1 //===-- Symtab.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include <map>
10 #include <set>
11
12 #include "lldb/Core/DataFileCache.h"
13 #include "lldb/Core/Module.h"
14 #include "lldb/Core/RichManglingContext.h"
15 #include "lldb/Core/Section.h"
16 #include "lldb/Symbol/ObjectFile.h"
17 #include "lldb/Symbol/Symbol.h"
18 #include "lldb/Symbol/SymbolContext.h"
19 #include "lldb/Symbol/Symtab.h"
20 #include "lldb/Target/Language.h"
21 #include "lldb/Utility/DataEncoder.h"
22 #include "lldb/Utility/Endian.h"
23 #include "lldb/Utility/RegularExpression.h"
24 #include "lldb/Utility/Stream.h"
25 #include "lldb/Utility/Timer.h"
26
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Support/DJB.h"
30
31 using namespace lldb;
32 using namespace lldb_private;
33
Symtab(ObjectFile * objfile)34 Symtab::Symtab(ObjectFile *objfile)
35 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
36 m_name_to_symbol_indices(), m_mutex(),
37 m_file_addr_to_index_computed(false), m_name_indexes_computed(false),
38 m_loaded_from_cache(false), m_saved_to_cache(false) {
39 m_name_to_symbol_indices.emplace(std::make_pair(
40 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
41 m_name_to_symbol_indices.emplace(std::make_pair(
42 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
43 m_name_to_symbol_indices.emplace(std::make_pair(
44 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
45 m_name_to_symbol_indices.emplace(std::make_pair(
46 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
47 }
48
49 Symtab::~Symtab() = default;
50
Reserve(size_t count)51 void Symtab::Reserve(size_t count) {
52 // Clients should grab the mutex from this symbol table and lock it manually
53 // when calling this function to avoid performance issues.
54 m_symbols.reserve(count);
55 }
56
Resize(size_t count)57 Symbol *Symtab::Resize(size_t count) {
58 // Clients should grab the mutex from this symbol table and lock it manually
59 // when calling this function to avoid performance issues.
60 m_symbols.resize(count);
61 return m_symbols.empty() ? nullptr : &m_symbols[0];
62 }
63
AddSymbol(const Symbol & symbol)64 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
65 // Clients should grab the mutex from this symbol table and lock it manually
66 // when calling this function to avoid performance issues.
67 uint32_t symbol_idx = m_symbols.size();
68 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
69 name_to_index.Clear();
70 m_file_addr_to_index.Clear();
71 m_symbols.push_back(symbol);
72 m_file_addr_to_index_computed = false;
73 m_name_indexes_computed = false;
74 return symbol_idx;
75 }
76
GetNumSymbols() const77 size_t Symtab::GetNumSymbols() const {
78 std::lock_guard<std::recursive_mutex> guard(m_mutex);
79 return m_symbols.size();
80 }
81
SectionFileAddressesChanged()82 void Symtab::SectionFileAddressesChanged() {
83 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
84 name_to_index.Clear();
85 m_file_addr_to_index_computed = false;
86 }
87
Dump(Stream * s,Target * target,SortOrder sort_order,Mangled::NamePreference name_preference)88 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
89 Mangled::NamePreference name_preference) {
90 std::lock_guard<std::recursive_mutex> guard(m_mutex);
91
92 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
93 s->Indent();
94 const FileSpec &file_spec = m_objfile->GetFileSpec();
95 const char *object_name = nullptr;
96 if (m_objfile->GetModule())
97 object_name = m_objfile->GetModule()->GetObjectName().GetCString();
98
99 if (file_spec)
100 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
101 file_spec.GetPath().c_str(), object_name ? "(" : "",
102 object_name ? object_name : "", object_name ? ")" : "",
103 (uint64_t)m_symbols.size());
104 else
105 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
106
107 if (!m_symbols.empty()) {
108 switch (sort_order) {
109 case eSortOrderNone: {
110 s->PutCString(":\n");
111 DumpSymbolHeader(s);
112 const_iterator begin = m_symbols.begin();
113 const_iterator end = m_symbols.end();
114 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
115 s->Indent();
116 pos->Dump(s, target, std::distance(begin, pos), name_preference);
117 }
118 }
119 break;
120
121 case eSortOrderByName: {
122 // Although we maintain a lookup by exact name map, the table isn't
123 // sorted by name. So we must make the ordered symbol list up ourselves.
124 s->PutCString(" (sorted by name):\n");
125 DumpSymbolHeader(s);
126
127 std::multimap<llvm::StringRef, const Symbol *> name_map;
128 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
129 pos != end; ++pos) {
130 const char *name = pos->GetName().AsCString();
131 if (name && name[0])
132 name_map.insert(std::make_pair(name, &(*pos)));
133 }
134
135 for (const auto &name_to_symbol : name_map) {
136 const Symbol *symbol = name_to_symbol.second;
137 s->Indent();
138 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
139 }
140 } break;
141
142 case eSortOrderByAddress:
143 s->PutCString(" (sorted by address):\n");
144 DumpSymbolHeader(s);
145 if (!m_file_addr_to_index_computed)
146 InitAddressIndexes();
147 const size_t num_entries = m_file_addr_to_index.GetSize();
148 for (size_t i = 0; i < num_entries; ++i) {
149 s->Indent();
150 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
151 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
152 }
153 break;
154 }
155 } else {
156 s->PutCString("\n");
157 }
158 }
159
Dump(Stream * s,Target * target,std::vector<uint32_t> & indexes,Mangled::NamePreference name_preference) const160 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
161 Mangled::NamePreference name_preference) const {
162 std::lock_guard<std::recursive_mutex> guard(m_mutex);
163
164 const size_t num_symbols = GetNumSymbols();
165 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
166 s->Indent();
167 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
168 (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
169 s->IndentMore();
170
171 if (!indexes.empty()) {
172 std::vector<uint32_t>::const_iterator pos;
173 std::vector<uint32_t>::const_iterator end = indexes.end();
174 DumpSymbolHeader(s);
175 for (pos = indexes.begin(); pos != end; ++pos) {
176 size_t idx = *pos;
177 if (idx < num_symbols) {
178 s->Indent();
179 m_symbols[idx].Dump(s, target, idx, name_preference);
180 }
181 }
182 }
183 s->IndentLess();
184 }
185
DumpSymbolHeader(Stream * s)186 void Symtab::DumpSymbolHeader(Stream *s) {
187 s->Indent(" Debug symbol\n");
188 s->Indent(" |Synthetic symbol\n");
189 s->Indent(" ||Externally Visible\n");
190 s->Indent(" |||\n");
191 s->Indent("Index UserID DSX Type File Address/Value Load "
192 "Address Size Flags Name\n");
193 s->Indent("------- ------ --- --------------- ------------------ "
194 "------------------ ------------------ ---------- "
195 "----------------------------------\n");
196 }
197
CompareSymbolID(const void * key,const void * p)198 static int CompareSymbolID(const void *key, const void *p) {
199 const user_id_t match_uid = *(const user_id_t *)key;
200 const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
201 if (match_uid < symbol_uid)
202 return -1;
203 if (match_uid > symbol_uid)
204 return 1;
205 return 0;
206 }
207
FindSymbolByID(lldb::user_id_t symbol_uid) const208 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
209 std::lock_guard<std::recursive_mutex> guard(m_mutex);
210
211 Symbol *symbol =
212 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
213 sizeof(m_symbols[0]), CompareSymbolID);
214 return symbol;
215 }
216
SymbolAtIndex(size_t idx)217 Symbol *Symtab::SymbolAtIndex(size_t idx) {
218 // Clients should grab the mutex from this symbol table and lock it manually
219 // when calling this function to avoid performance issues.
