1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include <map> 11 #include <set> 12 13 #include "Plugins/Language/ObjC/ObjCLanguage.h" 14 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/RichManglingContext.h" 17 #include "lldb/Core/STLUtils.h" 18 #include "lldb/Core/Section.h" 19 #include "lldb/Symbol/ObjectFile.h" 20 #include "lldb/Symbol/Symbol.h" 21 #include "lldb/Symbol/SymbolContext.h" 22 #include "lldb/Symbol/Symtab.h" 23 #include "lldb/Utility/RegularExpression.h" 24 #include "lldb/Utility/Stream.h" 25 #include "lldb/Utility/Timer.h" 26 27 #include "llvm/ADT/StringRef.h" 28 29 using namespace lldb; 30 using namespace lldb_private; 31 32 Symtab::Symtab(ObjectFile *objfile) 33 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(), 34 m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), 35 m_name_indexes_computed(false) {} 36 37 Symtab::~Symtab() {} 38 39 void Symtab::Reserve(size_t count) { 40 // Clients should grab the mutex from this symbol table and lock it manually 41 // when calling this function to avoid performance issues. 42 m_symbols.reserve(count); 43 } 44 45 Symbol *Symtab::Resize(size_t count) { 46 // Clients should grab the mutex from this symbol table and lock it manually 47 // when calling this function to avoid performance issues. 48 m_symbols.resize(count); 49 return m_symbols.empty() ? nullptr : &m_symbols[0]; 50 } 51 52 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 53 // Clients should grab the mutex from this symbol table and lock it manually 54 // when calling this function to avoid performance issues. 55 uint32_t symbol_idx = m_symbols.size(); 56 m_name_to_index.Clear(); 57 m_file_addr_to_index.Clear(); 58 m_symbols.push_back(symbol); 59 m_file_addr_to_index_computed = false; 60 m_name_indexes_computed = false; 61 return symbol_idx; 62 } 63 64 size_t Symtab::GetNumSymbols() const { 65 std::lock_guard<std::recursive_mutex> guard(m_mutex); 66 return m_symbols.size(); 67 } 68 69 void Symtab::SectionFileAddressesChanged() { 70 m_name_to_index.Clear(); 71 m_file_addr_to_index_computed = false; 72 } 73 74 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) { 75 std::lock_guard<std::recursive_mutex> guard(m_mutex); 76 77 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 78 s->Indent(); 79 const FileSpec &file_spec = m_objfile->GetFileSpec(); 80 const char *object_name = nullptr; 81 if (m_objfile->GetModule()) 82 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 83 84 if (file_spec) 85 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 86 file_spec.GetPath().c_str(), object_name ? "(" : "", 87 object_name ? object_name : "", object_name ? ")" : "", 88 (uint64_t)m_symbols.size()); 89 else 90 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 91 92 if (!m_symbols.empty()) { 93 switch (sort_order) { 94 case eSortOrderNone: { 95 s->PutCString(":\n"); 96 DumpSymbolHeader(s); 97 const_iterator begin = m_symbols.begin(); 98 const_iterator end = m_symbols.end(); 99 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 100 s->Indent(); 101 pos->Dump(s, target, std::distance(begin, pos)); 102 } 103 } break; 104 105 case eSortOrderByName: { 106 // Although we maintain a lookup by exact name map, the table isn't 107 // sorted by name. So we must make the ordered symbol list up ourselves. 108 s->PutCString(" (sorted by name):\n"); 109 DumpSymbolHeader(s); 110 typedef std::multimap<const char *, const Symbol *, 111 CStringCompareFunctionObject> 112 CStringToSymbol; 113 CStringToSymbol name_map; 114 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 115 pos != end; ++pos) { 116 const char *name = pos->GetName().AsCString(); 117 if (name && name[0]) 118 name_map.insert(std::make_pair(name, &(*pos))); 119 } 120 121 for (CStringToSymbol::const_iterator pos = name_map.begin(), 122 end = name_map.end(); 123 pos != end; ++pos) { 124 s->Indent(); 125 pos->second->Dump(s, target, pos->second - &m_symbols[0]); 126 } 127 } break; 128 129 case eSortOrderByAddress: 130 s->PutCString(" (sorted by address):\n"); 131 DumpSymbolHeader(s); 132 if (!m_file_addr_to_index_computed) 133 InitAddressIndexes(); 134 const size_t num_entries = m_file_addr_to_index.GetSize(); 135 for (size_t i = 0; i < num_entries; ++i) { 136 s->Indent(); 137 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 138 m_symbols[symbol_idx].Dump(s, target, symbol_idx); 139 } 140 break; 141 } 142 } else { 143 s->PutCString("\n"); 144 } 145 } 146 147 void Symtab::Dump(Stream *s, Target *target, 148 std::vector<uint32_t> &indexes) const { 149 std::lock_guard<std::recursive_mutex> guard(m_mutex); 150 151 const size_t num_symbols = GetNumSymbols(); 152 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 153 s->Indent(); 154 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 155 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 156 s->IndentMore(); 157 158 if (!indexes.empty()) { 