1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include <map>
11 #include <set>
12 
13 #include "Plugins/Language/CPlusPlus/CPlusPlusLanguage.h"
14 #include "Plugins/Language/ObjC/ObjCLanguage.h"
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/STLUtils.h"
17 #include "lldb/Core/Section.h"
18 #include "lldb/Symbol/ObjectFile.h"
19 #include "lldb/Symbol/Symbol.h"
20 #include "lldb/Symbol/SymbolContext.h"
21 #include "lldb/Symbol/Symtab.h"
22 #include "lldb/Utility/RegularExpression.h"
23 #include "lldb/Utility/Stream.h"
24 #include "lldb/Utility/Timer.h"
25 
26 using namespace lldb;
27 using namespace lldb_private;
28 
29 Symtab::Symtab(ObjectFile *objfile)
30     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(),
31       m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
32       m_name_indexes_computed(false) {}
33 
34 Symtab::~Symtab() {}
35 
36 void Symtab::Reserve(size_t count) {
37   // Clients should grab the mutex from this symbol table and lock it manually
38   // when calling this function to avoid performance issues.
39   m_symbols.reserve(count);
40 }
41 
42 Symbol *Symtab::Resize(size_t count) {
43   // Clients should grab the mutex from this symbol table and lock it manually
44   // when calling this function to avoid performance issues.
45   m_symbols.resize(count);
46   return m_symbols.empty() ? nullptr : &m_symbols[0];
47 }
48 
49 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
50   // Clients should grab the mutex from this symbol table and lock it manually
51   // when calling this function to avoid performance issues.
52   uint32_t symbol_idx = m_symbols.size();
53   m_name_to_index.Clear();
54   m_file_addr_to_index.Clear();
55   m_symbols.push_back(symbol);
56   m_file_addr_to_index_computed = false;
57   m_name_indexes_computed = false;
58   return symbol_idx;
59 }
60 
61 size_t Symtab::GetNumSymbols() const {
62   std::lock_guard<std::recursive_mutex> guard(m_mutex);
63   return m_symbols.size();
64 }
65 
66 void Symtab::SectionFileAddressesChanged() {
67   m_name_to_index.Clear();
68   m_file_addr_to_index_computed = false;
69 }
70 
71 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) {
72   std::lock_guard<std::recursive_mutex> guard(m_mutex);
73 
74   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
75   s->Indent();
76   const FileSpec &file_spec = m_objfile->GetFileSpec();
77   const char *object_name = nullptr;
78   if (m_objfile->GetModule())
79     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
80 
81   if (file_spec)
82     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
83               file_spec.GetPath().c_str(), object_name ? "(" : "",
84               object_name ? object_name : "", object_name ? ")" : "",
85               (uint64_t)m_symbols.size());
86   else
87     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
88 
89   if (!m_symbols.empty()) {
90     switch (sort_order) {
91     case eSortOrderNone: {
92       s->PutCString(":\n");
93       DumpSymbolHeader(s);
94       const_iterator begin = m_symbols.begin();
95       const_iterator end = m_symbols.end();
96       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
97         s->Indent();
98         pos->Dump(s, target, std::distance(begin, pos));
99       }
100     } break;
101 
102     case eSortOrderByName: {
103       // Although we maintain a lookup by exact name map, the table
104       // isn't sorted by name. So we must make the ordered symbol list
105       // up ourselves.
106       s->PutCString(" (sorted by name):\n");
107       DumpSymbolHeader(s);
108       typedef std::multimap<const char *, const Symbol *,
109                             CStringCompareFunctionObject>
110           CStringToSymbol;
111       CStringToSymbol name_map;
112       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
113            pos != end; ++pos) {
114         const char *name = pos->GetName().AsCString();
115         if (name && name[0])
116           name_map.insert(std::make_pair(name, &(*pos)));
117       }
118 
119       for (CStringToSymbol::const_iterator pos = name_map.begin(),
120                                            end = name_map.end();
121            pos != end; ++pos) {
122         s->Indent();
123         pos->second->Dump(s, target, pos->second - &m_symbols[0]);
124       }
125     } break;
126 
127     case eSortOrderByAddress:
128       s->PutCString(" (sorted by address):\n");
129       DumpSymbolHeader(s);
130       if (!m_file_addr_to_index_computed)
131         InitAddressIndexes();
132       const size_t num_entries = m_file_addr_to_index.GetSize();
133       for (size_t i = 0; i < num_entries; ++i) {
134         s->Indent();
135         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
136         m_symbols[symbol_idx].Dump(s, target, symbol_idx);
137       }
138       break;
139     }
140   }
141 }
142 
143 void Symtab::Dump(Stream *s, Target *target,
144                   std::vector<uint32_t> &indexes) const {
145   std::lock_guard<std::recursive_mutex> guard(m_mutex);
146 
