1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "Plugins/Language/ObjC/ObjCLanguage.h"
13 
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/RichManglingContext.h"
16 #include "lldb/Core/STLUtils.h"
17 #include "lldb/Core/Section.h"
18 #include "lldb/Symbol/ObjectFile.h"
19 #include "lldb/Symbol/Symbol.h"
20 #include "lldb/Symbol/SymbolContext.h"
21 #include "lldb/Symbol/Symtab.h"
22 #include "lldb/Utility/RegularExpression.h"
23 #include "lldb/Utility/Stream.h"
24 #include "lldb/Utility/Timer.h"
25 
26 #include "llvm/ADT/StringRef.h"
27 
28 using namespace lldb;
29 using namespace lldb_private;
30 
31 Symtab::Symtab(ObjectFile *objfile)
32     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(),
33       m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
34       m_name_indexes_computed(false) {}
35 
36 Symtab::~Symtab() {}
37 
38 void Symtab::Reserve(size_t count) {
39   // Clients should grab the mutex from this symbol table and lock it manually
40   // when calling this function to avoid performance issues.
41   m_symbols.reserve(count);
42 }
43 
44 Symbol *Symtab::Resize(size_t count) {
45   // Clients should grab the mutex from this symbol table and lock it manually
46   // when calling this function to avoid performance issues.
47   m_symbols.resize(count);
48   return m_symbols.empty() ? nullptr : &m_symbols[0];
49 }
50 
51 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   uint32_t symbol_idx = m_symbols.size();
55   m_name_to_index.Clear();
56   m_file_addr_to_index.Clear();
57   m_symbols.push_back(symbol);
58   m_file_addr_to_index_computed = false;
59   m_name_indexes_computed = false;
60   return symbol_idx;
61 }
62 
63 size_t Symtab::GetNumSymbols() const {
64   std::lock_guard<std::recursive_mutex> guard(m_mutex);
65   return m_symbols.size();
66 }
67 
68 void Symtab::SectionFileAddressesChanged() {
69   m_name_to_index.Clear();
70   m_file_addr_to_index_computed = false;
71 }
72 
73 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) {
74   std::lock_guard<std::recursive_mutex> guard(m_mutex);
75 
76   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
77   s->Indent();
78   const FileSpec &file_spec = m_objfile->GetFileSpec();
79   const char *object_name = nullptr;
80   if (m_objfile->GetModule())
81     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
82 
83   if (file_spec)
84     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
85               file_spec.GetPath().c_str(), object_name ? "(" : "",
86               object_name ? object_name : "", object_name ? ")" : "",
87               (uint64_t)m_symbols.size());
88   else
89     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
90 
91   if (!m_symbols.empty()) {
92     switch (sort_order) {
93     case eSortOrderNone: {
94       s->PutCString(":\n");
95       DumpSymbolHeader(s);
96       const_iterator begin = m_symbols.begin();
97       const_iterator end = m_symbols.end();
98       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
99         s->Indent();
100         pos->Dump(s, target, std::distance(begin, pos));
101       }
102     } break;
103 
104     case eSortOrderByName: {
105       // Although we maintain a lookup by exact name map, the table isn't
106       // sorted by name. So we must make the ordered symbol list up ourselves.
107       s->PutCString(" (sorted by name):\n");
108       DumpSymbolHeader(s);
109       typedef std::multimap<const char *, const Symbol *,
110                             CStringCompareFunctionObject>
111           CStringToSymbol;
112       CStringToSymbol name_map;
113       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
114            pos != end; ++pos) {
115         const char *name = pos->GetName().AsCString();
116         if (name && name[0])
117           name_map.insert(std::make_pair(name, &(*pos)));
118       }
119 
120       for (CStringToSymbol::const_iterator pos = name_map.begin(),
121                                            end = name_map.end();
122            pos != end; ++pos) {
123         s->Indent();
124         pos->second->Dump(s, target, pos->second - &m_symbols[0]);
125       }
126     } break;
127 
128     case eSortOrderByAddress:
129       s->PutCString(" (sorted by address):\n");
130       DumpSymbolHeader(s);
131       if (!m_file_addr_to_index_computed)
132         InitAddressIndexes();
133       const size_t num_entries = m_file_addr_to_index.GetSize();
134       for (size_t i = 0; i < num_entries; ++i) {
135         s->Indent();
136         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
137         m_symbols[symbol_idx].Dump(s, target, symbol_idx);
138       }
139       break;
140     }
141   } else {
142     s->PutCString("\n");
143   }
144 }
145 
146 void Symtab::Dump(Stream *s, Target *target,
147                   std::vector<uint32_t> &indexes) const {
148   std::lock_guard<std::recursive_mutex> guard(m_mutex);
149 
150   const size_t num_symbols = GetNumSymbols();
151   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
152   s->Indent();
153   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
154             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
155   s->IndentMore();
156 
157   if (!indexes.empty()) {
158     std::vector<uint32_t>::const_iterator pos;
159     std::vector<uint32_t>::const_iterator end = indexes.end();