159 std::vector<uint32_t>::const_iterator pos; 160 std::vector<uint32_t>::const_iterator end = indexes.end(); 161 DumpSymbolHeader(s); 162 for (pos = indexes.begin(); pos != end; ++pos) { 163 size_t idx = *pos; 164 if (idx < num_symbols) { 165 s->Indent(); 166 m_symbols[idx].Dump(s, target, idx); 167 } 168 } 169 } 170 s->IndentLess(); 171 } 172 173 void Symtab::DumpSymbolHeader(Stream *s) { 174 s->Indent(" Debug symbol\n"); 175 s->Indent(" |Synthetic symbol\n"); 176 s->Indent(" ||Externally Visible\n"); 177 s->Indent(" |||\n"); 178 s->Indent("Index UserID DSX Type File Address/Value Load " 179 "Address Size Flags Name\n"); 180 s->Indent("------- ------ --- --------------- ------------------ " 181 "------------------ ------------------ ---------- " 182 "----------------------------------\n"); 183 } 184 185 static int CompareSymbolID(const void *key, const void *p) { 186 const user_id_t match_uid = *(const user_id_t *)key; 187 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 188 if (match_uid < symbol_uid) 189 return -1; 190 if (match_uid > symbol_uid) 191 return 1; 192 return 0; 193 } 194 195 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 196 std::lock_guard<std::recursive_mutex> guard(m_mutex); 197 198 Symbol *symbol = 199 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 200 sizeof(m_symbols[0]), CompareSymbolID); 201 return symbol; 202 } 203 204 Symbol *Symtab::SymbolAtIndex(size_t idx) { 205 // Clients should grab the mutex from this symbol table and lock it manually 206 // when calling this function to avoid performance issues. 207 if (idx < m_symbols.size()) 208 return &m_symbols[idx]; 209 return nullptr; 210 } 211 212 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 213 // Clients should grab the mutex from this symbol table and lock it manually 214 // when calling this function to avoid performance issues. 215 if (idx < m_symbols.size()) 216 return &m_symbols[idx]; 217 return nullptr; 218 } 219 220 //---------------------------------------------------------------------- 221 // InitNameIndexes 222 //---------------------------------------------------------------------- 223 static bool lldb_skip_name(llvm::StringRef mangled, 224 Mangled::ManglingScheme scheme) { 225 switch (scheme) { 226 case Mangled::eManglingSchemeItanium: { 227 if (mangled.size() < 3 || !mangled.startswith("_Z")) 228 return true; 229 230 // Avoid the following types of symbols in the index. 231 switch (mangled[2]) { 232 case 'G': // guard variables 233 case 'T': // virtual tables, VTT structures, typeinfo structures + names 234 case 'Z': // named local entities (if we eventually handle 235 // eSymbolTypeData, we will want this back) 236 return true; 237 238 default: 239 break; 240 } 241 242 // Include this name in the index. 243 return false; 244 } 245 246 // No filters for this scheme yet. Include all names in indexing. 247 case Mangled::eManglingSchemeMSVC: 248 return false; 249 250 // Don't try and demangle things we can't categorize. 251 case Mangled::eManglingSchemeNone: 252 return true; 253 } 254 llvm_unreachable("unknown scheme!"); 255 } 256 257 void Symtab::InitNameIndexes() { 258 // Protected function, no need to lock mutex... 259 if (!m_name_indexes_computed) { 260 m_name_indexes_computed = true; 261 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 262 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 263 // Create the name index vector to be able to quickly search by name 264 const size_t num_symbols = m_symbols.size(); 265 #if 1 266 m_name_to_index.Reserve(num_symbols); 267 #else 268 // TODO: benchmark this to see if we save any memory. Otherwise we 269 // will always keep the memory reserved in the vector unless we pull some 270 // STL swap magic and then recopy... 271 uint32_t actual_count = 0; 272 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 273 pos != end; ++pos) { 274 const Mangled &mangled = pos->GetMangled(); 275 if (mangled.GetMangledName()) 276 ++actual_count; 277 278 if (mangled.GetDemangledName()) 279 ++actual_count; 280 } 281 282 m_name_to_index.Reserve(actual_count); 283 #endif 284 285 // The "const char *" in "class_contexts" and backlog::value_type::second 286 // must come from a ConstString::GetCString() 287 std::set<const char *> class_contexts; 288 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 289 backlog.reserve(num_symbols / 2); 290 291 // Instantiation of the demangler is expensive, so better use a single one 292 // for all entries during batch processing. 293 RichManglingContext rmc; 294 NameToIndexMap::Entry entry; 295 296 for (entry.value = 0; entry.value < num_symbols; ++entry.value) { 297 Symbol *symbol = &m_symbols[entry.value]; 298 299 // Don't let trampolines get into the lookup by name map If we ever need 300 // the trampoline symbols to be searchable by name we can remove this and 301 // then possibly add a new bool to any of the Symtab functions that 302 // lookup symbols by name to indicate if they want trampolines. 