1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "Plugins/Language/ObjC/ObjCLanguage.h" 13 14 #include "lldb/Core/Module.h" 15 #include "lldb/Core/RichManglingContext.h" 16 #include "lldb/Core/Section.h" 17 #include "lldb/Symbol/ObjectFile.h" 18 #include "lldb/Symbol/Symbol.h" 19 #include "lldb/Symbol/SymbolContext.h" 20 #include "lldb/Symbol/Symtab.h" 21 #include "lldb/Utility/RegularExpression.h" 22 #include "lldb/Utility/Stream.h" 23 #include "lldb/Utility/Timer.h" 24 25 #include "llvm/ADT/StringRef.h" 26 27 using namespace lldb; 28 using namespace lldb_private; 29 30 Symtab::Symtab(ObjectFile *objfile) 31 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 32 m_name_to_symbol_indices(), m_mutex(), 33 m_file_addr_to_index_computed(false), m_name_indexes_computed(false) { 34 m_name_to_symbol_indices.emplace(std::make_pair( 35 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); 36 m_name_to_symbol_indices.emplace(std::make_pair( 37 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); 38 m_name_to_symbol_indices.emplace(std::make_pair( 39 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); 40 m_name_to_symbol_indices.emplace(std::make_pair( 41 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); 42 } 43 44 Symtab::~Symtab() {} 45 46 void Symtab::Reserve(size_t count) { 47 // Clients should grab the mutex from this symbol table and lock it manually 48 // when calling this function to avoid performance issues. 49 m_symbols.reserve(count); 50 } 51 52 Symbol *Symtab::Resize(size_t count) { 53 // Clients should grab the mutex from this symbol table and lock it manually 54 // when calling this function to avoid performance issues. 55 m_symbols.resize(count); 56 return m_symbols.empty() ? nullptr : &m_symbols[0]; 57 } 58 59 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 60 // Clients should grab the mutex from this symbol table and lock it manually 61 // when calling this function to avoid performance issues. 62 uint32_t symbol_idx = m_symbols.size(); 63 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 64 name_to_index.Clear(); 65 m_file_addr_to_index.Clear(); 66 m_symbols.push_back(symbol); 67 m_file_addr_to_index_computed = false; 68 m_name_indexes_computed = false; 69 return symbol_idx; 70 } 71 72 size_t Symtab::GetNumSymbols() const { 73 std::lock_guard<std::recursive_mutex> guard(m_mutex); 74 return m_symbols.size(); 75 } 76 77 void Symtab::SectionFileAddressesChanged() { 78 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 79 name_to_index.Clear(); 80 m_file_addr_to_index_computed = false; 81 } 82 83 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 84 Mangled::NamePreference name_preference) { 85 std::lock_guard<std::recursive_mutex> guard(m_mutex); 86 87 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 88 s->Indent(); 89 const FileSpec &file_spec = m_objfile->GetFileSpec(); 90 const char *object_name = nullptr; 91 if (m_objfile->GetModule()) 92 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 93 94 if (file_spec) 95 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 96 file_spec.GetPath().c_str(), object_name ? "(" : "", 97 object_name ? object_name : "", object_name ? ")" : "", 98 (uint64_t)m_symbols.size()); 99 else 100 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 101 102 if (!m_symbols.empty()) { 103 switch (sort_order) { 104 case eSortOrderNone: { 105 s->PutCString(":\n"); 106 DumpSymbolHeader(s); 107 const_iterator begin = m_symbols.begin(); 108 const_iterator end = m_symbols.end(); 109 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 110 s->Indent(); 111 pos->Dump(s, target, std::distance(begin, pos), name_preference); 112 } 113 } break; 114 115 case eSortOrderByName: { 116 // Although we maintain a lookup by exact name map, the table isn't 117 // sorted by name. So we must make the ordered symbol list up ourselves. 118 s->PutCString(" (sorted by name):\n"); 119 DumpSymbolHeader(s); 120 121 std::multimap<llvm::StringRef, const Symbol *> name_map; 122 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 123 pos != end; ++pos) { 124 const char *name = pos->GetName().AsCString(); 125 if (name && name[0]) 126 name_map.insert(std::make_pair(name, &(*pos))); 127 } 128 129 for (const auto &name_to_symbol : name_map) { 130 const Symbol *symbol = name_to_symbol.second; 131 s->Indent(); 132 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 133 } 134 } break; 135 136 case eSortOrderByAddress: 137 s->PutCString(" (sorted by address):\n"); 138 DumpSymbolHeader(s); 139 if (!m_file_addr_to_index_computed) 140 InitAddressIndexes(); 141 