220 if (idx < m_symbols.size())
221 return &m_symbols[idx];
222 return nullptr;
223 }
224
SymbolAtIndex(size_t idx) const225 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
226 // Clients should grab the mutex from this symbol table and lock it manually
227 // when calling this function to avoid performance issues.
228 if (idx < m_symbols.size())
229 return &m_symbols[idx];
230 return nullptr;
231 }
232
lldb_skip_name(llvm::StringRef mangled,Mangled::ManglingScheme scheme)233 static bool lldb_skip_name(llvm::StringRef mangled,
234 Mangled::ManglingScheme scheme) {
235 switch (scheme) {
236 case Mangled::eManglingSchemeItanium: {
237 if (mangled.size() < 3 || !mangled.startswith("_Z"))
238 return true;
239
240 // Avoid the following types of symbols in the index.
241 switch (mangled[2]) {
242 case 'G': // guard variables
243 case 'T': // virtual tables, VTT structures, typeinfo structures + names
244 case 'Z': // named local entities (if we eventually handle
245 // eSymbolTypeData, we will want this back)
246 return true;
247
248 default:
249 break;
250 }
251
252 // Include this name in the index.
253 return false;
254 }
255
256 // No filters for this scheme yet. Include all names in indexing.
257 case Mangled::eManglingSchemeMSVC:
258 case Mangled::eManglingSchemeRustV0:
259 case Mangled::eManglingSchemeD:
260 return false;
261
262 // Don't try and demangle things we can't categorize.
263 case Mangled::eManglingSchemeNone:
264 return true;
265 }
266 llvm_unreachable("unknown scheme!");
267 }
268
InitNameIndexes()269 void Symtab::InitNameIndexes() {
270 // Protected function, no need to lock mutex...
271 if (!m_name_indexes_computed) {
272 m_name_indexes_computed = true;
273 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
274 LLDB_SCOPED_TIMER();
275
276 // Collect all loaded language plugins.
277 std::vector<Language *> languages;
278 Language::ForEach([&languages](Language *l) {
279 languages.push_back(l);
280 return true;
281 });
282
283 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
284 auto &basename_to_index =
285 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
286 auto &method_to_index =
287 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
288 auto &selector_to_index =
289 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
290 // Create the name index vector to be able to quickly search by name
291 const size_t num_symbols = m_symbols.size();
292 name_to_index.Reserve(num_symbols);
293
294 // The "const char *" in "class_contexts" and backlog::value_type::second
295 // must come from a ConstString::GetCString()
296 std::set<const char *> class_contexts;
297 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
298 backlog.reserve(num_symbols / 2);
299
300 // Instantiation of the demangler is expensive, so better use a single one
301 // for all entries during batch processing.
302 RichManglingContext rmc;
303 for (uint32_t value = 0; value < num_symbols; ++value) {
304 Symbol *symbol = &m_symbols[value];
305
306 // Don't let trampolines get into the lookup by name map If we ever need
307 // the trampoline symbols to be searchable by name we can remove this and
308 // then possibly add a new bool to any of the Symtab functions that
309 // lookup symbols by name to indicate if they want trampolines. We also
310 // don't want any synthetic symbols with auto generated names in the
311 // name lookups.
312 if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
313 continue;
314
315 // If the symbol's name string matched a Mangled::ManglingScheme, it is
316 // stored in the mangled field.
317 Mangled &mangled = symbol->GetMangled();
318 if (ConstString name = mangled.GetMangledName()) {
319 name_to_index.Append(name, value);
320
321 if (symbol->ContainsLinkerAnnotations()) {
322 // If the symbol has linker annotations, also add the version without
323 // the annotations.
324 ConstString stripped = ConstString(
325 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
326 name_to_index.Append(stripped, value);
327 }
328
329 const SymbolType type = symbol->GetType();
330 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
331 if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) {
332 RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
333 continue;
334 }
335 }
336 }
337
338 // Symbol name strings that didn't match a Mangled::ManglingScheme, are
339 // stored in the demangled field.
340 if (ConstString name = mangled.GetDemangledName()) {
341 name_to_index.Append(name, value);
342
343 if (symbol->ContainsLinkerAnnotations()) {
344 // If the symbol has linker annotations, also add the version without
345 // the annotations.
346 name = ConstString(
347 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
348 name_to_index.Append(name, value);
349 }
350
351 // If the demangled name turns out to be an ObjC name, and is a category
352 // name, add the version without categories to the index too.
353 for (Language *lang : languages) {
354 for (auto variant : lang->GetMethodNameVariants(name)) {
355 if (variant.GetType() & lldb::eFunctionNameTypeSelector)
356 selector_to_index.Append(variant.GetName(), value);
357 else if (variant.GetType() & lldb::eFunctionNameTypeFull)
358 name_to_index.Append(variant.GetName(), value);
359 else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
360 method_to_index.Append(variant.GetName(), value);
361 else if (variant.GetType() & lldb::eFunctionNameTypeBase)
362 basename_to_index.Append(variant.GetName(), value);
363 }
364 }
365 }
366 }
367
368 for (const auto &record : backlog) {
369 RegisterBacklogEntry(record.first, record.second, class_contexts);
370 }
371
372 name_to_index.Sort();
373 name_to_index.SizeToFit();
374 selector_to_index.Sort();
375 selector_to_index.SizeToFit();
376 basename_to_index.Sort();
377 basename_to_index.SizeToFit();
378 method_to_index.Sort();
379 method_to_index.SizeToFit();
380 }
381 }
382
RegisterMangledNameEntry(uint32_t value,std::set<const char * > & class_contexts,std::vector<std::pair<NameToIndexMap::Entry,const char * >> & backlog,RichManglingContext & rmc)383 void Symtab::RegisterMangledNameEntry(
384 uint32_t value, std::set<const char *> &class_contexts,
385 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
386 RichManglingContext &rmc) {
387 // Only register functions that have a base name.