303 if (symbol->IsTrampoline()) 304 continue; 305 306 // If the symbol's name string matched a Mangled::ManglingScheme, it is 307 // stored in the mangled field. 308 Mangled &mangled = symbol->GetMangled(); 309 entry.cstring = mangled.GetMangledName(); 310 if (entry.cstring) { 311 m_name_to_index.Append(entry); 312 313 if (symbol->ContainsLinkerAnnotations()) { 314 // If the symbol has linker annotations, also add the version without 315 // the annotations. 316 entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( 317 entry.cstring.GetStringRef())); 318 m_name_to_index.Append(entry); 319 } 320 321 const SymbolType type = symbol->GetType(); 322 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 323 if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name)) 324 RegisterMangledNameEntry(entry, class_contexts, backlog, rmc); 325 } 326 } 327 328 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 329 // stored in the demangled field. 330 entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()); 331 if (entry.cstring) { 332 m_name_to_index.Append(entry); 333 334 if (symbol->ContainsLinkerAnnotations()) { 335 // If the symbol has linker annotations, also add the version without 336 // the annotations. 337 entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( 338 entry.cstring.GetStringRef())); 339 m_name_to_index.Append(entry); 340 } 341 } 342 343 // If the demangled name turns out to be an ObjC name, and is a category 344 // name, add the version without categories to the index too. 345 ObjCLanguage::MethodName objc_method(entry.cstring.GetStringRef(), true); 346 if (objc_method.IsValid(true)) { 347 entry.cstring = objc_method.GetSelector(); 348 m_selector_to_index.Append(entry); 349 350 ConstString objc_method_no_category( 351 objc_method.GetFullNameWithoutCategory(true)); 352 if (objc_method_no_category) { 353 entry.cstring = objc_method_no_category; 354 m_name_to_index.Append(entry); 355 } 356 } 357 } 358 359 for (const auto &record : backlog) { 360 RegisterBacklogEntry(record.first, record.second, class_contexts); 361 } 362 363 m_name_to_index.Sort(); 364 m_name_to_index.SizeToFit(); 365 m_selector_to_index.Sort(); 366 m_selector_to_index.SizeToFit(); 367 m_basename_to_index.Sort(); 368 m_basename_to_index.SizeToFit(); 369 m_method_to_index.Sort(); 370 m_method_to_index.SizeToFit(); 371 } 372 } 373 374 void Symtab::RegisterMangledNameEntry( 375 NameToIndexMap::Entry &entry, std::set<const char *> &class_contexts, 376 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 377 RichManglingContext &rmc) { 378 // Only register functions that have a base name. 379 rmc.ParseFunctionBaseName(); 380 llvm::StringRef base_name = rmc.GetBufferRef(); 381 if (base_name.empty()) 382 return; 383 384 // The base name will be our entry's name. 385 entry.cstring = ConstString(base_name); 386 387 rmc.ParseFunctionDeclContextName(); 388 llvm::StringRef decl_context = rmc.GetBufferRef(); 389 390 // Register functions with no context. 391 if (decl_context.empty()) { 392 // This has to be a basename 393 m_basename_to_index.Append(entry); 394 // If there is no context (no namespaces or class scopes that come before 395 // the function name) then this also could be a fullname. 396 m_name_to_index.Append(entry); 397 return; 398 } 399 400 // Make sure we have a pool-string pointer and see if we already know the 401 // context name. 402 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 403 auto it = class_contexts.find(decl_context_ccstr); 404 405 // Register constructors and destructors. They are methods and create 406 // declaration contexts. 407 if (rmc.IsCtorOrDtor()) { 408 m_method_to_index.Append(entry); 409 if (it == class_contexts.end()) 410 class_contexts.insert(it, decl_context_ccstr); 411 return; 412 } 413 414 // Register regular methods with a known declaration context. 415 if (it != class_contexts.end()) { 416 m_method_to_index.Append(entry); 417 return; 418 } 419 420 // Regular methods in unknown declaration contexts are put to the backlog. We 421 // will revisit them once we processed all remaining symbols. 