const size_t num_entries = m_file_addr_to_index.GetSize(); 142 for (size_t i = 0; i < num_entries; ++i) { 143 s->Indent(); 144 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 145 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 146 } 147 break; 148 } 149 } else { 150 s->PutCString("\n"); 151 } 152 } 153 154 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 155 Mangled::NamePreference name_preference) const { 156 std::lock_guard<std::recursive_mutex> guard(m_mutex); 157 158 const size_t num_symbols = GetNumSymbols(); 159 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 160 s->Indent(); 161 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 162 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 163 s->IndentMore(); 164 165 if (!indexes.empty()) { 166 std::vector<uint32_t>::const_iterator pos; 167 std::vector<uint32_t>::const_iterator end = indexes.end(); 168 DumpSymbolHeader(s); 169 for (pos = indexes.begin(); pos != end; ++pos) { 170 size_t idx = *pos; 171 if (idx < num_symbols) { 172 s->Indent(); 173 m_symbols[idx].Dump(s, target, idx, name_preference); 174 } 175 } 176 } 177 s->IndentLess(); 178 } 179 180 void Symtab::DumpSymbolHeader(Stream *s) { 181 s->Indent(" Debug symbol\n"); 182 s->Indent(" |Synthetic symbol\n"); 183 s->Indent(" ||Externally Visible\n"); 184 s->Indent(" |||\n"); 185 s->Indent("Index UserID DSX Type File Address/Value Load " 186 "Address Size Flags Name\n"); 187 s->Indent("------- ------ --- --------------- ------------------ " 188 "------------------ ------------------ ---------- " 189 "----------------------------------\n"); 190 } 191 192 static int CompareSymbolID(const void *key, const void *p) { 193 const user_id_t match_uid = *(const user_id_t *)key; 194 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 195 if (match_uid < symbol_uid) 196 return -1; 197 if (match_uid > symbol_uid) 198 return 1; 199 return 0; 200 } 201 202 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 203 std::lock_guard<std::recursive_mutex> guard(m_mutex); 204 205 Symbol *symbol = 206 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 207 sizeof(m_symbols[0]), CompareSymbolID); 208 return symbol; 209 } 210 211 Symbol *Symtab::SymbolAtIndex(size_t idx) { 212 // Clients should grab the mutex from this symbol table and lock it manually 213 // when calling this function to avoid performance issues. 214 if (idx < m_symbols.size()) 215 return &m_symbols[idx]; 216 return nullptr; 217 } 218 219 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 220 // Clients should grab the mutex from this symbol table and lock it manually 221 // when calling this function to avoid performance issues. 222 if (idx < m_symbols.size()) 223 return &m_symbols[idx]; 224 return nullptr; 225 } 226 227 static bool lldb_skip_name(llvm::StringRef mangled, 228 Mangled::ManglingScheme scheme) { 229 switch (scheme) { 230 case Mangled::eManglingSchemeItanium: { 231 if (mangled.size() < 3 || !mangled.startswith("_Z")) 232 return true; 233 234 // Avoid the following types of symbols in the index. 235 switch (mangled[2]) { 236 case 'G': // guard variables 237 case 'T': // virtual tables, VTT structures, typeinfo structures + names 238 case 'Z': // named local entities (if we eventually handle 239 // eSymbolTypeData, we will want this back) 240 return true; 241 242 default: 243 break; 244 } 245 246 // Include this name in the index. 247 return false; 248 } 249 250 // No filters for this scheme yet. Include all names in indexing. 251 case Mangled::eManglingSchemeMSVC: 252 return false; 253 254 // Don't try and demangle things we can't categorize. 255 case Mangled::eManglingSchemeNone: 256 return true; 257 } 258 llvm_unreachable("unknown scheme!"); 259 } 260 261 void Symtab::InitNameIndexes() { 262 // Protected function, no need to lock mutex... 263 if (!m_name_indexes_computed) { 264 m_name_indexes_computed = true; 265 LLDB_SCOPED_TIMER(); 266 267 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 268 auto &basename_to_index = 269 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 270 auto &method_to_index = 271 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 272 auto &selector_to_index = 273 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); 274 // Create the name index vector to be able to quickly search by name 275 const size_t num_symbols = m_symbols.size(); 276 name_to_index.Reserve(num_symbols); 277 278 // The "const char *" in "class_contexts" and backlog::value_type::second 279 // must come from a ConstString::GetCString() 280 std::set<const char *> class_contexts; 281 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 282 backlog.reserve(num_symbols / 2); 283 284 // Instantiation of the demangler is expensive, so better use a single one 285 // for all entries during batch processing. 