388 llvm::StringRef base_name = rmc.ParseFunctionBaseName();
389 if (base_name.empty())
390 return;
391
392 // The base name will be our entry's name.
393 NameToIndexMap::Entry entry(ConstString(base_name), value);
394 llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName();
395
396 // Register functions with no context.
397 if (decl_context.empty()) {
398 // This has to be a basename
399 auto &basename_to_index =
400 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
401 basename_to_index.Append(entry);
402 // If there is no context (no namespaces or class scopes that come before
403 // the function name) then this also could be a fullname.
404 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
405 name_to_index.Append(entry);
406 return;
407 }
408
409 // Make sure we have a pool-string pointer and see if we already know the
410 // context name.
411 const char *decl_context_ccstr = ConstString(decl_context).GetCString();
412 auto it = class_contexts.find(decl_context_ccstr);
413
414 auto &method_to_index =
415 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
416 // Register constructors and destructors. They are methods and create
417 // declaration contexts.
418 if (rmc.IsCtorOrDtor()) {
419 method_to_index.Append(entry);
420 if (it == class_contexts.end())
421 class_contexts.insert(it, decl_context_ccstr);
422 return;
423 }
424
425 // Register regular methods with a known declaration context.
426 if (it != class_contexts.end()) {
427 method_to_index.Append(entry);
428 return;
429 }
430
431 // Regular methods in unknown declaration contexts are put to the backlog. We
432 // will revisit them once we processed all remaining symbols.
433 backlog.push_back(std::make_pair(entry, decl_context_ccstr));
434 }
435
RegisterBacklogEntry(const NameToIndexMap::Entry & entry,const char * decl_context,const std::set<const char * > & class_contexts)436 void Symtab::RegisterBacklogEntry(
437 const NameToIndexMap::Entry &entry, const char *decl_context,
438 const std::set<const char *> &class_contexts) {
439 auto &method_to_index =
440 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
441 auto it = class_contexts.find(decl_context);
442 if (it != class_contexts.end()) {
443 method_to_index.Append(entry);
444 } else {
445 // If we got here, we have something that had a context (was inside
446 // a namespace or class) yet we don't know the entry
447 method_to_index.Append(entry);
448 auto &basename_to_index =
449 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
450 basename_to_index.Append(entry);
451 }
452 }
453
PreloadSymbols()454 void Symtab::PreloadSymbols() {
455 std::lock_guard<std::recursive_mutex> guard(m_mutex);
456 InitNameIndexes();
457 }
458
AppendSymbolNamesToMap(const IndexCollection & indexes,bool add_demangled,bool add_mangled,NameToIndexMap & name_to_index_map) const459 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
460 bool add_demangled, bool add_mangled,
461 NameToIndexMap &name_to_index_map) const {
462 LLDB_SCOPED_TIMER();
463 if (add_demangled || add_mangled) {
464 std::lock_guard<std::recursive_mutex> guard(m_mutex);
465
466 // Create the name index vector to be able to quickly search by name
467 const size_t num_indexes = indexes.size();
468 for (size_t i = 0; i < num_indexes; ++i) {
469 uint32_t value = indexes[i];
470 assert(i < m_symbols.size());
471 const Symbol *symbol = &m_symbols[value];
472
473 const Mangled &mangled = symbol->GetMangled();
474 if (add_demangled) {
475 if (ConstString name = mangled.GetDemangledName())
476 name_to_index_map.Append(name, value);
477 }
478
479 if (add_mangled) {
480 if (ConstString name = mangled.GetMangledName())
481 name_to_index_map.Append(name, value);
482 }
483 }
484 }
485 }
486
AppendSymbolIndexesWithType(SymbolType symbol_type,std::vector<uint32_t> & indexes,uint32_t start_idx,uint32_t end_index) const487 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
488 std::vector<uint32_t> &indexes,
489 uint32_t start_idx,
490 uint32_t end_index) const {
491 std::lock_guard<std::recursive_mutex> guard(m_mutex);
492
493 uint32_t prev_size = indexes.size();
494
495 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
496
497 for (uint32_t i = start_idx; i < count; ++i) {
498 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
499 indexes.push_back(i);
500 }
501
502 return indexes.size() - prev_size;
503 }
504
AppendSymbolIndexesWithTypeAndFlagsValue(SymbolType symbol_type,uint32_t flags_value,std::vector<uint32_t> & indexes,uint32_t start_idx,uint32_t end_index) const505 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
506 SymbolType symbol_type, uint32_t flags_value,
507 std::vector<uint32_t> &indexes, uint32_t start_idx,
508 uint32_t end_index) const {
509 std::lock_guard<std::recursive_mutex> guard(m_mutex);
510
511 uint32_t prev_size = indexes.size();
512
513 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
514
515 for (uint32_t i = start_idx; i < count; ++i) {
516 if ((symbol_type == eSymbolTypeAny ||
517 m_symbols[i].GetType() == symbol_type) &&
518 m_symbols[i].GetFlags() == flags_value)
519 indexes.push_back(i);
520 }
521
522 return indexes.size() - prev_size;
523 }
524
AppendSymbolIndexesWithType(SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility,std::vector<uint32_t> & indexes,uint32_t start_idx,uint32_t end_index) const525 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
526 Debug symbol_debug_type,
527 Visibility symbol_visibility,
528 std::vector<uint32_t> &indexes,
529 uint32_t start_idx,
530 uint32_t end_index) const {
531 std::lock_guard<std::recursive_mutex> guard(m_mutex);
532
533 uint32_t prev_size = indexes.size();
534
535 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
536
537 for (uint32_t i = start_idx; i < count; ++i) {
538 if (symbol_type == eSymbolTypeAny ||
539 m_symbols[i].GetType() == symbol_type) {
540 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
541 indexes.push_back(i);
542 }
543 }
544
545 return indexes.size() - prev_size;
546 }
547
GetIndexForSymbol(const Symbol * symbol) const548 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
549 if (!m_symbols.empty()) {
550 const Symbol *first_symbol = &m_symbols[0];
551 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
552 return symbol - first_symbol;
553 }
554 return UINT32_MAX;
555 }
556
557 struct SymbolSortInfo {
558 const bool sort_by_load_addr;
559 const Symbol *symbols;
560 };
561
562 namespace {
563 struct SymbolIndexComparator {
564 const std::vector<Symbol> &symbols;
565 std::vector<lldb::addr_t> &addr_cache;
566
567 // Getting from the symbol to the Address to the File Address involves some
568 // work. Since there are potentially many symbols here, and we're using this
569 // for sorting so we're going to be computing the address many times, cache
570 // that in addr_cache. The array passed in has to be the same size as the
571 // symbols array passed into the member variable symbols, and should be
572 // initialized with LLDB_INVALID_ADDRESS.