422 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 423 } 424 425 void Symtab::RegisterBacklogEntry( 426 const NameToIndexMap::Entry &entry, const char *decl_context, 427 const std::set<const char *> &class_contexts) { 428 auto it = class_contexts.find(decl_context); 429 if (it != class_contexts.end()) { 430 m_method_to_index.Append(entry); 431 } else { 432 // If we got here, we have something that had a context (was inside 433 // a namespace or class) yet we don't know the entry 434 m_method_to_index.Append(entry); 435 m_basename_to_index.Append(entry); 436 } 437 } 438 439 void Symtab::PreloadSymbols() { 440 std::lock_guard<std::recursive_mutex> guard(m_mutex); 441 InitNameIndexes(); 442 } 443 444 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 445 bool add_demangled, bool add_mangled, 446 NameToIndexMap &name_to_index_map) const { 447 if (add_demangled || add_mangled) { 448 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 449 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 450 std::lock_guard<std::recursive_mutex> guard(m_mutex); 451 452 // Create the name index vector to be able to quickly search by name 453 NameToIndexMap::Entry entry; 454 const size_t num_indexes = indexes.size(); 455 for (size_t i = 0; i < num_indexes; ++i) { 456 entry.value = indexes[i]; 457 assert(i < m_symbols.size()); 458 const Symbol *symbol = &m_symbols[entry.value]; 459 460 const Mangled &mangled = symbol->GetMangled(); 461 if (add_demangled) { 462 entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()); 463 if (entry.cstring) 464 name_to_index_map.Append(entry); 465 } 466 467 if (add_mangled) { 468 entry.cstring = mangled.GetMangledName(); 469 if (entry.cstring) 470 name_to_index_map.Append(entry); 471 } 472 } 473 } 474 } 475 476 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 477 std::vector<uint32_t> &indexes, 478 uint32_t start_idx, 479 uint32_t end_index) const { 480 std::lock_guard<std::recursive_mutex> guard(m_mutex); 481 482 uint32_t prev_size = indexes.size(); 483 484 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 485 486 for (uint32_t i = start_idx; i < count; ++i) { 487 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 488 indexes.push_back(i); 489 } 490 491 return indexes.size() - prev_size; 492 } 493 494 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 495 SymbolType symbol_type, uint32_t flags_value, 496 std::vector<uint32_t> &indexes, uint32_t start_idx, 497 uint32_t end_index) const { 498 std::lock_guard<std::recursive_mutex> guard(m_mutex); 499 500 uint32_t prev_size = indexes.size(); 501 502 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 503 504 for (uint32_t i = start_idx; i < count; ++i) { 505 if ((symbol_type == eSymbolTypeAny || 506 m_symbols[i].GetType() == symbol_type) && 507 m_symbols[i].GetFlags() == flags_value) 508 indexes.push_back(i); 509 } 510 511 return indexes.size() - prev_size; 512 } 513 514 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 515 Debug symbol_debug_type, 516 Visibility symbol_visibility, 517 std::vector<uint32_t> &indexes, 518 uint32_t start_idx, 519 uint32_t end_index) const { 520 std::lock_guard<std::recursive_mutex> guard(m_mutex); 521 522 uint32_t prev_size = indexes.size(); 523 524 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 525 526 for (uint32_t i = start_idx; i < count; ++i) { 527 if (symbol_type == eSymbolTypeAny || 528 m_symbols[i].GetType() == symbol_type) { 529 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 530 indexes.push_back(i); 531 } 532 } 533 534 return indexes.size() - prev_size; 535 } 536 537 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 538 if (!m_symbols.empty()) { 539 const Symbol *first_symbol = &m_symbols[0]; 540 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 541 return symbol - first_symbol; 542 } 543 return UINT32_MAX; 544 } 545 546 struct SymbolSortInfo { 547 const bool sort_by_load_addr; 548 const Symbol *symbols; 549 }; 550 551 namespace { 552 struct SymbolIndexComparator { 553 const std::vector<Symbol> &symbols; 554 std::vector<lldb::addr_t> &addr_cache; 555 556 // Getting from the symbol to the Address to the File Address involves some 557 // work. Since there are potentially many symbols here, and we're using this 558 // for sorting so we're going to be computing the address many times, cache 559 // that in addr_cache. The array passed in has to be the same size as the 560 // symbols array passed into the member variable symbols, and should be 561 // initialized with LLDB_INVALID_ADDRESS. 562 // NOTE: You have to make addr_cache externally and pass it in because 563 // std::stable_sort 564 // makes copies of the comparator it is initially passed in, and you end up 565 // spending huge amounts of time copying this array... 566 567 SymbolIndexComparator(const std::vector<Symbol> &s, 568 std::vector<lldb::addr_t> &a) 569 : symbols(s), addr_cache(a) { 570 assert(symbols.size() == addr_cache.size()); 571 } 572 bool operator()(uint32_t index_a, uint32_t index_b) { 573 addr_t value_a = addr_cache[index_a]; 574 if (value_a == LLDB_INVALID_ADDRESS) { 575 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 576 addr_cache[index_a] = value_a; 577 } 578 579 addr_t value_b = addr_cache[index_b]; 580 if (value_b == LLDB_INVALID_ADDRESS) { 581 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 582 addr_cache[index_b] = value_b; 583 } 584 585 if (value_a == value_b) { 586 // The if the values are equal, use the original symbol user ID 587 lldb::user_id_t uid_a = symbols[index_a].GetID(); 588 lldb::user_id_t uid_b = symbols[index_b].GetID(); 589 if (uid_a < uid_b) 590 return true; 591 if (uid_a > uid_b) 592 return false; 593 return false; 594 } else if (value_a < value_b) 595 return true; 596 597 return false; 598 } 599 }; 600 } 601 602 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 603 bool remove_duplicates) const { 604 std::lock_guard<std::recursive_mutex> guard(m_mutex); 605 606 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 607 Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION); 608 // No need to sort if we have zero or one items... 