286 RichManglingContext rmc; 287 for (uint32_t value = 0; value < num_symbols; ++value) { 288 Symbol *symbol = &m_symbols[value]; 289 290 // Don't let trampolines get into the lookup by name map If we ever need 291 // the trampoline symbols to be searchable by name we can remove this and 292 // then possibly add a new bool to any of the Symtab functions that 293 // lookup symbols by name to indicate if they want trampolines. 294 if (symbol->IsTrampoline()) 295 continue; 296 297 // If the symbol's name string matched a Mangled::ManglingScheme, it is 298 // stored in the mangled field. 299 Mangled &mangled = symbol->GetMangled(); 300 if (ConstString name = mangled.GetMangledName()) { 301 name_to_index.Append(name, value); 302 303 if (symbol->ContainsLinkerAnnotations()) { 304 // If the symbol has linker annotations, also add the version without 305 // the annotations. 306 ConstString stripped = ConstString( 307 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 308 name_to_index.Append(stripped, value); 309 } 310 311 const SymbolType type = symbol->GetType(); 312 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 313 if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name)) 314 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 315 } 316 } 317 318 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 319 // stored in the demangled field. 320 if (ConstString name = mangled.GetDemangledName()) { 321 name_to_index.Append(name, value); 322 323 if (symbol->ContainsLinkerAnnotations()) { 324 // If the symbol has linker annotations, also add the version without 325 // the annotations. 326 name = ConstString( 327 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 328 name_to_index.Append(name, value); 329 } 330 331 // If the demangled name turns out to be an ObjC name, and is a category 332 // name, add the version without categories to the index too. 333 ObjCLanguage::MethodName objc_method(name.GetStringRef(), true); 334 if (objc_method.IsValid(true)) { 335 selector_to_index.Append(objc_method.GetSelector(), value); 336 337 if (ConstString objc_method_no_category = 338 objc_method.GetFullNameWithoutCategory(true)) 339 name_to_index.Append(objc_method_no_category, value); 340 } 341 } 342 } 343 344 for (const auto &record : backlog) { 345 RegisterBacklogEntry(record.first, record.second, class_contexts); 346 } 347 348 name_to_index.Sort(); 349 name_to_index.SizeToFit(); 350 selector_to_index.Sort(); 351 selector_to_index.SizeToFit(); 352 basename_to_index.Sort(); 353 basename_to_index.SizeToFit(); 354 method_to_index.Sort(); 355 method_to_index.SizeToFit(); 356 } 357 } 358 359 void Symtab::RegisterMangledNameEntry( 360 uint32_t value, std::set<const char *> &class_contexts, 361 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 362 RichManglingContext &rmc) { 363 // Only register functions that have a base name. 364 rmc.ParseFunctionBaseName(); 365 llvm::StringRef base_name = rmc.GetBufferRef(); 366 if (base_name.empty()) 367 return; 368 369 // The base name will be our entry's name. 370 NameToIndexMap::Entry entry(ConstString(base_name), value); 371 372 rmc.ParseFunctionDeclContextName(); 373 llvm::StringRef decl_context = rmc.GetBufferRef(); 374 375 // Register functions with no context. 376 if (decl_context.empty()) { 377 // This has to be a basename 378 auto &basename_to_index = 379 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 380 basename_to_index.Append(entry); 381 // If there is no context (no namespaces or class scopes that come before 382 // the function name) then this also could be a fullname. 383 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 384 name_to_index.Append(entry); 385 return; 386 } 387 388 // Make sure we have a pool-string pointer and see if we already know the 389 // context name. 390 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 391 auto it = class_contexts.find(decl_context_ccstr); 392 393 auto &method_to_index = 394 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 395 // Register constructors and destructors. They are methods and create 396 // declaration contexts. 397 if (rmc.IsCtorOrDtor()) { 398 method_to_index.Append(entry); 399 if (it == class_contexts.end()) 400 class_contexts.insert(it, decl_context_ccstr); 401 return; 402 } 403 404 // Register regular methods with a known declaration context. 