573 // NOTE: You have to make addr_cache externally and pass it in because
574 // std::stable_sort
575 // makes copies of the comparator it is initially passed in, and you end up
576 // spending huge amounts of time copying this array...
577
SymbolIndexComparator__anon220105d20211::SymbolIndexComparator578 SymbolIndexComparator(const std::vector<Symbol> &s,
579 std::vector<lldb::addr_t> &a)
580 : symbols(s), addr_cache(a) {
581 assert(symbols.size() == addr_cache.size());
582 }
operator ()__anon220105d20211::SymbolIndexComparator583 bool operator()(uint32_t index_a, uint32_t index_b) {
584 addr_t value_a = addr_cache[index_a];
585 if (value_a == LLDB_INVALID_ADDRESS) {
586 value_a = symbols[index_a].GetAddressRef().GetFileAddress();
587 addr_cache[index_a] = value_a;
588 }
589
590 addr_t value_b = addr_cache[index_b];
591 if (value_b == LLDB_INVALID_ADDRESS) {
592 value_b = symbols[index_b].GetAddressRef().GetFileAddress();
593 addr_cache[index_b] = value_b;
594 }
595
596 if (value_a == value_b) {
597 // The if the values are equal, use the original symbol user ID
598 lldb::user_id_t uid_a = symbols[index_a].GetID();
599 lldb::user_id_t uid_b = symbols[index_b].GetID();
600 if (uid_a < uid_b)
601 return true;
602 if (uid_a > uid_b)
603 return false;
604 return false;
605 } else if (value_a < value_b)
606 return true;
607
608 return false;
609 }
610 };
611 }
612
SortSymbolIndexesByValue(std::vector<uint32_t> & indexes,bool remove_duplicates) const613 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
614 bool remove_duplicates) const {
615 std::lock_guard<std::recursive_mutex> guard(m_mutex);
616 LLDB_SCOPED_TIMER();
617 // No need to sort if we have zero or one items...
618 if (indexes.size() <= 1)
619 return;
620
621 // Sort the indexes in place using std::stable_sort.
622 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
623 // for performance, not correctness. The indexes vector tends to be "close"
624 // to sorted, which the stable sort handles better.
625
626 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
627
628 SymbolIndexComparator comparator(m_symbols, addr_cache);
629 std::stable_sort(indexes.begin(), indexes.end(), comparator);
630
631 // Remove any duplicates if requested
632 if (remove_duplicates) {
633 auto last = std::unique(indexes.begin(), indexes.end());
634 indexes.erase(last, indexes.end());
635 }
636 }
637
GetNameIndexes(ConstString symbol_name,std::vector<uint32_t> & indexes)638 uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
639 std::vector<uint32_t> &indexes) {
640 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
641 const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
642 if (count)
643 return count;
644 // Synthetic symbol names are not added to the name indexes, but they start
645 // with a prefix and end with a the symbol UserID. This allows users to find
646 // these symbols without having to add them to the name indexes. These
647 // queries will not happen very often since the names don't mean anything, so
648 // performance is not paramount in this case.
649 llvm::StringRef name = symbol_name.GetStringRef();
650 // String the synthetic prefix if the name starts with it.
651 if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
652 return 0; // Not a synthetic symbol name
653
654 // Extract the user ID from the symbol name
655 unsigned long long uid = 0;
656 if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
657 return 0; // Failed to extract the user ID as an integer
658 Symbol *symbol = FindSymbolByID(uid);
659 if (symbol == nullptr)
660 return 0;
661 const uint32_t symbol_idx = GetIndexForSymbol(symbol);
662 if (symbol_idx == UINT32_MAX)
663 return 0;
664 indexes.push_back(symbol_idx);
665 return 1;
666 }
667
AppendSymbolIndexesWithName(ConstString symbol_name,std::vector<uint32_t> & indexes)668 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
669 std::vector<uint32_t> &indexes) {
670 std::lock_guard<std::recursive_mutex> guard(m_mutex);
671
672 if (symbol_name) {
673 if (!m_name_indexes_computed)
674 InitNameIndexes();
675
676 return GetNameIndexes(symbol_name, indexes);
677 }
678 return 0;
679 }
680
AppendSymbolIndexesWithName(ConstString symbol_name,Debug symbol_debug_type,Visibility symbol_visibility,std::vector<uint32_t> & indexes)681 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
682 Debug symbol_debug_type,
683 Visibility symbol_visibility,
684 std::vector<uint32_t> &indexes) {
685 std::lock_guard<std::recursive_mutex> guard(m_mutex);
686
687 LLDB_SCOPED_TIMER();
688 if (symbol_name) {
689 const size_t old_size = indexes.size();
690 if (!m_name_indexes_computed)
691 InitNameIndexes();
692
693 std::vector<uint32_t> all_name_indexes;
694 const size_t name_match_count =
695 GetNameIndexes(symbol_name, all_name_indexes);
696 for (size_t i = 0; i < name_match_count; ++i) {
697 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
698 symbol_visibility))
699 indexes.push_back(all_name_indexes[i]);
700 }
701 return indexes.size() - old_size;
702 }
703 return 0;
704 }
705
706 uint32_t
AppendSymbolIndexesWithNameAndType(ConstString symbol_name,SymbolType symbol_type,std::vector<uint32_t> & indexes)707 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
708 SymbolType symbol_type,
709 std::vector<uint32_t> &indexes) {
710 std::lock_guard<std::recursive_mutex> guard(m_mutex);
711
712 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
713 std::vector<uint32_t>::iterator pos = indexes.begin();
714 while (pos != indexes.end()) {
715 if (symbol_type == eSymbolTypeAny ||
716 m_symbols[*pos].GetType() == symbol_type)
717 ++pos;
718 else
719 pos = indexes.erase(pos);
720 }
721 }
722 return indexes.size();
723 }
724