609 if (indexes.size() <= 1) 610 return; 611 612 // Sort the indexes in place using std::stable_sort. 613 // NOTE: The use of std::stable_sort instead of std::sort here is strictly for 614 // performance, 615 // not correctness. The indexes vector tends to be "close" to sorted, which 616 // the stable sort handles better. 617 618 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 619 620 SymbolIndexComparator comparator(m_symbols, addr_cache); 621 std::stable_sort(indexes.begin(), indexes.end(), comparator); 622 623 // Remove any duplicates if requested 624 if (remove_duplicates) { 625 auto last = std::unique(indexes.begin(), indexes.end()); 626 indexes.erase(last, indexes.end()); 627 } 628 } 629 630 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, 631 std::vector<uint32_t> &indexes) { 632 std::lock_guard<std::recursive_mutex> guard(m_mutex); 633 634 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 635 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 636 if (symbol_name) { 637 if (!m_name_indexes_computed) 638 InitNameIndexes(); 639 640 return m_name_to_index.GetValues(symbol_name, indexes); 641 } 642 return 0; 643 } 644 645 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, 646 Debug symbol_debug_type, 647 Visibility symbol_visibility, 648 std::vector<uint32_t> &indexes) { 649 std::lock_guard<std::recursive_mutex> guard(m_mutex); 650 651 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 652 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 653 if (symbol_name) { 654 const size_t old_size = indexes.size(); 655 if (!m_name_indexes_computed) 656 InitNameIndexes(); 657 658 std::vector<uint32_t> all_name_indexes; 659 const size_t name_match_count = 660 m_name_to_index.GetValues(symbol_name, all_name_indexes); 661 for (size_t i = 0; i < name_match_count; ++i) { 662 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 663 symbol_visibility)) 664 indexes.push_back(all_name_indexes[i]); 665 } 666 return indexes.size() - old_size; 667 } 668 return 0; 669 } 670 671 uint32_t 672 Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name, 673 SymbolType symbol_type, 674 std::vector<uint32_t> &indexes) { 675 std::lock_guard<std::recursive_mutex> guard(m_mutex); 676 677 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 678 std::vector<uint32_t>::iterator pos = indexes.begin(); 679 while (pos != indexes.end()) { 680 if (symbol_type == eSymbolTypeAny || 681 m_symbols[*pos].GetType() == symbol_type) 682 ++pos; 683 else 684 pos = indexes.erase(pos); 685 } 686 } 687 return indexes.size(); 688 } 689 690 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 691 const ConstString &symbol_name, SymbolType symbol_type, 692 Debug symbol_debug_type, Visibility symbol_visibility, 693 std::vector<uint32_t> &indexes) { 694 std::lock_guard<std::recursive_mutex> guard(m_mutex); 695 696 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 697 symbol_visibility, indexes) > 0) { 698 std::vector<uint32_t>::iterator pos = indexes.begin(); 699 while (pos != indexes.end()) { 700 if (symbol_type == eSymbolTypeAny || 701 m_symbols[*pos].GetType() == symbol_type) 702 ++pos; 703 else 704 pos = indexes.erase(pos); 705 } 706 } 707 return indexes.size(); 708 } 709 710 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 711 const RegularExpression ®exp, SymbolType symbol_type, 712 std::vector<uint32_t> &indexes) { 713 std::lock_guard<std::recursive_mutex> guard(m_mutex); 714 715 uint32_t prev_size = indexes.size(); 716 uint32_t sym_end = m_symbols.size(); 717 718 for (uint32_t i = 0; i < sym_end; i++) { 719 if (symbol_type == eSymbolTypeAny || 720 m_symbols[i].GetType() == symbol_type) { 721 const char *name = m_symbols[i].GetName().AsCString(); 722 if (name) { 723 if (regexp.Execute(name)) 724 indexes.push_back(i); 725 } 726 } 727 } 728 return indexes.size() - prev_size; 729 } 730 731 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 732 const RegularExpression ®exp, SymbolType symbol_type, 733 Debug symbol_debug_type, Visibility symbol_visibility, 734 std::vector<uint32_t> &indexes) { 735 std::lock_guard<std::recursive_mutex> guard(m_mutex); 736 737 uint32_t prev_size = indexes.size(); 738 uint32_t sym_end = m_symbols.size(); 739 740 for (uint32_t i = 0; i < sym_end; i++) { 741 if (symbol_type == eSymbolTypeAny || 742 m_symbols[i].GetType() == symbol_type) { 