405 if (it != class_contexts.end()) { 406 method_to_index.Append(entry); 407 return; 408 } 409 410 // Regular methods in unknown declaration contexts are put to the backlog. We 411 // will revisit them once we processed all remaining symbols. 412 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 413 } 414 415 void Symtab::RegisterBacklogEntry( 416 const NameToIndexMap::Entry &entry, const char *decl_context, 417 const std::set<const char *> &class_contexts) { 418 auto &method_to_index = 419 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 420 auto it = class_contexts.find(decl_context); 421 if (it != class_contexts.end()) { 422 method_to_index.Append(entry); 423 } else { 424 // If we got here, we have something that had a context (was inside 425 // a namespace or class) yet we don't know the entry 426 method_to_index.Append(entry); 427 auto &basename_to_index = 428 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 429 basename_to_index.Append(entry); 430 } 431 } 432 433 void Symtab::PreloadSymbols() { 434 std::lock_guard<std::recursive_mutex> guard(m_mutex); 435 InitNameIndexes(); 436 } 437 438 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 439 bool add_demangled, bool add_mangled, 440 NameToIndexMap &name_to_index_map) const { 441 LLDB_SCOPED_TIMER(); 442 if (add_demangled || add_mangled) { 443 std::lock_guard<std::recursive_mutex> guard(m_mutex); 444 445 // Create the name index vector to be able to quickly search by name 446 const size_t num_indexes = indexes.size(); 447 for (size_t i = 0; i < num_indexes; ++i) { 448 uint32_t value = indexes[i]; 449 assert(i < m_symbols.size()); 450 const Symbol *symbol = &m_symbols[value]; 451 452 const Mangled &mangled = symbol->GetMangled(); 453 if (add_demangled) { 454 if (ConstString name = mangled.GetDemangledName()) 455 name_to_index_map.Append(name, value); 456 } 457 458 if (add_mangled) { 459 if (ConstString name = mangled.GetMangledName()) 460 name_to_index_map.Append(name, value); 461 } 462 } 463 } 464 } 465 466 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 467 std::vector<uint32_t> &indexes, 468 uint32_t start_idx, 469 uint32_t end_index) const { 470 std::lock_guard<std::recursive_mutex> guard(m_mutex); 471 472 uint32_t prev_size = indexes.size(); 473 474 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 475 476 for (uint32_t i = start_idx; i < count; ++i) { 477 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 478 indexes.push_back(i); 479 } 480 481 return indexes.size() - prev_size; 482 } 483 484 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 485 SymbolType symbol_type, uint32_t flags_value, 486 std::vector<uint32_t> &indexes, uint32_t start_idx, 487 uint32_t end_index) const { 488 std::lock_guard<std::recursive_mutex> guard(m_mutex); 489 490 uint32_t prev_size = indexes.size(); 491 492 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 493 494 for (uint32_t i = start_idx; i < count; ++i) { 495 if ((symbol_type == eSymbolTypeAny || 496 m_symbols[i].GetType() == symbol_type) && 497 m_symbols[i].GetFlags() == flags_value) 498 indexes.push_back(i); 499 } 500 501 return indexes.size() - prev_size; 502 } 503 504 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 505 Debug symbol_debug_type, 506 Visibility symbol_visibility, 507 std::vector<uint32_t> &indexes, 508 uint32_t start_idx, 509 uint32_t end_index) const { 510 std::lock_guard<std::recursive_mutex> guard(m_mutex); 511 512 uint32_t prev_size = indexes.size(); 513 514 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 515 516 for (uint32_t i = start_idx; i < count; ++i) { 517 if (symbol_type == eSymbolTypeAny || 518 m_symbols[i].GetType() == symbol_type) { 519 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 520 indexes.push_back(i); 521 } 522 } 523 524 return indexes.size() - prev_size; 525 } 526 527 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 528 if (!m_symbols.empty()) { 529 const Symbol *first_symbol = &m_symbols[0]; 530 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 531 return symbol - first_symbol; 532 } 533 return UINT32_MAX; 534 } 535 536 struct SymbolSortInfo { 537 const bool sort_by_load_addr; 538 const Symbol *symbols; 539 }; 540 541 namespace { 542 struct SymbolIndexComparator { 543 const std::vector<Symbol> &symbols; 544 std::vector<lldb::addr_t> &addr_cache; 545 546 // Getting from the symbol to the Address to the File Address involves some 547 // work. Since there are potentially many symbols here, and we're using this 548 // for sorting so we're going to be computing the address many times, cache 549 // that in addr_cache. The array passed in has to be the same size as the 550 // symbols array passed into the member variable symbols, and should be 551 // initialized with LLDB_INVALID_ADDRESS. 