160     DumpSymbolHeader(s);
161     for (pos = indexes.begin(); pos != end; ++pos) {
162       size_t idx = *pos;
163       if (idx < num_symbols) {
164         s->Indent();
165         m_symbols[idx].Dump(s, target, idx);
166       }
167     }
168   }
169   s->IndentLess();
170 }
171 
172 void Symtab::DumpSymbolHeader(Stream *s) {
173   s->Indent("               Debug symbol\n");
174   s->Indent("               |Synthetic symbol\n");
175   s->Indent("               ||Externally Visible\n");
176   s->Indent("               |||\n");
177   s->Indent("Index   UserID DSX Type            File Address/Value Load "
178             "Address       Size               Flags      Name\n");
179   s->Indent("------- ------ --- --------------- ------------------ "
180             "------------------ ------------------ ---------- "
181             "----------------------------------\n");
182 }
183 
184 static int CompareSymbolID(const void *key, const void *p) {
185   const user_id_t match_uid = *(const user_id_t *)key;
186   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
187   if (match_uid < symbol_uid)
188     return -1;
189   if (match_uid > symbol_uid)
190     return 1;
191   return 0;
192 }
193 
194 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
195   std::lock_guard<std::recursive_mutex> guard(m_mutex);
196 
197   Symbol *symbol =
198       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
199                           sizeof(m_symbols[0]), CompareSymbolID);
200   return symbol;
201 }
202 
203 Symbol *Symtab::SymbolAtIndex(size_t idx) {
204   // Clients should grab the mutex from this symbol table and lock it manually
205   // when calling this function to avoid performance issues.
206   if (idx < m_symbols.size())
207     return &m_symbols[idx];
208   return nullptr;
209 }
210 
211 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
212   // Clients should grab the mutex from this symbol table and lock it manually
213   // when calling this function to avoid performance issues.
214   if (idx < m_symbols.size())
215     return &m_symbols[idx];
216   return nullptr;
217 }
218 
219 // InitNameIndexes
220 static bool lldb_skip_name(llvm::StringRef mangled,
221                            Mangled::ManglingScheme scheme) {
222   switch (scheme) {
223   case Mangled::eManglingSchemeItanium: {
224     if (mangled.size() < 3 || !mangled.startswith("_Z"))
225       return true;
226 
227     // Avoid the following types of symbols in the index.
228     switch (mangled[2]) {
229     case 'G': // guard variables
230     case 'T': // virtual tables, VTT structures, typeinfo structures + names
231     case 'Z': // named local entities (if we eventually handle
232               // eSymbolTypeData, we will want this back)
233       return true;
234 
235     default:
236       break;
237     }
238 
239     // Include this name in the index.
240     return false;
241   }
242 
243   // No filters for this scheme yet. Include all names in indexing.
244   case Mangled::eManglingSchemeMSVC:
245     return false;
246 
247   // Don't try and demangle things we can't categorize.
248   case Mangled::eManglingSchemeNone:
249     return true;
250   }
251   llvm_unreachable("unknown scheme!");
252 }
253 
254 void Symtab::InitNameIndexes() {
255   // Protected function, no need to lock mutex...
256   if (!m_name_indexes_computed) {
257     m_name_indexes_computed = true;
258     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
259     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
260     // Create the name index vector to be able to quickly search by name
261     const size_t num_symbols = m_symbols.size();
262 #if 1
263     m_name_to_index.Reserve(num_symbols);
264 #else
265     // TODO: benchmark this to see if we save any memory. Otherwise we
266     // will always keep the memory reserved in the vector unless we pull some
267     // STL swap magic and then recopy...
268     uint32_t actual_count = 0;
269     for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
270          pos != end; ++pos) {
271       const Mangled &mangled = pos->GetMangled();
272       if (mangled.GetMangledName())
273         ++actual_count;
274 
275       if (mangled.GetDemangledName())
276         ++actual_count;
277     }
278 
279     m_name_to_index.Reserve(actual_count);
280 #endif
281 
282     // The "const char *" in "class_contexts" and backlog::value_type::second
283     // must come from a ConstString::GetCString()
284     std::set<const char *> class_contexts;
285     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
286     backlog.reserve(num_symbols / 2);
287 
288     // Instantiation of the demangler is expensive, so better use a single one
289     // for all entries during batch processing.
290     RichManglingContext rmc;
291     NameToIndexMap::Entry entry;
292 
293     for (entry.value = 0; entry.value < num_symbols; ++entry.value) {
294       Symbol *symbol = &m_symbols[entry.value];
295 
296       // Don't let trampolines get into the lookup by name map If we ever need
297       // the trampoline symbols to be searchable by name we can remove this and
298       // then possibly add a new bool to any of the Symtab functions that
299       // lookup symbols by name to indicate if they want trampolines.