147   const size_t num_symbols = GetNumSymbols();
148   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
149   s->Indent();
150   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
151             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
152   s->IndentMore();
153 
154   if (!indexes.empty()) {
155     std::vector<uint32_t>::const_iterator pos;
156     std::vector<uint32_t>::const_iterator end = indexes.end();
157     DumpSymbolHeader(s);
158     for (pos = indexes.begin(); pos != end; ++pos) {
159       size_t idx = *pos;
160       if (idx < num_symbols) {
161         s->Indent();
162         m_symbols[idx].Dump(s, target, idx);
163       }
164     }
165   }
166   s->IndentLess();
167 }
168 
169 void Symtab::DumpSymbolHeader(Stream *s) {
170   s->Indent("               Debug symbol\n");
171   s->Indent("               |Synthetic symbol\n");
172   s->Indent("               ||Externally Visible\n");
173   s->Indent("               |||\n");
174   s->Indent("Index   UserID DSX Type            File Address/Value Load "
175             "Address       Size               Flags      Name\n");
176   s->Indent("------- ------ --- --------------- ------------------ "
177             "------------------ ------------------ ---------- "
178             "----------------------------------\n");
179 }
180 
181 static int CompareSymbolID(const void *key, const void *p) {
182   const user_id_t match_uid = *(const user_id_t *)key;
183   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
184   if (match_uid < symbol_uid)
185     return -1;
186   if (match_uid > symbol_uid)
187     return 1;
188   return 0;
189 }
190 
191 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
192   std::lock_guard<std::recursive_mutex> guard(m_mutex);
193 
194   Symbol *symbol =
195       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
196                           sizeof(m_symbols[0]), CompareSymbolID);
197   return symbol;
198 }
199 
200 Symbol *Symtab::SymbolAtIndex(size_t idx) {
201   // Clients should grab the mutex from this symbol table and lock it manually
202   // when calling this function to avoid performance issues.
203   if (idx < m_symbols.size())
204     return &m_symbols[idx];
205   return nullptr;
206 }
207 
208 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
209   // Clients should grab the mutex from this symbol table and lock it manually
210   // when calling this function to avoid performance issues.
211   if (idx < m_symbols.size())
212     return &m_symbols[idx];
213   return nullptr;
214 }
215 
216 //----------------------------------------------------------------------
217 // InitNameIndexes
218 //----------------------------------------------------------------------
219 void Symtab::InitNameIndexes() {
220   // Protected function, no need to lock mutex...
221   if (!m_name_indexes_computed) {
222     m_name_indexes_computed = true;
223     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
224     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
225     // Create the name index vector to be able to quickly search by name
226     const size_t num_symbols = m_symbols.size();
227 #if 1
228     m_name_to_index.Reserve(num_symbols);
229 #else
230     // TODO: benchmark this to see if we save any memory. Otherwise we
231     // will always keep the memory reserved in the vector unless we pull
232     // some STL swap magic and then recopy...
233     uint32_t actual_count = 0;
234     for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
235          pos != end; ++pos) {
236       const Mangled &mangled = pos->GetMangled();
237       if (mangled.GetMangledName())
238         ++actual_count;
239 
240       if (mangled.GetDemangledName())
241         ++actual_count;
242     }
243 
244     m_name_to_index.Reserve(actual_count);
245 #endif
246 
247     NameToIndexMap::Entry entry;
248 
249     // The "const char *" in "class_contexts" must come from a
250     // ConstString::GetCString()
251     std::set<const char *> class_contexts;
252     UniqueCStringMap<uint32_t> mangled_name_to_index;
253     std::vector<const char *> symbol_contexts(num_symbols, nullptr);
254 
255     for (entry.value = 0; entry.value < num_symbols; ++entry.value) {
256       const Symbol *symbol = &m_symbols[entry.value];
257 
258       // Don't let trampolines get into the lookup by name map
259       // If we ever need the trampoline symbols to be searchable by name
260       // we can remove this and then possibly add a new bool to any of the
261       // Symtab functions that lookup symbols by name to indicate if they
262       // want trampolines.
263       if (symbol->IsTrampoline())
264         continue;
265 
266       const Mangled &mangled = symbol->GetMangled();
267       entry.cstring = mangled.GetMangledName();
268       if (entry.cstring) {
269         m_name_to_index.Append(entry);
270 
271         if (symbol->ContainsLinkerAnnotations()) {
272           // If the symbol has linker annotations, also add the version without
273           // the annotations.