552 // NOTE: You have to make addr_cache externally and pass it in because 553 // std::stable_sort 554 // makes copies of the comparator it is initially passed in, and you end up 555 // spending huge amounts of time copying this array... 556 557 SymbolIndexComparator(const std::vector<Symbol> &s, 558 std::vector<lldb::addr_t> &a) 559 : symbols(s), addr_cache(a) { 560 assert(symbols.size() == addr_cache.size()); 561 } 562 bool operator()(uint32_t index_a, uint32_t index_b) { 563 addr_t value_a = addr_cache[index_a]; 564 if (value_a == LLDB_INVALID_ADDRESS) { 565 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 566 addr_cache[index_a] = value_a; 567 } 568 569 addr_t value_b = addr_cache[index_b]; 570 if (value_b == LLDB_INVALID_ADDRESS) { 571 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 572 addr_cache[index_b] = value_b; 573 } 574 575 if (value_a == value_b) { 576 // The if the values are equal, use the original symbol user ID 577 lldb::user_id_t uid_a = symbols[index_a].GetID(); 578 lldb::user_id_t uid_b = symbols[index_b].GetID(); 579 if (uid_a < uid_b) 580 return true; 581 if (uid_a > uid_b) 582 return false; 583 return false; 584 } else if (value_a < value_b) 585 return true; 586 587 return false; 588 } 589 }; 590 } 591 592 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 593 bool remove_duplicates) const { 594 std::lock_guard<std::recursive_mutex> guard(m_mutex); 595 LLDB_SCOPED_TIMER(); 596 // No need to sort if we have zero or one items... 597 if (indexes.size() <= 1) 598 return; 599 600 // Sort the indexes in place using std::stable_sort. 601 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 602 // for performance, not correctness. The indexes vector tends to be "close" 603 // to sorted, which the stable sort handles better. 604 605 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 606 607 SymbolIndexComparator comparator(m_symbols, addr_cache); 608 std::stable_sort(indexes.begin(), indexes.end(), comparator); 609 610 // Remove any duplicates if requested 611 if (remove_duplicates) { 612 auto last = std::unique(indexes.begin(), indexes.end()); 613 indexes.erase(last, indexes.end()); 614 } 615 } 616 617 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 618 std::vector<uint32_t> &indexes) { 619 std::lock_guard<std::recursive_mutex> guard(m_mutex); 620 621 LLDB_SCOPED_TIMER(); 622 if (symbol_name) { 623 if (!m_name_indexes_computed) 624 InitNameIndexes(); 625 626 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 627 return name_to_index.GetValues(symbol_name, indexes); 628 } 629 return 0; 630 } 631 632 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 633 Debug symbol_debug_type, 634 Visibility symbol_visibility, 635 std::vector<uint32_t> &indexes) { 636 std::lock_guard<std::recursive_mutex> guard(m_mutex); 637 638 LLDB_SCOPED_TIMER(); 639 if (symbol_name) { 640 const size_t old_size = indexes.size(); 641 if (!m_name_indexes_computed) 642 InitNameIndexes(); 643 644 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 645 std::vector<uint32_t> all_name_indexes; 646 const size_t name_match_count = 647 name_to_index.GetValues(symbol_name, all_name_indexes); 648 for (size_t i = 0; i < name_match_count; ++i) { 649 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 650 symbol_visibility)) 651 indexes.push_back(all_name_indexes[i]); 652 } 653 return indexes.size() - old_size; 654 } 655 return 0; 656 } 657 658 uint32_t 659 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 660 SymbolType symbol_type, 661 std::vector<uint32_t> &indexes) { 662 std::lock_guard<std::recursive_mutex> guard(m_mutex); 663 664 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 665 std::vector<uint32_t>::iterator pos = indexes.begin(); 666 while (pos != indexes.end()) { 667 if (symbol_type == eSymbolTypeAny || 668 m_symbols[*pos].GetType() == symbol_type) 669 ++pos; 670 else 671 pos = indexes.erase(pos); 672 } 673 } 674 return indexes.size(); 675 } 676 677 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 678 ConstString symbol_name, SymbolType symbol_type, 679 Debug symbol_debug_type, Visibility symbol_visibility, 680 std::vector<uint32_t> &indexes) { 681 std::lock_guard<std::recursive_mutex> guard(m_mutex); 682 683 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 684 symbol_visibility, indexes) > 0) { 685 std::vector<uint32_t>::iterator pos = indexes.begin(); 686 while (pos != indexes.end()) { 687 if (symbol_type == eSymbolTypeAny || 688 m_symbols[*pos].GetType() == symbol_type) 689 ++pos; 690 else 691 pos = indexes.erase(pos); 692 } 693 } 694 return indexes.size(); 695 } 696 697 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 698 const RegularExpression ®exp, SymbolType symbol_type, 699 std::vector<uint32_t> &indexes) { 700 std::lock_guard<std::recursive_mutex> guard(m_mutex); 701 702 uint32_t prev_size = indexes.size(); 703 uint32_t sym_end = m_symbols.size(); 704 705 for (uint32_t i = 0; i < sym_end; i++) { 706 if (symbol_type == eSymbolTypeAny || 707 m_symbols[i].GetType() == symbol_type) { 708 const char *name = m_symbols[i].GetName().AsCString(); 709 if (name) { 710 if (regexp.Execute(name)) 711 indexes.push_back(i); 712 } 713 } 714 } 715 return indexes.size() - prev_size; 716 } 717 718 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 719 const RegularExpression ®exp, SymbolType symbol_type, 720 Debug symbol_debug_type, Visibility symbol_visibility, 721 std::vector<uint32_t> &indexes) { 722 std::lock_guard<std::recursive_mutex> guard(m_mutex); 723 724 uint32_t prev_size = indexes.size(); 725 uint32_t sym_end = m_symbols.size(); 726 727 for (uint32_t i = 0; i < sym_end; i++) { 728 if (symbol_type == eSymbolTypeAny || 729 m_symbols[i].GetType() == symbol_type) { 730 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 731 continue; 732 733 const char *name = m_symbols[i].GetName().AsCString(); 734 if (name) { 735 if (regexp.Execute(name)) 736 indexes.push_back(i); 737 } 738 } 739 } 740 return indexes.size() - prev_size; 741 } 742 743 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 744 Debug symbol_debug_type, 745 Visibility symbol_visibility, 746 uint32_t &start_idx) { 747 std::lock_guard<std::recursive_mutex> guard(m_mutex); 748 749 const size_t count = m_symbols.size(); 750 for (size_t idx = start_idx; idx < count; ++idx) { 751 if (symbol_type == eSymbolTypeAny || 752 m_symbols[idx].GetType() == symbol_type) { 753 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 754 start_idx = idx; 755 return &m_symbols[idx]; 756 } 757 } 758 } 759 return nullptr; 760 } 761 762 void 763 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 764 SymbolType symbol_type, 765 std::vector<uint32_t> &symbol_indexes) { 766 std::lock_guard<std::recursive_mutex> guard(m_mutex); 767 768 LLDB_SCOPED_TIMER(); 769 // Initialize all of the lookup by name indexes before converting NAME to a 770 // uniqued string NAME_STR below. 771 if (!m_name_indexes_computed) 772 InitNameIndexes(); 773 774 if (name) { 775 // The string table did have a string that matched, but we need to check 776 // the symbols and match the symbol_type if any was given. 777 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 778 } 779 } 780 781 void Symtab::FindAllSymbolsWithNameAndType( 782 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 783 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 784 std::lock_guard<std::recursive_mutex> guard(m_mutex); 785 786 LLDB_SCOPED_TIMER(); 787 // Initialize all of the lookup by name indexes before converting NAME to a 788 // uniqued string NAME_STR below. 789 if (!m_name_indexes_computed) 790 InitNameIndexes(); 791 792 if (name) { 793 // The string table did have a string that matched, but we need to check 794 // the symbols and match the symbol_type if any was given. 795 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 796 symbol_visibility, symbol_indexes); 797 } 798 } 799 800 void Symtab::FindAllSymbolsMatchingRexExAndType( 801 const RegularExpression ®ex, SymbolType symbol_type, 802 Debug symbol_debug_type, Visibility symbol_visibility, 803 std::vector<uint32_t> &symbol_indexes) { 804 std::lock_guard<std::recursive_mutex> guard(m_mutex); 805 806 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 807 symbol_visibility, symbol_indexes); 808 } 809 810 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 811 SymbolType symbol_type, 812 Debug symbol_debug_type, 813 Visibility symbol_visibility) { 814 std::lock_guard<std::recursive_mutex> guard(m_mutex); 815 LLDB_SCOPED_TIMER(); 816 if (!m_name_indexes_computed) 817 InitNameIndexes(); 818 819 if (name) { 820 std::vector<uint32_t> matching_indexes; 821 // The string table did have a string that matched, but we need to check 822 // the symbols and match the symbol_type if any was given. 