300       if (symbol->IsTrampoline())
301         continue;
302 
303       // If the symbol's name string matched a Mangled::ManglingScheme, it is
304       // stored in the mangled field.
305       Mangled &mangled = symbol->GetMangled();
306       entry.cstring = mangled.GetMangledName();
307       if (entry.cstring) {
308         m_name_to_index.Append(entry);
309 
310         if (symbol->ContainsLinkerAnnotations()) {
311           // If the symbol has linker annotations, also add the version without
312           // the annotations.
313           entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
314                                         entry.cstring.GetStringRef()));
315           m_name_to_index.Append(entry);
316         }
317 
318         const SymbolType type = symbol->GetType();
319         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
320           if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
321             RegisterMangledNameEntry(entry, class_contexts, backlog, rmc);
322         }
323       }
324 
325       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
326       // stored in the demangled field.
327       entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
328       if (entry.cstring) {
329         m_name_to_index.Append(entry);
330 
331         if (symbol->ContainsLinkerAnnotations()) {
332           // If the symbol has linker annotations, also add the version without
333           // the annotations.
334           entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
335                                         entry.cstring.GetStringRef()));
336           m_name_to_index.Append(entry);
337         }
338       }
339 
340       // If the demangled name turns out to be an ObjC name, and is a category
341       // name, add the version without categories to the index too.
342       ObjCLanguage::MethodName objc_method(entry.cstring.GetStringRef(), true);
343       if (objc_method.IsValid(true)) {
344         entry.cstring = objc_method.GetSelector();
345         m_selector_to_index.Append(entry);
346 
347         ConstString objc_method_no_category(
348             objc_method.GetFullNameWithoutCategory(true));
349         if (objc_method_no_category) {
350           entry.cstring = objc_method_no_category;
351           m_name_to_index.Append(entry);
352         }
353       }
354     }
355 
356     for (const auto &record : backlog) {
357       RegisterBacklogEntry(record.first, record.second, class_contexts);
358     }
359 
360     m_name_to_index.Sort();
361     m_name_to_index.SizeToFit();
362     m_selector_to_index.Sort();
363     m_selector_to_index.SizeToFit();
364     m_basename_to_index.Sort();
365     m_basename_to_index.SizeToFit();
366     m_method_to_index.Sort();
367     m_method_to_index.SizeToFit();
368   }
369 }
370 
371 void Symtab::RegisterMangledNameEntry(
372     NameToIndexMap::Entry &entry, std::set<const char *> &class_contexts,
373     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
374     RichManglingContext &rmc) {
375   // Only register functions that have a base name.
376   rmc.ParseFunctionBaseName();
377   llvm::StringRef base_name = rmc.GetBufferRef();
378   if (base_name.empty())
379     return;
380 
381   // The base name will be our entry's name.
382   entry.cstring = ConstString(base_name);
383 
384   rmc.ParseFunctionDeclContextName();
385   llvm::StringRef decl_context = rmc.GetBufferRef();
386 
387   // Register functions with no context.
388   if (decl_context.empty()) {
389     // This has to be a basename
390     m_basename_to_index.Append(entry);
391     // If there is no context (no namespaces or class scopes that come before
392     // the function name) then this also could be a fullname.
393     m_name_to_index.Append(entry);
394     return;
395   }
396 
397   // Make sure we have a pool-string pointer and see if we already know the
398   // context name.
399   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
400   auto it = class_contexts.find(decl_context_ccstr);
401 
402   // Register constructors and destructors. They are methods and create
403   // declaration contexts.
404   if (rmc.IsCtorOrDtor()) {
405     m_method_to_index.Append(entry);
406     if (it == class_contexts.end())
407       class_contexts.insert(it, decl_context_ccstr);
408     return;
409   }
410 
411   // Register regular methods with a known declaration context.
412   if (it != class_contexts.end()) {
413     m_method_to_index.Append(entry);
414     return;
415   }
416 
417   // Regular methods in unknown declaration contexts are put to the backlog. We
418   // will revisit them once we processed all remaining symbols.