274           entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
275                                         entry.cstring.GetStringRef()));
276           m_name_to_index.Append(entry);
277         }
278 
279         const SymbolType symbol_type = symbol->GetType();
280         if (symbol_type == eSymbolTypeCode ||
281             symbol_type == eSymbolTypeResolver) {
282           llvm::StringRef entry_ref(entry.cstring.GetStringRef());
283           if (entry_ref[0] == '_' && entry_ref[1] == 'Z' &&
284               (entry_ref[2] != 'T' && // avoid virtual table, VTT structure,
285                                       // typeinfo structure, and typeinfo
286                                       // name
287                entry_ref[2] != 'G' && // avoid guard variables
288                entry_ref[2] != 'Z'))  // named local entities (if we
289                                           // eventually handle eSymbolTypeData,
290                                           // we will want this back)
291           {
292             CPlusPlusLanguage::MethodName cxx_method(
293                 mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus));
294             entry.cstring = ConstString(cxx_method.GetBasename());
295             if (entry.cstring) {
296               // ConstString objects permanently store the string in the pool so
297               // calling
298               // GetCString() on the value gets us a const char * that will
299               // never go away
300               const char *const_context =
301                   ConstString(cxx_method.GetContext()).GetCString();
302 
303               if (!const_context || const_context[0] == 0) {
304                 // No context for this function so this has to be a basename
305                 m_basename_to_index.Append(entry);
306                 // If there is no context (no namespaces or class scopes that
307                 // come before the function name) then this also could be a
308                 // fullname.
309                 m_name_to_index.Append(entry);
310               } else {
311                 entry_ref = entry.cstring.GetStringRef();
312                 if (entry_ref[0] == '~' ||
313                     !cxx_method.GetQualifiers().empty()) {
314                   // The first character of the demangled basename is '~' which
315                   // means we have a class destructor. We can use this information
316                   // to help us know what is a class and what isn't.
317                   if (class_contexts.find(const_context) == class_contexts.end())
318                     class_contexts.insert(const_context);
319                   m_method_to_index.Append(entry);
320                 } else {
321                   if (class_contexts.find(const_context) !=
322                       class_contexts.end()) {
323                     // The current decl context is in our "class_contexts" which
324                     // means
325                     // this is a method on a class
326                     m_method_to_index.Append(entry);
327                   } else {
328                     // We don't know if this is a function basename or a method,
329                     // so put it into a temporary collection so once we are done
330                     // we can look in class_contexts to see if each entry is a
331                     // class
332                     // or just a function and will put any remaining items into
333                     // m_method_to_index or m_basename_to_index as needed
334                     mangled_name_to_index.Append(entry);
335                     symbol_contexts[entry.value] = const_context;
336                   }
337                 }
338               }
339             }
340           }
341         }
342       }
343 
344       entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
345       if (entry.cstring) {
346         m_name_to_index.Append(entry);
347 
348         if (symbol->ContainsLinkerAnnotations()) {
349           // If the symbol has linker annotations, also add the version without
350           // the annotations.
351           entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
352                                         entry.cstring.GetStringRef()));
353           m_name_to_index.Append(entry);
354         }
355       }
356 
357       // If the demangled name turns out to be an ObjC name, and
358       // is a category name, add the version without categories to the index
359       // too.
360       ObjCLanguage::MethodName objc_method(entry.cstring.GetStringRef(), true);
361       if (objc_method.IsValid(true)) {
362         entry.cstring = objc_method.GetSelector();
363         m_selector_to_index.Append(entry);
364 
365         ConstString objc_method_no_category(
366             objc_method.GetFullNameWithoutCategory(true));
367         if (objc_method_no_category) {
368           entry.cstring = objc_method_no_category;
369           m_name_to_index.Append(entry);
370         }
371       }
372     }
373 
374     size_t count;
375     if (!mangled_name_to_index.IsEmpty()) {
376       count = mangled_name_to_index.GetSize();
377       for (size_t i = 0; i < count; ++i) {
378         if (mangled_name_to_index.GetValueAtIndex(i, entry.value)) {
379           entry.cstring = mangled_name_to_index.GetCStringAtIndex(i);
380           if (symbol_contexts[entry.value] &&
381               class_contexts.find(symbol_contexts[entry.value]) !=
382                   class_contexts.end()) {
383             m_method_to_index.Append(entry);
384           } else {
385             // If we got here, we have something that had a context (was inside
386             // a namespace or class)
387             // yet we don't know if the entry
388             m_method_to_index.Append(entry);
389             m_basename_to_index.Append(entry);
390           }
391         }
392       }
393     }
394     m_name_to_index.Sort();
395     m_name_to_index.SizeToFit();
396     m_selector_to_index.Sort();
397     m_selector_to_index.SizeToFit();
398     m_basename_to_index.Sort();
399     m_basename_to_index.SizeToFit();
400     m_method_to_index.Sort();
401     m_method_to_index.SizeToFit();
402 
403     //        static StreamFile a ("/tmp/a.txt");
404     //
405     //        count = m_basename_to_index.GetSize();
406     //        if (count)
407     //        {
408     //            for (size_t i=0; i<count; ++i)
409     //            {
410     //                if (m_basename_to_index.GetValueAtIndex(i, entry.value))
411     //                    a.Printf ("%s BASENAME\n",
412     //                    m_symbols[entry.value].GetMangled().GetName().GetCString());
413     //            }
414     //        }
415     //        count = m_method_to_index.GetSize();
416     //        if (count)
417     //        {