743 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 744 continue; 745 746 const char *name = m_symbols[i].GetName().AsCString(); 747 if (name) { 748 if (regexp.Execute(name)) 749 indexes.push_back(i); 750 } 751 } 752 } 753 return indexes.size() - prev_size; 754 } 755 756 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 757 Debug symbol_debug_type, 758 Visibility symbol_visibility, 759 uint32_t &start_idx) { 760 std::lock_guard<std::recursive_mutex> guard(m_mutex); 761 762 const size_t count = m_symbols.size(); 763 for (size_t idx = start_idx; idx < count; ++idx) { 764 if (symbol_type == eSymbolTypeAny || 765 m_symbols[idx].GetType() == symbol_type) { 766 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 767 start_idx = idx; 768 return &m_symbols[idx]; 769 } 770 } 771 } 772 return nullptr; 773 } 774 775 size_t 776 Symtab::FindAllSymbolsWithNameAndType(const ConstString &name, 777 SymbolType symbol_type, 778 std::vector<uint32_t> &symbol_indexes) { 779 std::lock_guard<std::recursive_mutex> guard(m_mutex); 780 781 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 782 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 783 // Initialize all of the lookup by name indexes before converting NAME to a 784 // uniqued string NAME_STR below. 785 if (!m_name_indexes_computed) 786 InitNameIndexes(); 787 788 if (name) { 789 // The string table did have a string that matched, but we need to check 790 // the symbols and match the symbol_type if any was given. 791 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 792 } 793 return symbol_indexes.size(); 794 } 795 796 size_t Symtab::FindAllSymbolsWithNameAndType( 797 const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, 798 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 799 std::lock_guard<std::recursive_mutex> guard(m_mutex); 800 801 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 802 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 803 // Initialize all of the lookup by name indexes before converting NAME to a 804 // uniqued string NAME_STR below. 805 if (!m_name_indexes_computed) 806 InitNameIndexes(); 807 808 if (name) { 809 // The string table did have a string that matched, but we need to check 810 // the symbols and match the symbol_type if any was given. 811 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 812 symbol_visibility, symbol_indexes); 813 } 814 return symbol_indexes.size(); 815 } 816 817 size_t Symtab::FindAllSymbolsMatchingRexExAndType( 818 const RegularExpression ®ex, SymbolType symbol_type, 819 Debug symbol_debug_type, Visibility symbol_visibility, 820 std::vector<uint32_t> &symbol_indexes) { 821 std::lock_guard<std::recursive_mutex> guard(m_mutex); 822 823 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 824 symbol_visibility, symbol_indexes); 825 return symbol_indexes.size(); 826 } 827 828 Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name, 829 SymbolType symbol_type, 830 Debug symbol_debug_type, 831 Visibility symbol_visibility) { 832 std::lock_guard<std::recursive_mutex> guard(m_mutex); 833 834 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 835 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 836 if (!m_name_indexes_computed) 837 InitNameIndexes(); 838 839 if (name) { 840 std::vector<uint32_t> matching_indexes; 841 // The string table did have a string that matched, but we need to check 842 // the symbols and match the symbol_type if any was given. 843 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 844 symbol_visibility, 845 matching_indexes)) { 846 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 847 for (pos = matching_indexes.begin(); pos != end; ++pos) { 848 Symbol *symbol = SymbolAtIndex(*pos); 849 850 if (symbol->Compare(name, symbol_type)) 851 return symbol; 852 } 853 } 854 } 855 return nullptr; 856 } 857 858 typedef struct { 859 const Symtab *symtab; 860 const addr_t file_addr; 861 Symbol *match_symbol; 862 const uint32_t *match_index_ptr; 863 addr_t match_offset; 864 } SymbolSearchInfo; 865 866 // Add all the section file start address & size to the RangeVector, recusively 867 // adding any children sections. 868 static void AddSectionsToRangeMap(SectionList *sectlist, 869 RangeVector<addr_t, addr_t> §ion_ranges) { 870 const int num_sections = sectlist->GetNumSections(0); 871 for (int i = 0; i < num_sections; i++) { 872 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 873 if (sect_sp) { 874 SectionList &child_sectlist = sect_sp->GetChildren(); 875 876 // If this section has children, add the children to the RangeVector. 877 // Else add this section to the RangeVector. 