419   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
420 }
421 
422 void Symtab::RegisterBacklogEntry(
423     const NameToIndexMap::Entry &entry, const char *decl_context,
424     const std::set<const char *> &class_contexts) {
425   auto it = class_contexts.find(decl_context);
426   if (it != class_contexts.end()) {
427     m_method_to_index.Append(entry);
428   } else {
429     // If we got here, we have something that had a context (was inside
430     // a namespace or class) yet we don't know the entry
431     m_method_to_index.Append(entry);
432     m_basename_to_index.Append(entry);
433   }
434 }
435 
436 void Symtab::PreloadSymbols() {
437   std::lock_guard<std::recursive_mutex> guard(m_mutex);
438   InitNameIndexes();
439 }
440 
441 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
442                                     bool add_demangled, bool add_mangled,
443                                     NameToIndexMap &name_to_index_map) const {
444   if (add_demangled || add_mangled) {
445     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
446     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
447     std::lock_guard<std::recursive_mutex> guard(m_mutex);
448 
449     // Create the name index vector to be able to quickly search by name
450     NameToIndexMap::Entry entry;
451     const size_t num_indexes = indexes.size();
452     for (size_t i = 0; i < num_indexes; ++i) {
453       entry.value = indexes[i];
454       assert(i < m_symbols.size());
455       const Symbol *symbol = &m_symbols[entry.value];
456 
457       const Mangled &mangled = symbol->GetMangled();
458       if (add_demangled) {
459         entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
460         if (entry.cstring)
461           name_to_index_map.Append(entry);
462       }
463 
464       if (add_mangled) {
465         entry.cstring = mangled.GetMangledName();
466         if (entry.cstring)
467           name_to_index_map.Append(entry);
468       }
469     }
470   }
471 }
472 
473 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
474                                              std::vector<uint32_t> &indexes,
475                                              uint32_t start_idx,
476                                              uint32_t end_index) const {
477   std::lock_guard<std::recursive_mutex> guard(m_mutex);
478 
479   uint32_t prev_size = indexes.size();
480 
481   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
482 
483   for (uint32_t i = start_idx; i < count; ++i) {
484     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
485       indexes.push_back(i);
486   }
487 
488   return indexes.size() - prev_size;
489 }
490 
491 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
492     SymbolType symbol_type, uint32_t flags_value,
493     std::vector<uint32_t> &indexes, uint32_t start_idx,
494     uint32_t end_index) const {
495   std::lock_guard<std::recursive_mutex> guard(m_mutex);
496 
497   uint32_t prev_size = indexes.size();
498 
499   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
500 
501   for (uint32_t i = start_idx; i < count; ++i) {
502     if ((symbol_type == eSymbolTypeAny ||
503          m_symbols[i].GetType() == symbol_type) &&
504         m_symbols[i].GetFlags() == flags_value)
505       indexes.push_back(i);
506   }
507 
508   return indexes.size() - prev_size;
509 }
510 
511 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
512                                              Debug symbol_debug_type,
513                                              Visibility symbol_visibility,
514                                              std::vector<uint32_t> &indexes,
515                                              uint32_t start_idx,
516                                              uint32_t end_index) const {
517   std::lock_guard<std::recursive_mutex> guard(m_mutex);
518 
519   uint32_t prev_size = indexes.size();
520 
521   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
522 
523   for (uint32_t i = start_idx; i < count; ++i) {
524     if (symbol_type == eSymbolTypeAny ||
525         m_symbols[i].GetType() == symbol_type) {
526       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
527         indexes.push_back(i);
528     }
529   }
530 
531   return indexes.size() - prev_size;
532 }
533 
534 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
535   if (!m_symbols.empty()) {
536     const Symbol *first_symbol = &m_symbols[0];
537     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
538       return symbol - first_symbol;
539   }
540   return UINT32_MAX;
541 }
542 
543 struct SymbolSortInfo {
544   const bool sort_by_load_addr;
545   const Symbol *symbols;
546 };
547 
548 namespace {
549 struct SymbolIndexComparator {
550   const std::vector<Symbol> &symbols;
551   std::vector<lldb::addr_t> &addr_cache;
552 
553   // Getting from the symbol to the Address to the File Address involves some
554   // work. Since there are potentially many symbols here, and we're using this
555   // for sorting so we're going to be computing the address many times, cache
556   // that in addr_cache. The array passed in has to be the same size as the
557   // symbols array passed into the member variable symbols, and should be
558   // initialized with LLDB_INVALID_ADDRESS.
559   // NOTE: You have to make addr_cache externally and pass it in because
560   // std::stable_sort
561   // makes copies of the comparator it is initially passed in, and you end up
562   // spending huge amounts of time copying this array...