418     //            for (size_t i=0; i<count; ++i)
419     //            {
420     //                if (m_method_to_index.GetValueAtIndex(i, entry.value))
421     //                    a.Printf ("%s METHOD\n",
422     //                    m_symbols[entry.value].GetMangled().GetName().GetCString());
423     //            }
424     //        }
425   }
426 }
427 
428 void Symtab::PreloadSymbols() {
429   std::lock_guard<std::recursive_mutex> guard(m_mutex);
430   InitNameIndexes();
431 }
432 
433 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
434                                     bool add_demangled, bool add_mangled,
435                                     NameToIndexMap &name_to_index_map) const {
436   if (add_demangled || add_mangled) {
437     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
438     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
439     std::lock_guard<std::recursive_mutex> guard(m_mutex);
440 
441     // Create the name index vector to be able to quickly search by name
442     NameToIndexMap::Entry entry;
443     const size_t num_indexes = indexes.size();
444     for (size_t i = 0; i < num_indexes; ++i) {
445       entry.value = indexes[i];
446       assert(i < m_symbols.size());
447       const Symbol *symbol = &m_symbols[entry.value];
448 
449       const Mangled &mangled = symbol->GetMangled();
450       if (add_demangled) {
451         entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
452         if (entry.cstring)
453           name_to_index_map.Append(entry);
454       }
455 
456       if (add_mangled) {
457         entry.cstring = mangled.GetMangledName();
458         if (entry.cstring)
459           name_to_index_map.Append(entry);
460       }
461     }
462   }
463 }
464 
465 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
466                                              std::vector<uint32_t> &indexes,
467                                              uint32_t start_idx,
468                                              uint32_t end_index) const {
469   std::lock_guard<std::recursive_mutex> guard(m_mutex);
470 
471   uint32_t prev_size = indexes.size();
472 
473   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
474 
475   for (uint32_t i = start_idx; i < count; ++i) {
476     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
477       indexes.push_back(i);
478   }
479 
480   return indexes.size() - prev_size;
481 }
482 
483 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
484     SymbolType symbol_type, uint32_t flags_value,
485     std::vector<uint32_t> &indexes, uint32_t start_idx,
486     uint32_t end_index) const {
487   std::lock_guard<std::recursive_mutex> guard(m_mutex);
488 
489   uint32_t prev_size = indexes.size();
490 
491   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
492 
493   for (uint32_t i = start_idx; i < count; ++i) {
494     if ((symbol_type == eSymbolTypeAny ||
495          m_symbols[i].GetType() == symbol_type) &&
496         m_symbols[i].GetFlags() == flags_value)
497       indexes.push_back(i);
498   }
499 
500   return indexes.size() - prev_size;
501 }
502 
503 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
504                                              Debug symbol_debug_type,
505                                              Visibility symbol_visibility,
506                                              std::vector<uint32_t> &indexes,
507                                              uint32_t start_idx,
508                                              uint32_t end_index) const {
509   std::lock_guard<std::recursive_mutex> guard(m_mutex);
510 
511   uint32_t prev_size = indexes.size();
512 
513   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
514 
515   for (uint32_t i = start_idx; i < count; ++i) {
516     if (symbol_type == eSymbolTypeAny ||
517         m_symbols[i].GetType() == symbol_type) {
518       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
519         indexes.push_back(i);
520     }
521   }
522 
523   return indexes.size() - prev_size;
524 }
525 
526 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
527   if (!m_symbols.empty()) {
528     const Symbol *first_symbol = &m_symbols[0];
529     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
530       return symbol - first_symbol;
531   }
532   return UINT32_MAX;
533 }
534 
535 struct SymbolSortInfo {
536   const bool sort_by_load_addr;
537   const Symbol *symbols;
538 };
539 
540 namespace {
541 struct SymbolIndexComparator {
542   const std::vector<Symbol> &symbols;
543   std::vector<lldb::addr_t> &addr_cache;
544 
545   // Getting from the symbol to the Address to the File Address involves some
546   // work.
547   // Since there are potentially many symbols here, and we're using this for
548   // sorting so
549   // we're going to be computing the address many times, cache that in
550   // addr_cache.
551   // The array passed in has to be the same size as the symbols array passed
552   // into the
553   // member variable symbols, and should be initialized with
554   // LLDB_INVALID_ADDRESS.
555   // NOTE: You have to make addr_cache externally and pass it in because
556   // std::stable_sort
557   // makes copies of the comparator it is initially passed in, and you end up
558   // spending
559   // huge amounts of time copying this array...
560 
561   SymbolIndexComparator(const std::vector<Symbol> &s,
562                         std::vector<lldb::addr_t> &a)
563       : symbols(s), addr_cache(a) {
564     assert(symbols.size() == addr_cache.size());
565   }
566   bool operator()(uint32_t index_a, uint32_t index_b) {
567     addr_t value_a = addr_cache[index_a];
568     if (value_a == LLDB_INVALID_ADDRESS) {
569       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
570       addr_cache[index_a] = value_a;
571     }
572 
573     addr_t value_b = addr_cache[index_b];
574     if (value_b == LLDB_INVALID_ADDRESS) {
575       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
576       addr_cache[index_b] = value_b;
577     }
578 
579     if (value_a == value_b) {
580       // The if the values are equal, use the original symbol user ID
581       lldb::user_id_t uid_a = symbols[index_a].GetID();
582       lldb::user_id_t uid_b = symbols[index_b].GetID();
583       if (uid_a < uid_b)
584         return true;
585       if (uid_a > uid_b)
586         return false;
587       return false;
588     } else if (value_a < value_b)
589       return true;
590 
591     return false;
592   }
593 };
594 }
595 
596 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
597                                       bool remove_duplicates) const {
598   std::lock_guard<std::recursive_mutex> guard(m_mutex);
599 
600   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
601   Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION);
602   // No need to sort if we have zero or one items...