823 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 824 symbol_visibility, 825 matching_indexes)) { 826 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 827 for (pos = matching_indexes.begin(); pos != end; ++pos) { 828 Symbol *symbol = SymbolAtIndex(*pos); 829 830 if (symbol->Compare(name, symbol_type)) 831 return symbol; 832 } 833 } 834 } 835 return nullptr; 836 } 837 838 typedef struct { 839 const Symtab *symtab; 840 const addr_t file_addr; 841 Symbol *match_symbol; 842 const uint32_t *match_index_ptr; 843 addr_t match_offset; 844 } SymbolSearchInfo; 845 846 // Add all the section file start address & size to the RangeVector, recusively 847 // adding any children sections. 848 static void AddSectionsToRangeMap(SectionList *sectlist, 849 RangeVector<addr_t, addr_t> §ion_ranges) { 850 const int num_sections = sectlist->GetNumSections(0); 851 for (int i = 0; i < num_sections; i++) { 852 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 853 if (sect_sp) { 854 SectionList &child_sectlist = sect_sp->GetChildren(); 855 856 // If this section has children, add the children to the RangeVector. 857 // Else add this section to the RangeVector. 858 if (child_sectlist.GetNumSections(0) > 0) { 859 AddSectionsToRangeMap(&child_sectlist, section_ranges); 860 } else { 861 size_t size = sect_sp->GetByteSize(); 862 if (size > 0) { 863 addr_t base_addr = sect_sp->GetFileAddress(); 864 RangeVector<addr_t, addr_t>::Entry entry; 865 entry.SetRangeBase(base_addr); 866 entry.SetByteSize(size); 867 section_ranges.Append(entry); 868 } 869 } 870 } 871 } 872 } 873 874 void Symtab::InitAddressIndexes() { 875 // Protected function, no need to lock mutex... 876 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 877 m_file_addr_to_index_computed = true; 878 879 FileRangeToIndexMap::Entry entry; 880 const_iterator begin = m_symbols.begin(); 881 const_iterator end = m_symbols.end(); 882 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 883 if (pos->ValueIsAddress()) { 884 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 885 entry.SetByteSize(pos->GetByteSize()); 886 entry.data = std::distance(begin, pos); 887 m_file_addr_to_index.Append(entry); 888 } 889 } 890 const size_t num_entries = m_file_addr_to_index.GetSize(); 891 if (num_entries > 0) { 892 m_file_addr_to_index.Sort(); 893 894 // Create a RangeVector with the start & size of all the sections for 895 // this objfile. We'll need to check this for any FileRangeToIndexMap 896 // entries with an uninitialized size, which could potentially be a large 897 // number so reconstituting the weak pointer is busywork when it is 898 // invariant information. 899 SectionList *sectlist = m_objfile->GetSectionList(); 900 RangeVector<addr_t, addr_t> section_ranges; 901 if (sectlist) { 902 AddSectionsToRangeMap(sectlist, section_ranges); 903 section_ranges.Sort(); 904 } 905 906 // Iterate through the FileRangeToIndexMap and fill in the size for any 907 // entries that didn't already have a size from the Symbol (e.g. if we 908 // have a plain linker symbol with an address only, instead of debug info 909 // where we get an address and a size and a type, etc.) 910 for (size_t i = 0; i < num_entries; i++) { 911 FileRangeToIndexMap::Entry *entry = 912 m_file_addr_to_index.GetMutableEntryAtIndex(i); 913 if (entry->GetByteSize() == 0) { 914 addr_t curr_base_addr = entry->GetRangeBase(); 915 const RangeVector<addr_t, addr_t>::Entry *containing_section = 916 section_ranges.FindEntryThatContains(curr_base_addr); 917 918 // Use the end of the section as the default max size of the symbol 919 addr_t sym_size = 0; 920 if (containing_section) { 921 sym_size = 922 containing_section->GetByteSize() - 923 (entry->GetRangeBase() - containing_section->GetRangeBase()); 924 } 925 926 for (size_t j = i; j < num_entries; j++) { 927 FileRangeToIndexMap::Entry *next_entry = 928 m_file_addr_to_index.GetMutableEntryAtIndex(j); 929 addr_t next_base_addr = next_entry->GetRangeBase(); 930 if (next_base_addr > curr_base_addr) { 931 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 932 933 // Take the difference between this symbol and the next one as 934 // its size, if it is less than the size of the section. 935 if (sym_size == 0 || size_to_next_symbol < sym_size) { 936 sym_size = size_to_next_symbol; 937 } 938 break; 939 } 940 } 941 942 if (sym_size > 0) { 943 entry->SetByteSize(sym_size); 944 Symbol &symbol = m_symbols[entry->data]; 945 symbol.SetByteSize(sym_size); 946 symbol.SetSizeIsSynthesized(true); 947 } 948 } 949 } 950 951 // Sort again in case the range size changes the ordering 952 m_file_addr_to_index.Sort(); 953 } 954 } 955 } 956 957 void Symtab::CalculateSymbolSizes() { 958 std::lock_guard<std::recursive_mutex> guard(m_mutex); 959 // Size computation happens inside InitAddressIndexes. 