563 
564   SymbolIndexComparator(const std::vector<Symbol> &s,
565                         std::vector<lldb::addr_t> &a)
566       : symbols(s), addr_cache(a) {
567     assert(symbols.size() == addr_cache.size());
568   }
569   bool operator()(uint32_t index_a, uint32_t index_b) {
570     addr_t value_a = addr_cache[index_a];
571     if (value_a == LLDB_INVALID_ADDRESS) {
572       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
573       addr_cache[index_a] = value_a;
574     }
575 
576     addr_t value_b = addr_cache[index_b];
577     if (value_b == LLDB_INVALID_ADDRESS) {
578       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
579       addr_cache[index_b] = value_b;
580     }
581 
582     if (value_a == value_b) {
583       // The if the values are equal, use the original symbol user ID
584       lldb::user_id_t uid_a = symbols[index_a].GetID();
585       lldb::user_id_t uid_b = symbols[index_b].GetID();
586       if (uid_a < uid_b)
587         return true;
588       if (uid_a > uid_b)
589         return false;
590       return false;
591     } else if (value_a < value_b)
592       return true;
593 
594     return false;
595   }
596 };
597 }
598 
599 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
600                                       bool remove_duplicates) const {
601   std::lock_guard<std::recursive_mutex> guard(m_mutex);
602 
603   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
604   Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION);
605   // No need to sort if we have zero or one items...
606   if (indexes.size() <= 1)
607     return;
608 
609   // Sort the indexes in place using std::stable_sort.
610   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
611   // for performance, not correctness.  The indexes vector tends to be "close"
612   // to sorted, which the stable sort handles better.
613 
614   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
615 
616   SymbolIndexComparator comparator(m_symbols, addr_cache);
617   std::stable_sort(indexes.begin(), indexes.end(), comparator);
618 
619   // Remove any duplicates if requested
620   if (remove_duplicates) {
621     auto last = std::unique(indexes.begin(), indexes.end());
622     indexes.erase(last, indexes.end());
623   }
624 }
625 
626 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
627                                              std::vector<uint32_t> &indexes) {
628   std::lock_guard<std::recursive_mutex> guard(m_mutex);
629 
630   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
631   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
632   if (symbol_name) {
633     if (!m_name_indexes_computed)
634       InitNameIndexes();
635 
636     return m_name_to_index.GetValues(symbol_name, indexes);
637   }
638   return 0;
639 }
640 
641 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
642                                              Debug symbol_debug_type,
643                                              Visibility symbol_visibility,
644                                              std::vector<uint32_t> &indexes) {
645   std::lock_guard<std::recursive_mutex> guard(m_mutex);
646 
647   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
648   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
649   if (symbol_name) {
650     const size_t old_size = indexes.size();
651     if (!m_name_indexes_computed)
652       InitNameIndexes();
653 
654     std::vector<uint32_t> all_name_indexes;
655     const size_t name_match_count =
656         m_name_to_index.GetValues(symbol_name, all_name_indexes);
657     for (size_t i = 0; i < name_match_count; ++i) {
658       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
659                              symbol_visibility))
660         indexes.push_back(all_name_indexes[i]);
661     }
662     return indexes.size() - old_size;
663   }
664   return 0;
665 }
666 
667 uint32_t
668 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
669                                            SymbolType symbol_type,
670                                            std::vector<uint32_t> &indexes) {
671   std::lock_guard<std::recursive_mutex> guard(m_mutex);
672 
673   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
674     std::vector<uint32_t>::iterator pos = indexes.begin();
675     while (pos != indexes.end()) {
676       if (symbol_type == eSymbolTypeAny ||
677           m_symbols[*pos].GetType() == symbol_type)
678         ++pos;
679       else
680         pos = indexes.erase(pos);
681     }
682   }
683   return indexes.size();
684 }
685 
686 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
687     ConstString symbol_name, SymbolType symbol_type,
688     Debug symbol_debug_type, Visibility symbol_visibility,
689     std::vector<uint32_t> &indexes) {
690   std::lock_guard<std::recursive_mutex> guard(m_mutex);
691 
692   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
693                                   symbol_visibility, indexes) > 0) {
694     std::vector<uint32_t>::iterator pos = indexes.begin();
695     while (pos != indexes.end()) {
696       if (symbol_type == eSymbolTypeAny ||
697           m_symbols[*pos].GetType() == symbol_type)
698         ++pos;
699       else
700         pos = indexes.erase(pos);
701     }
702   }
703   return indexes.size();
704 }
705 
706 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
707     const RegularExpression &regexp, SymbolType symbol_type,
708     std::vector<uint32_t> &indexes) {
709   std::lock_guard<std::recursive_mutex> guard(m_mutex);
710 
711   uint32_t prev_size = indexes.size();
712   uint32_t sym_end = m_symbols.size();
713 
714   for (uint32_t i = 0; i < sym_end; i++) {
715     if (symbol_type == eSymbolTypeAny ||
716         m_symbols[i].GetType() == symbol_type) {
717       const char *name = m_symbols[i].GetName().AsCString();
718       if (name) {
719         if (regexp.Execute(name))
720           indexes.push_back(i);
721       }
722     }
723   }
724   return indexes.size() - prev_size;