603   if (indexes.size() <= 1)
604     return;
605 
606   // Sort the indexes in place using std::stable_sort.
607   // NOTE: The use of std::stable_sort instead of std::sort here is strictly for
608   // performance,
609   // not correctness.  The indexes vector tends to be "close" to sorted, which
610   // the
611   // stable sort handles better.
612 
613   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
614 
615   SymbolIndexComparator comparator(m_symbols, addr_cache);
616   std::stable_sort(indexes.begin(), indexes.end(), comparator);
617 
618   // Remove any duplicates if requested
619   if (remove_duplicates) {
620     auto last = std::unique(indexes.begin(), indexes.end());
621     indexes.erase(last, indexes.end());
622   }
623 }
624 
625 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name,
626                                              std::vector<uint32_t> &indexes) {
627   std::lock_guard<std::recursive_mutex> guard(m_mutex);
628 
629   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
630   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
631   if (symbol_name) {
632     if (!m_name_indexes_computed)
633       InitNameIndexes();
634 
635     return m_name_to_index.GetValues(symbol_name, indexes);
636   }
637   return 0;
638 }
639 
640 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name,
641                                              Debug symbol_debug_type,
642                                              Visibility symbol_visibility,
643                                              std::vector<uint32_t> &indexes) {
644   std::lock_guard<std::recursive_mutex> guard(m_mutex);
645 
646   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
647   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
648   if (symbol_name) {
649     const size_t old_size = indexes.size();
650     if (!m_name_indexes_computed)
651       InitNameIndexes();
652 
653     std::vector<uint32_t> all_name_indexes;
654     const size_t name_match_count =
655         m_name_to_index.GetValues(symbol_name, all_name_indexes);
656     for (size_t i = 0; i < name_match_count; ++i) {
657       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
658                              symbol_visibility))
659         indexes.push_back(all_name_indexes[i]);
660     }
661     return indexes.size() - old_size;
662   }
663   return 0;
664 }
665 
666 uint32_t
667 Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name,
668                                            SymbolType symbol_type,
669                                            std::vector<uint32_t> &indexes) {
670   std::lock_guard<std::recursive_mutex> guard(m_mutex);
671 
672   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
673     std::vector<uint32_t>::iterator pos = indexes.begin();
674     while (pos != indexes.end()) {
675       if (symbol_type == eSymbolTypeAny ||
676           m_symbols[*pos].GetType() == symbol_type)
677         ++pos;
678       else
679         pos = indexes.erase(pos);
680     }
681   }
682   return indexes.size();
683 }
684 
685 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
686     const ConstString &symbol_name, SymbolType symbol_type,
687     Debug symbol_debug_type, Visibility symbol_visibility,
688     std::vector<uint32_t> &indexes) {
689   std::lock_guard<std::recursive_mutex> guard(m_mutex);
690 
691   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
692                                   symbol_visibility, indexes) > 0) {
693     std::vector<uint32_t>::iterator pos = indexes.begin();
694     while (pos != indexes.end()) {
695       if (symbol_type == eSymbolTypeAny ||
696           m_symbols[*pos].GetType() == symbol_type)
697         ++pos;
698       else
699         pos = indexes.erase(pos);
700     }
701   }
702   return indexes.size();
703 }
704 
705 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
706     const RegularExpression &regexp, SymbolType symbol_type,
707     std::vector<uint32_t> &indexes) {
708   std::lock_guard<std::recursive_mutex> guard(m_mutex);
709 
710   uint32_t prev_size = indexes.size();
711   uint32_t sym_end = m_symbols.size();
712 
713   for (uint32_t i = 0; i < sym_end; i++) {
714     if (symbol_type == eSymbolTypeAny ||
715         m_symbols[i].GetType() == symbol_type) {
716       const char *name = m_symbols[i].GetName().AsCString();
717       if (name) {
718         if (regexp.Execute(name))
719           indexes.push_back(i);
720       }
721     }
722   }
723   return indexes.size() - prev_size;
724 }
725 
726 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
727     const RegularExpression &regexp, SymbolType symbol_type,
728     Debug symbol_debug_type, Visibility symbol_visibility,
729     std::vector<uint32_t> &indexes) {
730   std::lock_guard<std::recursive_mutex> guard(m_mutex);
731 
732   uint32_t prev_size = indexes.size();
733   uint32_t sym_end = m_symbols.size();
734 
735   for (uint32_t i = 0; i < sym_end; i++) {
736     if (symbol_type == eSymbolTypeAny ||
737         m_symbols[i].GetType() == symbol_type) {
738       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false)
739         continue;
740 
741       const char *name = m_symbols[i].GetName().AsCString();
742       if (name) {
743         if (regexp.Execute(name))
744           indexes.push_back(i);
745       }
746     }
747   }
748   return indexes.size() - prev_size;
749 }
750 
751 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
752                                    Debug symbol_debug_type,
753                                    Visibility symbol_visibility,
754                                    uint32_t &start_idx) {
755   std::lock_guard<std::recursive_mutex> guard(m_mutex);
756 
757   const size_t count = m_symbols.size();
758   for (size_t idx = start_idx; idx < count; ++idx) {
759     if (symbol_type == eSymbolTypeAny ||
760         m_symbols[idx].GetType() == symbol_type) {
761       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
762         start_idx = idx;
763         return &m_symbols[idx];
764       }
765     }
766   }
767   return nullptr;
768 }
769 
770 size_t
771 Symtab::FindAllSymbolsWithNameAndType(const ConstString &name,
772                                       SymbolType symbol_type,
773                                       std::vector<uint32_t> &symbol_indexes) {
774   std::lock_guard<std::recursive_mutex> guard(m_mutex);
775 
776   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
777   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
778   // Initialize all of the lookup by name indexes before converting NAME
779   // to a uniqued string NAME_STR below.