878 if (child_sectlist.GetNumSections(0) > 0) { 879 AddSectionsToRangeMap(&child_sectlist, section_ranges); 880 } else { 881 size_t size = sect_sp->GetByteSize(); 882 if (size > 0) { 883 addr_t base_addr = sect_sp->GetFileAddress(); 884 RangeVector<addr_t, addr_t>::Entry entry; 885 entry.SetRangeBase(base_addr); 886 entry.SetByteSize(size); 887 section_ranges.Append(entry); 888 } 889 } 890 } 891 } 892 } 893 894 void Symtab::InitAddressIndexes() { 895 // Protected function, no need to lock mutex... 896 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 897 m_file_addr_to_index_computed = true; 898 899 FileRangeToIndexMap::Entry entry; 900 const_iterator begin = m_symbols.begin(); 901 const_iterator end = m_symbols.end(); 902 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 903 if (pos->ValueIsAddress()) { 904 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 905 entry.SetByteSize(pos->GetByteSize()); 906 entry.data = std::distance(begin, pos); 907 m_file_addr_to_index.Append(entry); 908 } 909 } 910 const size_t num_entries = m_file_addr_to_index.GetSize(); 911 if (num_entries > 0) { 912 m_file_addr_to_index.Sort(); 913 914 // Create a RangeVector with the start & size of all the sections for 915 // this objfile. We'll need to check this for any FileRangeToIndexMap 916 // entries with an uninitialized size, which could potentially be a large 917 // number so reconstituting the weak pointer is busywork when it is 918 // invariant information. 919 SectionList *sectlist = m_objfile->GetSectionList(); 920 RangeVector<addr_t, addr_t> section_ranges; 921 if (sectlist) { 922 AddSectionsToRangeMap(sectlist, section_ranges); 923 section_ranges.Sort(); 924 } 925 926 // Iterate through the FileRangeToIndexMap and fill in the size for any 927 // entries that didn't already have a size from the Symbol (e.g. if we 928 // have a plain linker symbol with an address only, instead of debug info 929 // where we get an address and a size and a type, etc.) 930 for (size_t i = 0; i < num_entries; i++) { 931 FileRangeToIndexMap::Entry *entry = 932 m_file_addr_to_index.GetMutableEntryAtIndex(i); 933 if (entry->GetByteSize() == 0) { 934 addr_t curr_base_addr = entry->GetRangeBase(); 935 const RangeVector<addr_t, addr_t>::Entry *containing_section = 936 section_ranges.FindEntryThatContains(curr_base_addr); 937 938 // Use the end of the section as the default max size of the symbol 939 addr_t sym_size = 0; 940 if (containing_section) { 941 sym_size = 942 containing_section->GetByteSize() - 943 (entry->GetRangeBase() - containing_section->GetRangeBase()); 944 } 945 946 for (size_t j = i; j < num_entries; j++) { 947 FileRangeToIndexMap::Entry *next_entry = 948 m_file_addr_to_index.GetMutableEntryAtIndex(j); 949 addr_t next_base_addr = next_entry->GetRangeBase(); 950 if (next_base_addr > curr_base_addr) { 951 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 952 953 // Take the difference between this symbol and the next one as 954 // its size, if it is less than the size of the section. 955 if (sym_size == 0 || size_to_next_symbol < sym_size) { 956 sym_size = size_to_next_symbol; 957 } 958 break; 959 } 960 } 961 962 if (sym_size > 0) { 963 entry->SetByteSize(sym_size); 964 Symbol &symbol = m_symbols[entry->data]; 965 symbol.SetByteSize(sym_size); 966 symbol.SetSizeIsSynthesized(true); 967 } 968 } 969 } 970 971 // Sort again in case the range size changes the ordering 972 m_file_addr_to_index.Sort(); 973 } 974 } 975 } 976 977 void Symtab::CalculateSymbolSizes() { 978 std::lock_guard<std::recursive_mutex> guard(m_mutex); 979 980 if (!m_symbols.empty()) { 981 if (!m_file_addr_to_index_computed) 982 InitAddressIndexes(); 983 984 const size_t num_entries = m_file_addr_to_index.GetSize(); 985 986 for (size_t i = 0; i < num_entries; ++i) { 987 // The entries in the m_file_addr_to_index have calculated the sizes 988 // already so we will use this size if we need to. 989 const FileRangeToIndexMap::Entry &entry = 990 m_file_addr_to_index.GetEntryRef(i); 991 992 Symbol &symbol = m_symbols[entry.data]; 993 994 // If the symbol size is already valid, no need to do anything 995 if (symbol.GetByteSizeIsValid()) 996 continue; 997 998 const addr_t range_size = entry.GetByteSize(); 999 if (range_size > 0) { 1000 symbol.SetByteSize(range_size); 1001 symbol.SetSizeIsSynthesized(true); 1002 } 1003 } 1004 } 1005 } 1006 1007 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 1008 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1009 if (!m_file_addr_to_index_computed) 1010 InitAddressIndexes(); 1011 1012 const FileRangeToIndexMap::Entry *entry = 1013 m_file_addr_to_index.FindEntryStartsAt(file_addr); 1014 if (entry) { 1015 Symbol *symbol = SymbolAtIndex(entry->data); 1016 if (symbol->GetFileAddress() == file_addr) 1017 return symbol; 1018 } 1019 return nullptr; 1020 } 1021 1022 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1023 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1024 1025 if (!m_file_addr_to_index_computed) 1026 InitAddressIndexes(); 1027 1028 const FileRangeToIndexMap::Entry *entry = 1029 m_file_addr_to_index.FindEntryThatContains(file_addr); 