725 }
726 
727 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
728     const RegularExpression &regexp, SymbolType symbol_type,
729     Debug symbol_debug_type, Visibility symbol_visibility,
730     std::vector<uint32_t> &indexes) {
731   std::lock_guard<std::recursive_mutex> guard(m_mutex);
732 
733   uint32_t prev_size = indexes.size();
734   uint32_t sym_end = m_symbols.size();
735 
736   for (uint32_t i = 0; i < sym_end; i++) {
737     if (symbol_type == eSymbolTypeAny ||
738         m_symbols[i].GetType() == symbol_type) {
739       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
740         continue;
741 
742       const char *name = m_symbols[i].GetName().AsCString();
743       if (name) {
744         if (regexp.Execute(name))
745           indexes.push_back(i);
746       }
747     }
748   }
749   return indexes.size() - prev_size;
750 }
751 
752 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
753                                    Debug symbol_debug_type,
754                                    Visibility symbol_visibility,
755                                    uint32_t &start_idx) {
756   std::lock_guard<std::recursive_mutex> guard(m_mutex);
757 
758   const size_t count = m_symbols.size();
759   for (size_t idx = start_idx; idx < count; ++idx) {
760     if (symbol_type == eSymbolTypeAny ||
761         m_symbols[idx].GetType() == symbol_type) {
762       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
763         start_idx = idx;
764         return &m_symbols[idx];
765       }
766     }
767   }
768   return nullptr;
769 }
770 
771 size_t
772 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
773                                       SymbolType symbol_type,
774                                       std::vector<uint32_t> &symbol_indexes) {
775   std::lock_guard<std::recursive_mutex> guard(m_mutex);
776 
777   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
778   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
779   // Initialize all of the lookup by name indexes before converting NAME to a
780   // uniqued string NAME_STR below.
781   if (!m_name_indexes_computed)
782     InitNameIndexes();
783 
784   if (name) {
785     // The string table did have a string that matched, but we need to check
786     // the symbols and match the symbol_type if any was given.
787     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
788   }
789   return symbol_indexes.size();
790 }
791 
792 size_t Symtab::FindAllSymbolsWithNameAndType(
793     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
794     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
795   std::lock_guard<std::recursive_mutex> guard(m_mutex);
796 
797   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
798   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
799   // Initialize all of the lookup by name indexes before converting NAME to a
800   // uniqued string NAME_STR below.
801   if (!m_name_indexes_computed)
802     InitNameIndexes();
803 
804   if (name) {
805     // The string table did have a string that matched, but we need to check
806     // the symbols and match the symbol_type if any was given.
807     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
808                                        symbol_visibility, symbol_indexes);
809   }
810   return symbol_indexes.size();
811 }
812 
813 size_t Symtab::FindAllSymbolsMatchingRexExAndType(
814     const RegularExpression &regex, SymbolType symbol_type,
815     Debug symbol_debug_type, Visibility symbol_visibility,
816     std::vector<uint32_t> &symbol_indexes) {
817   std::lock_guard<std::recursive_mutex> guard(m_mutex);
818 
819   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
820                                           symbol_visibility, symbol_indexes);
821   return symbol_indexes.size();
822 }
823 
824 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
825                                                SymbolType symbol_type,
826                                                Debug symbol_debug_type,
827                                                Visibility symbol_visibility) {
828   std::lock_guard<std::recursive_mutex> guard(m_mutex);
829 
830   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
831   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
832   if (!m_name_indexes_computed)
833     InitNameIndexes();
834 
835   if (name) {
836     std::vector<uint32_t> matching_indexes;
837     // The string table did have a string that matched, but we need to check
838     // the symbols and match the symbol_type if any was given.
839     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
840                                            symbol_visibility,
841                                            matching_indexes)) {
842       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
843       for (pos = matching_indexes.begin(); pos != end; ++pos) {
844         Symbol *symbol = SymbolAtIndex(*pos);
845 
846         if (symbol->Compare(name, symbol_type))
847           return symbol;
848       }
849     }
850   }
851   return nullptr;
852 }
853 
854 typedef struct {
855   const Symtab *symtab;
856   const addr_t file_addr;
857   Symbol *match_symbol;
858   const uint32_t *match_index_ptr;
859   addr_t match_offset;
860 } SymbolSearchInfo;
861 
862 // Add all the section file start address & size to the RangeVector, recusively
863 // adding any children sections.
864 static void AddSectionsToRangeMap(SectionList *sectlist,
865                                   RangeVector<addr_t, addr_t> &section_ranges) {
866   const int num_sections = sectlist->GetNumSections(0);
867   for (int i = 0; i < num_sections; i++) {
868     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
869     if (sect_sp) {
870       SectionList &child_sectlist = sect_sp->GetChildren();
871 
872       // If this section has children, add the children to the RangeVector.
873       // Else add this section to the RangeVector.