780   if (!m_name_indexes_computed)
781     InitNameIndexes();
782 
783   if (name) {
784     // The string table did have a string that matched, but we need
785     // to check the symbols and match the symbol_type if any was given.
786     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
787   }
788   return symbol_indexes.size();
789 }
790 
791 size_t Symtab::FindAllSymbolsWithNameAndType(
792     const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type,
793     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
794   std::lock_guard<std::recursive_mutex> guard(m_mutex);
795 
796   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
797   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
798   // Initialize all of the lookup by name indexes before converting NAME
799   // to a uniqued string NAME_STR below.
800   if (!m_name_indexes_computed)
801     InitNameIndexes();
802 
803   if (name) {
804     // The string table did have a string that matched, but we need
805     // to check the symbols and match the symbol_type if any was given.
806     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
807                                        symbol_visibility, symbol_indexes);
808   }
809   return symbol_indexes.size();
810 }
811 
812 size_t Symtab::FindAllSymbolsMatchingRexExAndType(
813     const RegularExpression &regex, SymbolType symbol_type,
814     Debug symbol_debug_type, Visibility symbol_visibility,
815     std::vector<uint32_t> &symbol_indexes) {
816   std::lock_guard<std::recursive_mutex> guard(m_mutex);
817 
818   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
819                                           symbol_visibility, symbol_indexes);
820   return symbol_indexes.size();
821 }
822 
823 Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name,
824                                                SymbolType symbol_type,
825                                                Debug symbol_debug_type,
826                                                Visibility symbol_visibility) {
827   std::lock_guard<std::recursive_mutex> guard(m_mutex);
828 
829   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
830   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
831   if (!m_name_indexes_computed)
832     InitNameIndexes();
833 
834   if (name) {
835     std::vector<uint32_t> matching_indexes;
836     // The string table did have a string that matched, but we need
837     // to check the symbols and match the symbol_type if any was given.
838     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
839                                            symbol_visibility,
840                                            matching_indexes)) {
841       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
842       for (pos = matching_indexes.begin(); pos != end; ++pos) {
843         Symbol *symbol = SymbolAtIndex(*pos);
844 
845         if (symbol->Compare(name, symbol_type))
846           return symbol;
847       }
848     }
849   }
850   return nullptr;
851 }
852 
853 typedef struct {
854   const Symtab *symtab;
855   const addr_t file_addr;
856   Symbol *match_symbol;
857   const uint32_t *match_index_ptr;
858   addr_t match_offset;
859 } SymbolSearchInfo;
860 
861 // Add all the section file start address & size to the RangeVector,
862 // recusively adding any children sections.
863 static void AddSectionsToRangeMap(SectionList *sectlist,
864                                   RangeVector<addr_t, addr_t> &section_ranges) {
865   const int num_sections = sectlist->GetNumSections(0);
866   for (int i = 0; i < num_sections; i++) {
867     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
868     if (sect_sp) {
869       SectionList &child_sectlist = sect_sp->GetChildren();
870 
871       // If this section has children, add the children to the RangeVector.
872       // Else add this section to the RangeVector.
873       if (child_sectlist.GetNumSections(0) > 0) {
874         AddSectionsToRangeMap(&child_sectlist, section_ranges);
875       } else {
876         size_t size = sect_sp->GetByteSize();
877         if (size > 0) {
878           addr_t base_addr = sect_sp->GetFileAddress();
879           RangeVector<addr_t, addr_t>::Entry entry;
880           entry.SetRangeBase(base_addr);
881           entry.SetByteSize(size);
882           section_ranges.Append(entry);
883         }
884       }
885     }
886   }
887 }
888 
889 void Symtab::InitAddressIndexes() {
890   // Protected function, no need to lock mutex...
