(file_addr))
1017       return symbol;
1018   }
1019   return nullptr;
1020 }
1021 
1022 void Symtab::ForEachSymbolContainingFileAddress(
1023     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1024   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1025 
1026   if (!m_file_addr_to_index_computed)
1027     InitAddressIndexes();
1028 
1029   std::vector<uint32_t> all_addr_indexes;
1030 
1031   // Get all symbols with file_addr
1032   const size_t addr_match_count =
1033       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1034                                                        all_addr_indexes);
1035 
1036   for (size_t i = 0; i < addr_match_count; ++i) {
1037     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1038     if (symbol->ContainsFileAddress(file_addr)) {
1039       if (!callback(symbol))
1040         break;
1041     }
1042   }
1043 }
1044 
1045 void Symtab::SymbolIndicesToSymbolContextList(
1046     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1047   // No need to protect this call using m_mutex all other method calls are
1048   // already thread safe.
1049 
1050   const bool merge_symbol_into_function = true;
1051   size_t num_indices = symbol_indexes.size();
1052   if (num_indices > 0) {
1053     SymbolContext sc;
1054     sc.module_sp = m_objfile->GetModule();
1055     for (size_t i = 0; i < num_indices; i++) {
1056       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1057       if (sc.symbol)
1058         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1059     }
1060   }
1061 }
1062 
1063 size_t Symtab::FindFunctionSymbols(const ConstString &name,
1064                                    uint32_t name_type_mask,
1065                                    SymbolContextList &sc_list) {
1066   size_t count = 0;
1067   std::vector<uint32_t> symbol_indexes;
1068 
1069   const char *name_cstr = name.GetCString();
1070 
1071   // eFunctionNameTypeAuto should be pre-resolved by a call to
1072   // Module::PrepareForFunctionNameLookup()
1073   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1074 
1075   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1076     std::vector<uint32_t> temp_symbol_indexes;
1077     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1078 
1079     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1080     if (temp_symbol_indexes_size > 0) {
1081       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1082       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1083         SymbolContext sym_ctx;
1084         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1085         if (sym_ctx.symbol) {
1086           switch (sym_ctx.symbol->GetType()) {
1087           case eSymbolTypeCode:
1088           case eSymbolTypeResolver:
1089           case eSymbolTypeReExported:
1090             symbol_indexes.push_back(temp_symbol_indexes[i]);
1091             break;
1092           default:
1093             break;
1094           }
1095         }
1096       }
1097     }
1098   }
1099 
1100   if (name_type_mask & eFunctionNameTypeBase) {
1101     // From mangled names we can't tell what is a basename and what
1102     // is a method name, so we just treat them the same
1103     if (!m_name_indexes_computed)
1104       InitNameIndexes();
1105 
1106     if (!m_basename_to_index.IsEmpty()) {
1107       const UniqueCStringMap<uint32_t>::Entry *match;
1108       for (match = m_basename_to_index.FindFirstValueForName(name_cstr);
1109            match != nullptr;
1110            match = m_basename_to_index.FindNextValueForName(match)) {
1111         symbol_indexes.push_back(match->value);
1112       }
1113     }
1114   }
1115 
1116   if (name_type_mask & eFunctionNameTypeMethod) {
1117     if (!m_name_indexes_computed)
1118       InitNameIndexes();
1119 
1120     if (!m_method_to_index.IsEmpty()) {
1121       const UniqueCStringMap<uint32_t>::Entry *match;
1122       for (match = m_method_to_index.FindFirstValueForName(name_cstr);
1123            match != nullptr;
1124            match = m_method_to_index.FindNextValueForName(match)) {
1125         symbol_indexes.push_back(match->value);
1126       }
1127     }
1128   }
1129 
1130   if (name_type_mask & eFunctionNameTypeSelector) {
1131     if (!m_name_indexes_computed)
1132       InitNameIndexes();
1133 
1134     if (!m_selector_to_index.IsEmpty()) {
1135       const UniqueCStringMap<uint32_t>::Entry *match;
1136       for (match = m_selector_to_index.FindFirstValueForName(name_cstr);
1137            match != nullptr;
1138            match = m_selector_to_index.FindNextValueForName(match)) {
1139         symbol_indexes.push_back(match->value);
1140       }
1141     }
1142   }
1143 
1144   if (!symbol_indexes.empty()) {
1145     std::sort(symbol_indexes.begin(), symbol_indexes.end());
1146     symbol_indexes.erase(
1147         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1148         symbol_indexes.end());
1149     count = symbol_indexes.size();
1150     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1151   }
1152 
1153   return count;
1154 }
1155 
1156 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1157   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1158   if (child_idx != UINT32_MAX && child_idx > 0) {
1159     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1160       const Symbol *symbol = SymbolAtIndex(idx);
1161       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1162       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1163         return symbol;
1164     }
1165   }
1166   return NULL;
1167 }
1168