874       if (child_sectlist.GetNumSections(0) > 0) {
875         AddSectionsToRangeMap(&child_sectlist, section_ranges);
876       } else {
877         size_t size = sect_sp->GetByteSize();
878         if (size > 0) {
879           addr_t base_addr = sect_sp->GetFileAddress();
880           RangeVector<addr_t, addr_t>::Entry entry;
881           entry.SetRangeBase(base_addr);
882           entry.SetByteSize(size);
883           section_ranges.Append(entry);
884         }
885       }
886     }
887   }
888 }
889 
890 void Symtab::InitAddressIndexes() {
891   // Protected function, no need to lock mutex...
892   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
893     m_file_addr_to_index_computed = true;
894 
895     FileRangeToIndexMap::Entry entry;
896     const_iterator begin = m_symbols.begin();
897     const_iterator end = m_symbols.end();
898     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
899       if (pos->ValueIsAddress()) {
900         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
901         entry.SetByteSize(pos->GetByteSize());
902         entry.data = std::distance(begin, pos);
903         m_file_addr_to_index.Append(entry);
904       }
905     }
906     const size_t num_entries = m_file_addr_to_index.GetSize();
907     if (num_entries > 0) {
908       m_file_addr_to_index.Sort();
909 
910       // Create a RangeVector with the start & size of all the sections for
911       // this objfile.  We'll need to check this for any FileRangeToIndexMap
912       // entries with an uninitialized size, which could potentially be a large
913       // number so reconstituting the weak pointer is busywork when it is
914       // invariant information.
915       SectionList *sectlist = m_objfile->GetSectionList();
916       RangeVector<addr_t, addr_t> section_ranges;
917       if (sectlist) {
918         AddSectionsToRangeMap(sectlist, section_ranges);
919         section_ranges.Sort();
920       }
921 
922       // Iterate through the FileRangeToIndexMap and fill in the size for any
923       // entries that didn't already have a size from the Symbol (e.g. if we
924       // have a plain linker symbol with an address only, instead of debug info
925       // where we get an address and a size and a type, etc.)
926       for (size_t i = 0; i < num_entries; i++) {
927         FileRangeToIndexMap::Entry *entry =
928             m_file_addr_to_index.GetMutableEntryAtIndex(i);
929         if (entry->GetByteSize() == 0) {
930           addr_t curr_base_addr = entry->GetRangeBase();
931           const RangeVector<addr_t, addr_t>::Entry *containing_section =
932               section_ranges.FindEntryThatContains(curr_base_addr);
933 
934           // Use the end of the section as the default max size of the symbol
935           addr_t sym_size = 0;
936           if (containing_section) {
937             sym_size =
938                 containing_section->GetByteSize() -
939                 (entry->GetRangeBase() - containing_section->GetRangeBase());
940           }
941 
942           for (size_t j = i; j < num_entries; j++) {
943             FileRangeToIndexMap::Entry *next_entry =
944                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
945             addr_t next_base_addr = next_entry->GetRangeBase();
946             if (next_base_addr > curr_base_addr) {
947               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
948 
949               // Take the difference between this symbol and the next one as
950               // its size, if it is less than the size of the section.
951               if (sym_size == 0 || size_to_next_symbol < sym_size) {
952                 sym_size = size_to_next_symbol;
953               }
954               break;
955             }
956           }
957 
958           if (sym_size > 0) {
959             entry->SetByteSize(sym_size);
960             Symbol &symbol = m_symbols[entry->data];
961             symbol.SetByteSize(sym_size);
962             symbol.SetSizeIsSynthesized(true);
963           }
964         }
965       }
966 
967       // Sort again in case the range size changes the ordering
968       m_file_addr_to_index.Sort();
969     }
970   }
971 }
972 
973 void Symtab::CalculateSymbolSizes() {
974   std::lock_guard<std::recursive_mutex> guard(m_mutex);
975   // Size computation happens inside InitAddressIndexes.