891   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
892     m_file_addr_to_index_computed = true;
893 
894     FileRangeToIndexMap::Entry entry;
895     const_iterator begin = m_symbols.begin();
896     const_iterator end = m_symbols.end();
897     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
898       if (pos->ValueIsAddress()) {
899         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
900         entry.SetByteSize(pos->GetByteSize());
901         entry.data = std::distance(begin, pos);
902         m_file_addr_to_index.Append(entry);
903       }
904     }
905     const size_t num_entries = m_file_addr_to_index.GetSize();
906     if (num_entries > 0) {
907       m_file_addr_to_index.Sort();
908 
909       // Create a RangeVector with the start & size of all the sections for
910       // this objfile.  We'll need to check this for any FileRangeToIndexMap
911       // entries with an uninitialized size, which could potentially be a
912       // large number so reconstituting the weak pointer is busywork when it
913       // is invariant information.
914       SectionList *sectlist = m_objfile->GetSectionList();
915       RangeVector<addr_t, addr_t> section_ranges;
916       if (sectlist) {
917         AddSectionsToRangeMap(sectlist, section_ranges);
918         section_ranges.Sort();
919       }
920 
921       // Iterate through the FileRangeToIndexMap and fill in the size for any
922       // entries that didn't already have a size from the Symbol (e.g. if we
923       // have a plain linker symbol with an address only, instead of debug info
924       // where we get an address and a size and a type, etc.)
925       for (size_t i = 0; i < num_entries; i++) {
926         FileRangeToIndexMap::Entry *entry =
927             m_file_addr_to_index.GetMutableEntryAtIndex(i);
928         if (entry->GetByteSize() == 0) {
929           addr_t curr_base_addr = entry->GetRangeBase();
930           const RangeVector<addr_t, addr_t>::Entry *containing_section =
931               section_ranges.FindEntryThatContains(curr_base_addr);
932 
933           // Use the end of the section as the default max size of the symbol
934           addr_t sym_size = 0;
935           if (containing_section) {
936             sym_size =
937                 containing_section->GetByteSize() -
938                 (entry->GetRangeBase() - containing_section->GetRangeBase());
939           }
940 
941           for (size_t j = i; j < num_entries; j++) {
942             FileRangeToIndexMap::Entry *next_entry =
943                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
944             addr_t next_base_addr = next_entry->GetRangeBase();
945             if (next_base_addr > curr_base_addr) {
946               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
947 
948               // Take the difference between this symbol and the next one as its
949               // size,
950               // if it is less than the size of the section.
951               if (sym_size == 0 || size_to_next_symbol < sym_size) {
952                 sym_size = size_to_next_symbol;
953               }
954               break;
955             }
956           }
957 
958           if (sym_size > 0) {
959             entry->SetByteSize(sym_size);
960             Symbol &symbol = m_symbols[entry->data];
961             symbol.SetByteSize(sym_size);
962             symbol.SetSizeIsSynthesized(true);
963           }
964         }
965       }
966 
967       // Sort again in case the range size changes the ordering
968       m_file_addr_to_index.Sort();
969     }
970   }
971 }
972 
973 void Symtab::CalculateSymbolSizes() {
974   std::lock_guard<std::recursive_mutex> guard(m_mutex);
975 
976   if (!m_symbols.empty()) {
977     if (!m_file_addr_to_index_computed)
978       InitAddressIndexes();
979 
980     const size_t num_entries = m_file_addr_to_index.GetSize();
981 
982     for (size_t i = 0; i < num_entries; ++i) {
983       // The entries in the m_file_addr_to_index have calculated the sizes
984       // already
985       // so we will use this size if we need to.
986       const FileRangeToIndexMap::Entry &entry =
987           m_file_addr_to_index.GetEntryRef(i);
988 
989       Symbol &symbol = m_symbols[entry.data];
990 
991       // If the symbol size is already valid, no need to do anything
992       if (symbol.GetByteSizeIsValid())
993         continue;
994 
995       const addr_t range_size = entry.GetByteSize();
996       if (range_size > 0) {
997         symbol.SetByteSize(range_size);
998         symbol.SetSizeIsSynthesized(true);
999       }
1000     }
1001   }
1002 }
1003 
1004 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1005   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1006   if (!m_file_addr_to_index_computed)
1007     InitAddressIndexes();
1008 
1009   const FileRangeToIndexMap::Entry *entry =
1010       m_file_addr_to_index.FindEntryStartsAt(file_addr);
1011   if (entry) {
1012     Symbol *symbol = SymbolAtIndex(entry->data);
1013     if (symbol->GetFileAddress() == file_addr)
1014       return symbol;
1015   }
1016   return nullptr;
1017 }
1018 
1019 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1020   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1021 
1022   if (!m_file_addr_to_index_computed)
1023     InitAddressIndexes();
1024 
1025   const FileRangeToIndexMap::Entry *entry =
1026       m_file_addr_to_index.FindEntryThatContains(file_addr);
1027   if (entry) {
1028     Symbol *symbol = SymbolAtIndex(entry->data);
1029     if (symbol->ContainsFileAddress(file_addr))
1030       return symbol;
1031   }
1032   return nullptr;
1033 }
1034 
1035 void Symtab::ForEachSymbolContainingFileAddress(
1036     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1037   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1038 
1039   if (!m_file_addr_to_index_computed)
1040     InitAddressIndexes();
1041 
1042   std::vector<uint32_t> all_addr_indexes;
1043 
1044   // Get all symbols with file_addr
1045   const size_t addr_match_count =
1046       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1047                                                        all_addr_indexes);
1048 
1049   for (size_t i = 0; i < addr_match_count; ++i) {
1050     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1051     if (symbol->ContainsFileAddress(file_addr)) {
1052       if (!callback(symbol))
1053         break;
1054     }
1055   }
1056 }
1057 
1058 void Symtab::SymbolIndicesToSymbolContextList(
1059     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1060   // No need to protect this call using m_mutex all other method calls are
1061   // already thread safe.