1030 if (entry) { 1031 Symbol *symbol = SymbolAtIndex(entry->data); 1032 if (symbol->ContainsFileAddress(file_addr)) 1033 return symbol; 1034 } 1035 return nullptr; 1036 } 1037 1038 void Symtab::ForEachSymbolContainingFileAddress( 1039 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1040 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1041 1042 if (!m_file_addr_to_index_computed) 1043 InitAddressIndexes(); 1044 1045 std::vector<uint32_t> all_addr_indexes; 1046 1047 // Get all symbols with file_addr 1048 const size_t addr_match_count = 1049 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1050 all_addr_indexes); 1051 1052 for (size_t i = 0; i < addr_match_count; ++i) { 1053 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1054 if (symbol->ContainsFileAddress(file_addr)) { 1055 if (!callback(symbol)) 1056 break; 1057 } 1058 } 1059 } 1060 1061 void Symtab::SymbolIndicesToSymbolContextList( 1062 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1063 // No need to protect this call using m_mutex all other method calls are 1064 // already thread safe. 1065 1066 const bool merge_symbol_into_function = true; 1067 size_t num_indices = symbol_indexes.size(); 1068 if (num_indices > 0) { 1069 SymbolContext sc; 1070 sc.module_sp = m_objfile->GetModule(); 1071 for (size_t i = 0; i < num_indices; i++) { 1072 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1073 if (sc.symbol) 1074 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1075 } 1076 } 1077 } 1078 1079 size_t Symtab::FindFunctionSymbols(const ConstString &name, 1080 uint32_t name_type_mask, 1081 SymbolContextList &sc_list) { 1082 size_t count = 0; 1083 std::vector<uint32_t> symbol_indexes; 1084 1085 // eFunctionNameTypeAuto should be pre-resolved by a call to 1086 // Module::LookupInfo::LookupInfo() 1087 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1088 1089 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1090 std::vector<uint32_t> temp_symbol_indexes; 1091 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1092 1093 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1094 if (temp_symbol_indexes_size > 0) { 1095 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1096 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1097 SymbolContext sym_ctx; 1098 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1099 if (sym_ctx.symbol) { 1100 switch (sym_ctx.symbol->GetType()) { 1101 case eSymbolTypeCode: 1102 case eSymbolTypeResolver: 1103 case eSymbolTypeReExported: 1104 symbol_indexes.push_back(temp_symbol_indexes[i]); 1105 break; 1106 default: 1107 break; 1108 } 1109 } 1110 } 1111 } 1112 } 1113 1114 if (name_type_mask & eFunctionNameTypeBase) { 1115 // From mangled names we can't tell what is a basename and what is a method 1116 // name, so we just treat them the same 1117 if (!m_name_indexes_computed) 1118 InitNameIndexes(); 1119 1120 if (!m_basename_to_index.IsEmpty()) { 1121 const UniqueCStringMap<uint32_t>::Entry *match; 1122 for (match = m_basename_to_index.FindFirstValueForName(name); 1123 match != nullptr; 1124 match = m_basename_to_index.FindNextValueForName(match)) { 1125 symbol_indexes.push_back(match->value); 1126 } 1127 } 1128 } 1129 1130 if (name_type_mask & eFunctionNameTypeMethod) { 1131 if (!m_name_indexes_computed) 1132 InitNameIndexes(); 1133 1134 if (!m_method_to_index.IsEmpty()) { 1135 const UniqueCStringMap<uint32_t>::Entry *match; 1136 for (match = m_method_to_index.FindFirstValueForName(name); 1137 match != nullptr; 1138 match = m_method_to_index.FindNextValueForName(match)) { 1139 symbol_indexes.push_back(match->value); 1140 } 1141 } 1142 } 1143 1144 if (name_type_mask & eFunctionNameTypeSelector) { 1145 if (!m_name_indexes_computed) 1146 InitNameIndexes(); 1147 1148 if (!m_selector_to_index.IsEmpty()) { 1149 const UniqueCStringMap<uint32_t>::Entry *match; 1150 for (match = m_selector_to_index.FindFirstValueForName(name); 1151 match != nullptr; 1152 match = m_selector_to_index.FindNextValueForName(match)) { 1153 symbol_indexes.push_back(match->value); 1154 } 1155 } 1156 } 1157 1158 if (!symbol_indexes.empty()) { 1159 std::sort(symbol_indexes.begin(), symbol_indexes.end()); 1160 symbol_indexes.erase( 1161 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1162 symbol_indexes.end()); 1163 count = symbol_indexes.size(); 1164 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1165 } 1166 1167 return count; 1168 } 1169 1170 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1171 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1172 if (child_idx != UINT32_MAX && child_idx > 0) { 1173 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1174 const Symbol *symbol = SymbolAtIndex(idx); 1175 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1176 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1177 return symbol; 1178 } 1179 } 1180 return NULL; 1181 } 1182