AppendSymbolIndexesWithNameAndType(ConstString symbol_name,SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility,std::vector<uint32_t> & indexes)725 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
726 ConstString symbol_name, SymbolType symbol_type,
727 Debug symbol_debug_type, Visibility symbol_visibility,
728 std::vector<uint32_t> &indexes) {
729 std::lock_guard<std::recursive_mutex> guard(m_mutex);
730
731 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
732 symbol_visibility, indexes) > 0) {
733 std::vector<uint32_t>::iterator pos = indexes.begin();
734 while (pos != indexes.end()) {
735 if (symbol_type == eSymbolTypeAny ||
736 m_symbols[*pos].GetType() == symbol_type)
737 ++pos;
738 else
739 pos = indexes.erase(pos);
740 }
741 }
742 return indexes.size();
743 }
744
AppendSymbolIndexesMatchingRegExAndType(const RegularExpression & regexp,SymbolType symbol_type,std::vector<uint32_t> & indexes)745 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
746 const RegularExpression ®exp, SymbolType symbol_type,
747 std::vector<uint32_t> &indexes) {
748 std::lock_guard<std::recursive_mutex> guard(m_mutex);
749
750 uint32_t prev_size = indexes.size();
751 uint32_t sym_end = m_symbols.size();
752
753 for (uint32_t i = 0; i < sym_end; i++) {
754 if (symbol_type == eSymbolTypeAny ||
755 m_symbols[i].GetType() == symbol_type) {
756 const char *name = m_symbols[i].GetName().AsCString();
757 if (name) {
758 if (regexp.Execute(name))
759 indexes.push_back(i);
760 }
761 }
762 }
763 return indexes.size() - prev_size;
764 }
765
AppendSymbolIndexesMatchingRegExAndType(const RegularExpression & regexp,SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility,std::vector<uint32_t> & indexes)766 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
767 const RegularExpression ®exp, SymbolType symbol_type,
768 Debug symbol_debug_type, Visibility symbol_visibility,
769 std::vector<uint32_t> &indexes) {
770 std::lock_guard<std::recursive_mutex> guard(m_mutex);
771
772 uint32_t prev_size = indexes.size();
773 uint32_t sym_end = m_symbols.size();
774
775 for (uint32_t i = 0; i < sym_end; i++) {
776 if (symbol_type == eSymbolTypeAny ||
777 m_symbols[i].GetType() == symbol_type) {
778 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
779 continue;
780
781 const char *name = m_symbols[i].GetName().AsCString();
782 if (name) {
783 if (regexp.Execute(name))
784 indexes.push_back(i);
785 }
786 }
787 }
788 return indexes.size() - prev_size;
789 }
790
FindSymbolWithType(SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility,uint32_t & start_idx)791 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
792 Debug symbol_debug_type,
793 Visibility symbol_visibility,
794 uint32_t &start_idx) {
795 std::lock_guard<std::recursive_mutex> guard(m_mutex);
796
797 const size_t count = m_symbols.size();
798 for (size_t idx = start_idx; idx < count; ++idx) {
799 if (symbol_type == eSymbolTypeAny ||
800 m_symbols[idx].GetType() == symbol_type) {
801 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
802 start_idx = idx;
803 return &m_symbols[idx];
804 }
805 }
806 }
807 return nullptr;
808 }
809
810 void
FindAllSymbolsWithNameAndType(ConstString name,SymbolType symbol_type,std::vector<uint32_t> & symbol_indexes)811 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
812 SymbolType symbol_type,
813 std::vector<uint32_t> &symbol_indexes) {
814 std::lock_guard<std::recursive_mutex> guard(m_mutex);
815
816 // Initialize all of the lookup by name indexes before converting NAME to a
817 // uniqued string NAME_STR below.
818 if (!m_name_indexes_computed)
819 InitNameIndexes();
820
821 if (name) {
822 // The string table did have a string that matched, but we need to check
823 // the symbols and match the symbol_type if any was given.
824 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
825 }
826 }
827
FindAllSymbolsWithNameAndType(ConstString name,SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility,std::vector<uint32_t> & symbol_indexes)828 void Symtab::FindAllSymbolsWithNameAndType(
829 ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
830 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
831 std::lock_guard<std::recursive_mutex> guard(m_mutex);
832
833 LLDB_SCOPED_TIMER();
834 // Initialize all of the lookup by name indexes before converting NAME to a
835 // uniqued string NAME_STR below.
836 if (!m_name_indexes_computed)
837 InitNameIndexes();
838
839 if (name) {
840 // The string table did have a string that matched, but we need to check
841 // the symbols and match the symbol_type if any was given.
842 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
843 symbol_visibility, symbol_indexes);
844 }
845 }
846
FindAllSymbolsMatchingRexExAndType(const RegularExpression & regex,SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility,std::vector<uint32_t> & symbol_indexes)847 void Symtab::FindAllSymbolsMatchingRexExAndType(
848 const RegularExpression ®ex, SymbolType symbol_type,
849 Debug symbol_debug_type, Visibility symbol_visibility,
850 std::vector<uint32_t> &symbol_indexes) {
851 std::lock_guard<std::recursive_mutex> guard(m_mutex);
852
853 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
854 symbol_visibility, symbol_indexes);
855 }
856
FindFirstSymbolWithNameAndType(ConstString name,SymbolType symbol_type,Debug symbol_debug_type,Visibility symbol_visibility)857 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
858 SymbolType symbol_type,
859 Debug symbol_debug_type,
860 Visibility symbol_visibility) {
861 std::lock_guard<std::recursive_mutex> guard(m_mutex);
862 LLDB_SCOPED_TIMER();
863 if (!m_name_indexes_computed)
864 InitNameIndexes();
865
866 if (name) {
867 std::vector<uint32_t> matching_indexes;
868 // The string table did have a string that matched, but we need to check
869 // the symbols and match the symbol_type if any was given.