1062 
1063   const bool merge_symbol_into_function = true;
1064   size_t num_indices = symbol_indexes.size();
1065   if (num_indices > 0) {
1066     SymbolContext sc;
1067     sc.module_sp = m_objfile->GetModule();
1068     for (size_t i = 0; i < num_indices; i++) {
1069       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1070       if (sc.symbol)
1071         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1072     }
1073   }
1074 }
1075 
1076 size_t Symtab::FindFunctionSymbols(const ConstString &name,
1077                                    uint32_t name_type_mask,
1078                                    SymbolContextList &sc_list) {
1079   size_t count = 0;
1080   std::vector<uint32_t> symbol_indexes;
1081 
1082   // eFunctionNameTypeAuto should be pre-resolved by a call to
1083   // Module::LookupInfo::LookupInfo()
1084   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1085 
1086   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1087     std::vector<uint32_t> temp_symbol_indexes;
1088     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1089 
1090     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1091     if (temp_symbol_indexes_size > 0) {
1092       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1093       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1094         SymbolContext sym_ctx;
1095         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1096         if (sym_ctx.symbol) {
1097           switch (sym_ctx.symbol->GetType()) {
1098           case eSymbolTypeCode:
1099           case eSymbolTypeResolver:
1100           case eSymbolTypeReExported:
1101             symbol_indexes.push_back(temp_symbol_indexes[i]);
1102             break;
1103           default:
1104             break;
1105           }
1106         }
1107       }
1108     }
1109   }
1110 
1111   if (name_type_mask & eFunctionNameTypeBase) {
1112     // From mangled names we can't tell what is a basename and what
1113     // is a method name, so we just treat them the same
1114     if (!m_name_indexes_computed)
1115       InitNameIndexes();
1116 
1117     if (!m_basename_to_index.IsEmpty()) {
1118       const UniqueCStringMap<uint32_t>::Entry *match;
1119       for (match = m_basename_to_index.FindFirstValueForName(name);
1120            match != nullptr;
1121            match = m_basename_to_index.FindNextValueForName(match)) {
1122         symbol_indexes.push_back(match->value);
1123       }
1124     }
1125   }
1126 
1127   if (name_type_mask & eFunctionNameTypeMethod) {
1128     if (!m_name_indexes_computed)
1129       InitNameIndexes();
1130 
1131     if (!m_method_to_index.IsEmpty()) {
1132       const UniqueCStringMap<uint32_t>::Entry *match;
1133       for (match = m_method_to_index.FindFirstValueForName(name);
1134            match != nullptr;
1135            match = m_method_to_index.FindNextValueForName(match)) {
1136         symbol_indexes.push_back(match->value);
1137       }
1138     }
1139   }
1140 
1141   if (name_type_mask & eFunctionNameTypeSelector) {
1142     if (!m_name_indexes_computed)
1143       InitNameIndexes();
1144 
1145     if (!m_selector_to_index.IsEmpty()) {
1146       const UniqueCStringMap<uint32_t>::Entry *match;
1147       for (match = m_selector_to_index.FindFirstValueForName(name);
1148            match != nullptr;
1149            match = m_selector_to_index.FindNextValueForName(match)) {
1150         symbol_indexes.push_back(match->value);
1151       }
1152     }
1153   }
1154 
1155   if (!symbol_indexes.empty()) {
1156     std::sort(symbol_indexes.begin(), symbol_indexes.end());
1157     symbol_indexes.erase(
1158         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1159         symbol_indexes.end());
1160     count = symbol_indexes.size();
1161     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1162   }
1163 
1164   return count;
1165 }
1166 
1167 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1168   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1169   if (child_idx != UINT32_MAX && child_idx > 0) {
1170     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1171       const Symbol *symbol = SymbolAtIndex(idx);
1172       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1173       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1174         return symbol;
1175     }
1176   }
1177   return NULL;
1178 }
1179