976   InitAddressIndexes();
977 }
978 
979 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
980   std::lock_guard<std::recursive_mutex> guard(m_mutex);
981   if (!m_file_addr_to_index_computed)
982     InitAddressIndexes();
983 
984   const FileRangeToIndexMap::Entry *entry =
985       m_file_addr_to_index.FindEntryStartsAt(file_addr);
986   if (entry) {
987     Symbol *symbol = SymbolAtIndex(entry->data);
988     if (symbol->GetFileAddress() == file_addr)
989       return symbol;
990   }
991   return nullptr;
992 }
993 
994 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
995   std::lock_guard<std::recursive_mutex> guard(m_mutex);
996 
997   if (!m_file_addr_to_index_computed)
998     InitAddressIndexes();
999 
1000   const FileRangeToIndexMap::Entry *entry =
1001       m_file_addr_to_index.FindEntryThatContains(file_addr);
1002   if (entry) {
1003     Symbol *symbol = SymbolAtIndex(entry->data);
1004     if (symbol->ContainsFileAddress(file_addr))
1005       return symbol;
1006   }
1007   return nullptr;
1008 }
1009 
1010 void Symtab::ForEachSymbolContainingFileAddress(
1011     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1012   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1013 
1014   if (!m_file_addr_to_index_computed)
1015     InitAddressIndexes();
1016 
1017   std::vector<uint32_t> all_addr_indexes;
1018 
1019   // Get all symbols with file_addr
1020   const size_t addr_match_count =
1021       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1022                                                        all_addr_indexes);
1023 
1024   for (size_t i = 0; i < addr_match_count; ++i) {
1025     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1026     if (symbol->ContainsFileAddress(file_addr)) {
1027       if (!callback(symbol))
1028         break;
1029     }
1030   }
1031 }
1032 
1033 void Symtab::SymbolIndicesToSymbolContextList(
1034     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1035   // No need to protect this call using m_mutex all other method calls are
1036   // already thread safe.
1037 
1038   const bool merge_symbol_into_function = true;
1039   size_t num_indices = symbol_indexes.size();
1040   if (num_indices > 0) {
1041     SymbolContext sc;
1042     sc.module_sp = m_objfile->GetModule();
1043     for (size_t i = 0; i < num_indices; i++) {
1044       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1045       if (sc.symbol)
1046         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1047     }
1048   }
1049 }
1050 
1051 size_t Symtab::FindFunctionSymbols(ConstString name,
1052                                    uint32_t name_type_mask,
1053                                    SymbolContextList &sc_list) {
1054   size_t count = 0;
1055   std::vector<uint32_t> symbol_indexes;
1056 
1057   // eFunctionNameTypeAuto should be pre-resolved by a call to
1058   // Module::LookupInfo::LookupInfo()
1059   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1060 
1061   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1062     std::vector<uint32_t> temp_symbol_indexes;
1063     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1064 
1065     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1066     if (temp_symbol_indexes_size > 0) {
1067       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1068       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1069         SymbolContext sym_ctx;
1070         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1071         if (sym_ctx.symbol) {
1072           switch (sym_ctx.symbol->GetType()) {
1073           case eSymbolTypeCode:
1074           case eSymbolTypeResolver:
1075           case eSymbolTypeReExported:
1076             symbol_indexes.push_back(temp_symbol_indexes[i]);
1077             break;
1078           default:
1079             break;
1080           }
1081         }
1082       }
1083     }
1084   }
1085 
1086   if (name_type_mask & eFunctionNameTypeBase) {
1087     // From mangled names we can't tell what is a basename and what is a method
1088     // name, so we just treat them the same
1089     if (!m_name_indexes_computed)
1090       InitNameIndexes();
1091 
1092     if (!m_basename_to_index.IsEmpty()) {
1093       const UniqueCStringMap<uint32_t>::Entry *match;
1094       for (match = m_basename_to_index.FindFirstValueForName(name);
1095            match != nullptr;
1096            match = m_basename_to_index.FindNextValueForName(match)) {
1097         symbol_indexes.push_back(match->value);
1098       }
1099     }
1100   }
1101 
1102   if (name_type_mask & eFunctionNameTypeMethod) {
1103     if (!m_name_indexes_computed)
1104       InitNameIndexes();
1105 
1106     if (!m_method_to_index.IsEmpty()) {
1107       const UniqueCStringMap<uint32_t>::Entry *match;
1108       for (match = m_method_to_index.FindFirstValueForName(name);
1109            match != nullptr;
1110            match = m_method_to_index.FindNextValueForName(match)) {
1111         symbol_indexes.push_back(match->value);
1112       }
1113     }
1114   }
1115 
1116   if (name_type_mask & eFunctionNameTypeSelector) {
1117     if (!m_name_indexes_computed)
1118       InitNameIndexes();
1119 
1120     if (!m_selector_to_index.IsEmpty()) {
1121       const UniqueCStringMap<uint32_t>::Entry *match;
1122       for (match = m_selector_to_index.FindFirstValueForName(name);
1123            match != nullptr;
1124            match = m_selector_to_index.FindNextValueForName(match)) {
1125         symbol_indexes.push_back(match->value);
1126       }
1127     }
1128   }
1129 
1130   if (!symbol_indexes.empty()) {
1131     llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
1132     symbol_indexes.erase(
1133         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1134         symbol_indexes.end());
1135     count = symbol_indexes.size();
1136     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1137   }
1138 
1139   return count;
1140 }
1141 
1142 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1143   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1144   if (child_idx != UINT32_MAX && child_idx > 0) {
1145     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1146       const Symbol *symbol = SymbolAtIndex(idx);
1147       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1148       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1149         return symbol;
1150     }
1151   }
1152   return NULL;
1153 }
1154