870 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
871 symbol_visibility,
872 matching_indexes)) {
873 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
874 for (pos = matching_indexes.begin(); pos != end; ++pos) {
875 Symbol *symbol = SymbolAtIndex(*pos);
876
877 if (symbol->Compare(name, symbol_type))
878 return symbol;
879 }
880 }
881 }
882 return nullptr;
883 }
884
885 typedef struct {
886 const Symtab *symtab;
887 const addr_t file_addr;
888 Symbol *match_symbol;
889 const uint32_t *match_index_ptr;
890 addr_t match_offset;
891 } SymbolSearchInfo;
892
893 // Add all the section file start address & size to the RangeVector, recusively
894 // adding any children sections.
AddSectionsToRangeMap(SectionList * sectlist,RangeVector<addr_t,addr_t> & section_ranges)895 static void AddSectionsToRangeMap(SectionList *sectlist,
896 RangeVector<addr_t, addr_t> §ion_ranges) {
897 const int num_sections = sectlist->GetNumSections(0);
898 for (int i = 0; i < num_sections; i++) {
899 SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
900 if (sect_sp) {
901 SectionList &child_sectlist = sect_sp->GetChildren();
902
903 // If this section has children, add the children to the RangeVector.
904 // Else add this section to the RangeVector.
905 if (child_sectlist.GetNumSections(0) > 0) {
906 AddSectionsToRangeMap(&child_sectlist, section_ranges);
907 } else {
908 size_t size = sect_sp->GetByteSize();
909 if (size > 0) {
910 addr_t base_addr = sect_sp->GetFileAddress();
911 RangeVector<addr_t, addr_t>::Entry entry;
912 entry.SetRangeBase(base_addr);
913 entry.SetByteSize(size);
914 section_ranges.Append(entry);
915 }
916 }
917 }
918 }
919 }
920
InitAddressIndexes()921 void Symtab::InitAddressIndexes() {
922 // Protected function, no need to lock mutex...
923 if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
924 m_file_addr_to_index_computed = true;
925
926 FileRangeToIndexMap::Entry entry;
927 const_iterator begin = m_symbols.begin();
928 const_iterator end = m_symbols.end();
929 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
930 if (pos->ValueIsAddress()) {
931 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
932 entry.SetByteSize(pos->GetByteSize());
933 entry.data = std::distance(begin, pos);
934 m_file_addr_to_index.Append(entry);
935 }
936 }
937 const size_t num_entries = m_file_addr_to_index.GetSize();
938 if (num_entries > 0) {
939 m_file_addr_to_index.Sort();
940
941 // Create a RangeVector with the start & size of all the sections for
942 // this objfile. We'll need to check this for any FileRangeToIndexMap
943 // entries with an uninitialized size, which could potentially be a large
944 // number so reconstituting the weak pointer is busywork when it is
945 // invariant information.
946 SectionList *sectlist = m_objfile->GetSectionList();
947 RangeVector<addr_t, addr_t> section_ranges;
948 if (sectlist) {
949 AddSectionsToRangeMap(sectlist, section_ranges);
950 section_ranges.Sort();
951 }
952
953 // Iterate through the FileRangeToIndexMap and fill in the size for any
954 // entries that didn't already have a size from the Symbol (e.g. if we
955 // have a plain linker symbol with an address only, instead of debug info
956 // where we get an address and a size and a type, etc.)
957 for (size_t i = 0; i < num_entries; i++) {
958 FileRangeToIndexMap::Entry *entry =
959 m_file_addr_to_index.GetMutableEntryAtIndex(i);
960 if (entry->GetByteSize() == 0) {
961 addr_t curr_base_addr = entry->GetRangeBase();
962 const RangeVector<addr_t, addr_t>::Entry *containing_section =
963 section_ranges.FindEntryThatContains(curr_base_addr);
964
965 // Use the end of the section as the default max size of the symbol
966 addr_t sym_size = 0;
967 if (containing_section) {
968 sym_size =
969 containing_section->GetByteSize() -
970 (entry->GetRangeBase() - containing_section->GetRangeBase());
971 }
972
973 for (size_t j = i; j < num_entries; j++) {
974 FileRangeToIndexMap::Entry *next_entry =
975 m_file_addr_to_index.GetMutableEntryAtIndex(j);
976 addr_t next_base_addr = next_entry->GetRangeBase();
977 if (next_base_addr > curr_base_addr) {
978 addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
979
980 // Take the difference between this symbol and the next one as
981 // its size, if it is less than the size of the section.
982 if (sym_size == 0 || size_to_next_symbol < sym_size) {
983 sym_size = size_to_next_symbol;
984 }
985 break;
986 }
987 }
988
989 if (sym_size > 0) {
990 entry->SetByteSize(sym_size);
991 Symbol &symbol = m_symbols[entry->data];
992 symbol.SetByteSize(sym_size);
993 symbol.SetSizeIsSynthesized(true);
994 }
995 }
996 }
997
998 // Sort again in case the range size changes the ordering
999 m_file_addr_to_index.Sort();
1000 }
1001 }
1002 }
1003
Finalize()1004 void Symtab::Finalize() {
1005 std::lock_guard<std::recursive_mutex> guard(m_mutex);
1006 // Calculate the size of symbols inside InitAddressIndexes.
1007 InitAddressIndexes();
1008 // Shrink to fit the symbols so we don't waste memory
1009 if (m_symbols.capacity() > m_symbols.size()) {
1010 collection new_symbols(m_symbols.begin(), m_symbols.end());
1011 m_symbols.swap(new_symbols);
1012 }
1013 SaveToCache();
1014 }
1015
FindSymbolAtFileAddress(addr_t file_addr)1016 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1017 std::lock_guard<std::recursive_mutex> guard(m_mutex);
1018 if (!m_file_addr_to_index_computed)
1019 InitAddressIndexes();
1020
1021 const FileRangeToIndexMap::Entry *entry =
1022 m_file_addr_to_index.FindEntryStartsAt(file_addr);
1023 if (entry) {
1024 Symbol *symbol = SymbolAtIndex(entry->data);
1025 if (symbol->GetFileAddress() == file_addr)
1026 return symbol;
1027 }
1028 return nullptr;
1029 }
1030
FindSymbolContainingFileAddress(addr_t file_addr)1031 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1032 std::lock_guard<std::recursive_mutex> guard(m_mutex);
1033
1034 if (!m_file_addr_to_index_computed)
1035 InitAddressIndexes();
1036
1037 const FileRangeToIndexMap::Entry *entry =
1038 m_file_addr_to_index.FindEntryThatContains(file_addr);
1039 if (entry) {
1040 Symbol *symbol = SymbolAtIndex(entry->data);
1041 if (symbol->ContainsFileAddress(file_addr))
1042 return symbol;
1043 }
1044 return nullptr;
1045 }
1046
ForEachSymbolContainingFileAddress(addr_t file_addr,std::function<bool (Symbol *)> const & callback)1047 void Symtab::ForEachSymbolContainingFileAddress(
1048 addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1049 std::lock_guard<std::recursive_mutex> guard(m_mutex);
1050
1051 if (!m_file_addr_to_index_computed)
1052 InitAddressIndexes();
1053
1054 std::vector<uint32_t> all_addr_indexes;
1055
1056 // Get all symbols with file_addr
1057 const size_t addr_match_count =
1058 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1059 all_addr_indexes);
1060
1061 for (size_t i = 0; i < addr_match_count; ++i) {
1062 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1063 if (symbol->ContainsFileAddress(file_addr)) {
1064 if (!callback(symbol))
1065 break;
1066 }
1067 }
1068 }
1069
SymbolIndicesToSymbolContextList(std::vector<uint32_t> & symbol_indexes,SymbolContextList & sc_list)1070 void Symtab::SymbolIndicesToSymbolContextList(
1071 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1072 // No need to protect this call using m_mutex all other method calls are
1073 // already thread safe.