960 InitAddressIndexes(); 961 } 962 963 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 964 std::lock_guard<std::recursive_mutex> guard(m_mutex); 965 if (!m_file_addr_to_index_computed) 966 InitAddressIndexes(); 967 968 const FileRangeToIndexMap::Entry *entry = 969 m_file_addr_to_index.FindEntryStartsAt(file_addr); 970 if (entry) { 971 Symbol *symbol = SymbolAtIndex(entry->data); 972 if (symbol->GetFileAddress() == file_addr) 973 return symbol; 974 } 975 return nullptr; 976 } 977 978 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 979 std::lock_guard<std::recursive_mutex> guard(m_mutex); 980 981 if (!m_file_addr_to_index_computed) 982 InitAddressIndexes(); 983 984 const FileRangeToIndexMap::Entry *entry = 985 m_file_addr_to_index.FindEntryThatContains(file_addr); 986 if (entry) { 987 Symbol *symbol = SymbolAtIndex(entry->data); 988 if (symbol->ContainsFileAddress(file_addr)) 989 return symbol; 990 } 991 return nullptr; 992 } 993 994 void Symtab::ForEachSymbolContainingFileAddress( 995 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 996 std::lock_guard<std::recursive_mutex> guard(m_mutex); 997 998 if (!m_file_addr_to_index_computed) 999 InitAddressIndexes(); 1000 1001 std::vector<uint32_t> all_addr_indexes; 1002 1003 // Get all symbols with file_addr 1004 const size_t addr_match_count = 1005 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1006 all_addr_indexes); 1007 1008 for (size_t i = 0; i < addr_match_count; ++i) { 1009 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1010 if (symbol->ContainsFileAddress(file_addr)) { 1011 if (!callback(symbol)) 1012 break; 1013 } 1014 } 1015 } 1016 1017 void Symtab::SymbolIndicesToSymbolContextList( 1018 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1019 // No need to protect this call using m_mutex all other method calls are 1020 // already thread safe. 1021 1022 const bool merge_symbol_into_function = true; 1023 size_t num_indices = symbol_indexes.size(); 1024 if (num_indices > 0) { 1025 SymbolContext sc; 1026 sc.module_sp = m_objfile->GetModule(); 1027 for (size_t i = 0; i < num_indices; i++) { 1028 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1029 if (sc.symbol) 1030 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1031 } 1032 } 1033 } 1034 1035 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1036 SymbolContextList &sc_list) { 1037 std::vector<uint32_t> symbol_indexes; 1038 1039 // eFunctionNameTypeAuto should be pre-resolved by a call to 1040 // Module::LookupInfo::LookupInfo() 1041 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1042 1043 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1044 std::vector<uint32_t> temp_symbol_indexes; 1045 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1046 1047 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1048 if (temp_symbol_indexes_size > 0) { 1049 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1050 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1051 SymbolContext sym_ctx; 1052 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1053 if (sym_ctx.symbol) { 1054 switch (sym_ctx.symbol->GetType()) { 1055 case eSymbolTypeCode: 1056 case eSymbolTypeResolver: 1057 case eSymbolTypeReExported: 1058 symbol_indexes.push_back(temp_symbol_indexes[i]); 1059 break; 1060 default: 1061 break; 1062 } 1063 } 1064 } 1065 } 1066 } 1067 1068 if (!m_name_indexes_computed) 1069 InitNameIndexes(); 1070 1071 for (lldb::FunctionNameType type : 1072 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, 1073 lldb::eFunctionNameTypeSelector}) { 1074 if (name_type_mask & type) { 1075 auto map = GetNameToSymbolIndexMap(type); 1076 1077 const UniqueCStringMap<uint32_t>::Entry *match; 1078 for (match = map.FindFirstValueForName(name); match != nullptr; 1079 match = map.FindNextValueForName(match)) { 1080 symbol_indexes.push_back(match->value); 1081 } 1082 } 1083 } 1084 1085 if (!symbol_indexes.empty()) { 1086 llvm::sort(symbol_indexes.begin(), symbol_indexes.end()); 1087 symbol_indexes.erase( 1088 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1089 symbol_indexes.end()); 1090 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1091 } 1092 } 1093 1094 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1095 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1096 if (child_idx != UINT32_MAX && child_idx > 0) { 1097 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1098 const Symbol *symbol = SymbolAtIndex(idx); 1099 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1100 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1101 return symbol; 1102 } 1103 } 1104 return nullptr; 1105 } 1106