1074
1075 const bool merge_symbol_into_function = true;
1076 size_t num_indices = symbol_indexes.size();
1077 if (num_indices > 0) {
1078 SymbolContext sc;
1079 sc.module_sp = m_objfile->GetModule();
1080 for (size_t i = 0; i < num_indices; i++) {
1081 sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1082 if (sc.symbol)
1083 sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1084 }
1085 }
1086 }
1087
FindFunctionSymbols(ConstString name,uint32_t name_type_mask,SymbolContextList & sc_list)1088 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1089 SymbolContextList &sc_list) {
1090 std::vector<uint32_t> symbol_indexes;
1091
1092 // eFunctionNameTypeAuto should be pre-resolved by a call to
1093 // Module::LookupInfo::LookupInfo()
1094 assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1095
1096 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1097 std::vector<uint32_t> temp_symbol_indexes;
1098 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1099
1100 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1101 if (temp_symbol_indexes_size > 0) {
1102 std::lock_guard<std::recursive_mutex> guard(m_mutex);
1103 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1104 SymbolContext sym_ctx;
1105 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1106 if (sym_ctx.symbol) {
1107 switch (sym_ctx.symbol->GetType()) {
1108 case eSymbolTypeCode:
1109 case eSymbolTypeResolver:
1110 case eSymbolTypeReExported:
1111 case eSymbolTypeAbsolute:
1112 symbol_indexes.push_back(temp_symbol_indexes[i]);
1113 break;
1114 default:
1115 break;
1116 }
1117 }
1118 }
1119 }
1120 }
1121
1122 if (!m_name_indexes_computed)
1123 InitNameIndexes();
1124
1125 for (lldb::FunctionNameType type :
1126 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
1127 lldb::eFunctionNameTypeSelector}) {
1128 if (name_type_mask & type) {
1129 auto map = GetNameToSymbolIndexMap(type);
1130
1131 const UniqueCStringMap<uint32_t>::Entry *match;
1132 for (match = map.FindFirstValueForName(name); match != nullptr;
1133 match = map.FindNextValueForName(match)) {
1134 symbol_indexes.push_back(match->value);
1135 }
1136 }
1137 }
1138
1139 if (!symbol_indexes.empty()) {
1140 llvm::sort(symbol_indexes);
1141 symbol_indexes.erase(
1142 std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1143 symbol_indexes.end());
1144 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1145 }
1146 }
1147
GetParent(Symbol * child_symbol) const1148 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1149 uint32_t child_idx = GetIndexForSymbol(child_symbol);
1150 if (child_idx != UINT32_MAX && child_idx > 0) {
1151 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1152 const Symbol *symbol = SymbolAtIndex(idx);
1153 const uint32_t sibling_idx = symbol->GetSiblingIndex();
1154 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1155 return symbol;
1156 }
1157 }
1158 return nullptr;
1159 }
1160
GetCacheKey()1161 std::string Symtab::GetCacheKey() {
1162 std::string key;
1163 llvm::raw_string_ostream strm(key);
1164 // Symbol table can come from different object files for the same module. A
1165 // module can have one object file as the main executable and might have
1166 // another object file in a separate symbol file.
1167 strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-"
1168 << llvm::format_hex(m_objfile->GetCacheHash(), 10);
1169 return strm.str();
1170 }
1171
SaveToCache()1172 void Symtab::SaveToCache() {
1173 DataFileCache *cache = Module::GetIndexCache();
1174 if (!cache)
1175 return; // Caching is not enabled.
1176 InitNameIndexes(); // Init the name indexes so we can cache them as well.
1177 const auto byte_order = endian::InlHostByteOrder();
1178 DataEncoder file(byte_order, /*addr_size=*/8);
1179 // Encode will return false if the symbol table's object file doesn't have
1180 // anything to make a signature from.
1181 if (Encode(file))
1182 if (cache->SetCachedData(GetCacheKey(), file.GetData()))
1183 SetWasSavedToCache();
1184 }
1185
1186 constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP");
1187
EncodeCStrMap(DataEncoder & encoder,ConstStringTable & strtab,const UniqueCStringMap<uint32_t> & cstr_map)1188 static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab,
1189 const UniqueCStringMap<uint32_t> &cstr_map) {
1190 encoder.AppendData(kIdentifierCStrMap);
1191 encoder.AppendU32(cstr_map.GetSize());
1192 for (const auto &entry: cstr_map) {
1193 // Make sure there are no empty strings.
1194 assert((bool)entry.cstring);
1195 encoder.AppendU32(strtab.Add(entry.cstring));
1196 encoder.AppendU32(entry.value);
1197 }
1198 }
1199
DecodeCStrMap(const DataExtractor & data,lldb::offset_t * offset_ptr,const StringTableReader & strtab,UniqueCStringMap<uint32_t> & cstr_map)1200 bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr,
1201 const StringTableReader &strtab,
1202 UniqueCStringMap<uint32_t> &cstr_map) {
1203 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1204 if (identifier != kIdentifierCStrMap)
1205 return false;
1206 const uint32_t count = data.GetU32(offset_ptr);
1207 cstr_map.Reserve(count);
1208 for (uint32_t i=0; i<count; ++i)
1209 {
1210 llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr)));
1211 uint32_t value = data.GetU32(offset_ptr);
1212 // No empty strings in the name indexes in Symtab
1213 if (str.empty())
1214 return false;
1215 cstr_map.Append(ConstString(str), value);
1216 }
1217 // We must sort the UniqueCStringMap after decoding it since it is a vector
1218 // of UniqueCStringMap::Entry objects which contain a ConstString and type T.
1219 // ConstString objects are sorted by "const char *" and then type T and
1220 // the "const char *" are point values that will depend on the order in which
1221 // ConstString objects are created and in which of the 256 string pools they
1222 // are created in. So after we decode all of the entries, we must sort the
1223 // name map to ensure name lookups succeed. If we encode and decode within
1224 // the same process we wouldn't need to sort, so unit testing didn't catch
1225 // this issue when first checked in.
1226 cstr_map.Sort();
1227 return true;
1228 }
1229
1230 constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB");
1231 constexpr uint32_t CURRENT_CACHE_VERSION = 1;
1232
1233 /// The encoding format for the symbol table is as follows:
1234 ///
1235 /// Signature signature;
1236 /// ConstStringTable strtab;
1237 /// Identifier four character code: 'SYMB'
1238 /// uint32_t version;
1239 /// uint32_t num_symbols;
1240 /// Symbol symbols[num_symbols];
1241 /// uint8_t num_cstr_maps;
1242 /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps]
Encode(DataEncoder & encoder) const1243 bool Symtab::Encode(DataEncoder &encoder) const {
1244 // Name indexes must be computed before calling this function.
1245 assert(m_name_indexes_computed);
1246
1247 // Encode the object file's signature
1248 CacheSignature signature(m_objfile);
1249 if (!signature.Encode(encoder))
1250 return false;
1251 ConstStringTable strtab;
1252
1253 // Encoder the symbol table into a separate encoder first. This allows us
1254 // gather all of the strings we willl need in "strtab" as we will need to
1255 // write the string table out before the symbol table.
1256 DataEncoder symtab_encoder(encoder.GetByteOrder(),
1257 encoder.GetAddressByteSize());
1258 symtab_encoder.AppendData(kIdentifierSymbolTable);
1259 // Encode the symtab data version.
1260 symtab_encoder.AppendU32(CURRENT_CACHE_VERSION);
1261 // Encode the number of symbols.
1262 symtab_encoder.AppendU32(m_symbols.size());
1263 // Encode the symbol data for all symbols.
1264 for (const auto &symbol: m_symbols)
1265 symbol.Encode(symtab_encoder, strtab);
1266
1267 // Emit a byte for how many C string maps we emit. We will fix this up after
1268 // we emit the C string maps since we skip emitting C string maps if they are
1269 // empty.
1270 size_t num_cmaps_offset = symtab_encoder.GetByteSize();
1271 uint8_t num_cmaps = 0;
1272 symtab_encoder.AppendU8(0);
1273 for (const auto &pair: m_name_to_symbol_indices) {
1274 if (pair.second.IsEmpty())
1275 continue;
1276 ++num_cmaps;
1277 symtab_encoder.AppendU8(pair.first);
1278 EncodeCStrMap(symtab_encoder, strtab, pair.second);
1279 }
1280 if (num_cmaps > 0)
1281 symtab_encoder.PutU8(num_cmaps_offset, num_cmaps);
1282
1283 // Now that all strings have been gathered, we will emit the string table.
1284 strtab.Encode(encoder);
1285 // Followed the the symbol table data.
1286 encoder.AppendData(symtab_encoder.GetData());
1287 return true;
1288 }
1289
Decode(const DataExtractor & data,lldb::offset_t * offset_ptr,bool & signature_mismatch)1290 bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr,
1291 bool &signature_mismatch) {
1292 signature_mismatch = false;
1293 CacheSignature signature;
1294 StringTableReader strtab;
1295 { // Scope for "elapsed" object below so it can measure the time parse.
1296 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime());
1297 if (!signature.Decode(data, offset_ptr))
1298 return false;
1299 if (CacheSignature(m_objfile) != signature) {
1300 signature_mismatch = true;
1301 return false;
1302 }
1303 // We now decode the string table for all strings in the data cache file.
1304 if (!strtab.Decode(data, offset_ptr))
1305 return false;
1306
1307 // And now we can decode the symbol table with string table we just decoded.
1308 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1309 if (identifier != kIdentifierSymbolTable)
1310 return false;
1311 const uint32_t version = data.GetU32(offset_ptr);
1312 if (version != CURRENT_CACHE_VERSION)
1313 return false;
1314 const uint32_t num_symbols = data.GetU32(offset_ptr);
1315 if (num_symbols == 0)
1316 return true;
1317 m_symbols.resize(num_symbols);
1318 SectionList *sections = m_objfile->GetModule()->GetSectionList();
1319 for (uint32_t i=0; i<num_symbols; ++i) {
1320 if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab))
1321 return false;
1322 }
1323 }
1324
1325 { // Scope for "elapsed" object below so it can measure the time to index.
1326 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
1327 const uint8_t num_cstr_maps = data.GetU8(offset_ptr);
1328 for (uint8_t i=0; i<num_cstr_maps; ++i) {
1329 uint8_t type = data.GetU8(offset_ptr);
1330 UniqueCStringMap<uint32_t> &cstr_map =
1331 GetNameToSymbolIndexMap((lldb::FunctionNameType)type);
1332 if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map))
1333 return false;
1334 }
1335 m_name_indexes_computed = true;
1336 }
1337 return true;
1338 }
1339
LoadFromCache()1340 bool Symtab::LoadFromCache() {
1341 DataFileCache *cache = Module::GetIndexCache();
1342 if (!cache)
1343 return false;
1344
1345 std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up =
1346 cache->GetCachedData(GetCacheKey());
1347 if (!mem_buffer_up)
1348 return false;
1349 DataExtractor data(mem_buffer_up->getBufferStart(),
1350 mem_buffer_up->getBufferSize(),
1351 m_objfile->GetByteOrder(),
1352 m_objfile->GetAddressByteSize());
1353 bool signature_mismatch = false;
1354 lldb::offset_t offset = 0;
1355 const bool result = Decode(data, &offset, signature_mismatch);
1356 if (signature_mismatch)
1357 cache->RemoveCacheFile(GetCacheKey());
1358 if (result)
1359 SetWasLoadedFromCache();
1360 return result;
1361 }
1362