1 //===-- Symtab.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "lldb/Core/Module.h"
13 #include "lldb/Core/RichManglingContext.h"
14 #include "lldb/Core/Section.h"
15 #include "lldb/Symbol/ObjectFile.h"
16 #include "lldb/Symbol/Symbol.h"
17 #include "lldb/Symbol/SymbolContext.h"
18 #include "lldb/Symbol/Symtab.h"
19 #include "lldb/Target/Language.h"
20 #include "lldb/Utility/RegularExpression.h"
21 #include "lldb/Utility/Stream.h"
22 #include "lldb/Utility/Timer.h"
23 
24 #include "llvm/ADT/StringRef.h"
25 
26 using namespace lldb;
27 using namespace lldb_private;
28 
29 Symtab::Symtab(ObjectFile *objfile)
30     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
31       m_name_to_symbol_indices(), m_mutex(),
32       m_file_addr_to_index_computed(false), m_name_indexes_computed(false) {
33   m_name_to_symbol_indices.emplace(std::make_pair(
34       lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
35   m_name_to_symbol_indices.emplace(std::make_pair(
36       lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
37   m_name_to_symbol_indices.emplace(std::make_pair(
38       lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
39   m_name_to_symbol_indices.emplace(std::make_pair(
40       lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
41 }
42 
43 Symtab::~Symtab() = default;
44 
45 void Symtab::Reserve(size_t count) {
46   // Clients should grab the mutex from this symbol table and lock it manually
47   // when calling this function to avoid performance issues.
48   m_symbols.reserve(count);
49 }
50 
51 Symbol *Symtab::Resize(size_t count) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   m_symbols.resize(count);
55   return m_symbols.empty() ? nullptr : &m_symbols[0];
56 }
57 
58 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
59   // Clients should grab the mutex from this symbol table and lock it manually
60   // when calling this function to avoid performance issues.
61   uint32_t symbol_idx = m_symbols.size();
62   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
63   name_to_index.Clear();
64   m_file_addr_to_index.Clear();
65   m_symbols.push_back(symbol);
66   m_file_addr_to_index_computed = false;
67   m_name_indexes_computed = false;
68   return symbol_idx;
69 }
70 
71 size_t Symtab::GetNumSymbols() const {
72   std::lock_guard<std::recursive_mutex> guard(m_mutex);
73   return m_symbols.size();
74 }
75 
76 void Symtab::SectionFileAddressesChanged() {
77   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
78   name_to_index.Clear();
79   m_file_addr_to_index_computed = false;
80 }
81 
82 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
83                   Mangled::NamePreference name_preference) {
84   std::lock_guard<std::recursive_mutex> guard(m_mutex);
85 
86   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
87   s->Indent();
88   const FileSpec &file_spec = m_objfile->GetFileSpec();
89   const char *object_name = nullptr;
90   if (m_objfile->GetModule())
91     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
92 
93   if (file_spec)
94     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
95               file_spec.GetPath().c_str(), object_name ? "(" : "",
96               object_name ? object_name : "", object_name ? ")" : "",
97               (uint64_t)m_symbols.size());
98   else
99     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
100 
101   if (!m_symbols.empty()) {
102     switch (sort_order) {
103     case eSortOrderNone: {
104       s->PutCString(":\n");
105       DumpSymbolHeader(s);
106       const_iterator begin = m_symbols.begin();
107       const_iterator end = m_symbols.end();
108       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
109         s->Indent();
110         pos->Dump(s, target, std::distance(begin, pos), name_preference);
111       }
112     } break;
113 
114     case eSortOrderByName: {
115       // Although we maintain a lookup by exact name map, the table isn't
116       // sorted by name. So we must make the ordered symbol list up ourselves.
117       s->PutCString(" (sorted by name):\n");
118       DumpSymbolHeader(s);
119 
120       std::multimap<llvm::StringRef, const Symbol *> name_map;
121       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
122            pos != end; ++pos) {
123         const char *name = pos->GetName().AsCString();
124         if (name && name[0])
125           name_map.insert(std::make_pair(name, &(*pos)));
126       }
127 
128       for (const auto &name_to_symbol : name_map) {
129         const Symbol *symbol = name_to_symbol.second;
130         s->Indent();
131         symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
132       }
133     } break;
134 
135     case eSortOrderByAddress:
136       s->PutCString(" (sorted by address):\n");
137       DumpSymbolHeader(s);
138       if (!m_file_addr_to_index_computed)
139         InitAddressIndexes();
140       const size_t num_entries = m_file_addr_to_index.GetSize();
141       for (size_t i = 0; i < num_entries; ++i) {
142         s->Indent();
143         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
144         m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
145       }
146       break;
147     }
148   } else {
149     s->PutCString("\n");
150   }
151 }
152 
153 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
154                   Mangled::NamePreference name_preference) const {
155   std::lock_guard<std::recursive_mutex> guard(m_mutex);
156 
157   const size_t num_symbols = GetNumSymbols();
158   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
159   s->Indent();
160   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
161             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
162   s->IndentMore();
163 
164   if (!indexes.empty()) {
165     std::vector<uint32_t>::const_iterator pos;
166     std::vector<uint32_t>::const_iterator end = indexes.end();
167     DumpSymbolHeader(s);
168     for (pos = indexes.begin(); pos != end; ++pos) {
169       size_t idx = *pos;
170       if (idx < num_symbols) {
171         s->Indent();
172         m_symbols[idx].Dump(s, target, idx, name_preference);
173       }
174     }
175   }
176   s->IndentLess();
177 }
178 
179 void Symtab::DumpSymbolHeader(Stream *s) {
180   s->Indent("               Debug symbol\n");
181   s->Indent("               |Synthetic symbol\n");
182   s->Indent("               ||Externally Visible\n");
183   s->Indent("               |||\n");
184   s->Indent("Index   UserID DSX Type            File Address/Value Load "
185             "Address       Size               Flags      Name\n");
186   s->Indent("------- ------ --- --------------- ------------------ "
187             "------------------ ------------------ ---------- "
188             "----------------------------------\n");
189 }
190 
191 static int CompareSymbolID(const void *key, const void *p) {
192   const user_id_t match_uid = *(const user_id_t *)key;
193   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
194   if (match_uid < symbol_uid)
195     return -1;
196   if (match_uid > symbol_uid)
197     return 1;
198   return 0;
199 }
200 
201 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
202   std::lock_guard<std::recursive_mutex> guard(m_mutex);
203 
204   Symbol *symbol =
205       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
206                           sizeof(m_symbols[0]), CompareSymbolID);
207   return symbol;
208 }
209 
210 Symbol *Symtab::SymbolAtIndex(size_t idx) {
211   // Clients should grab the mutex from this symbol table and lock it manually
212   // when calling this function to avoid performance issues.
213   if (idx < m_symbols.size())
214     return &m_symbols[idx];
215   return nullptr;
216 }
217 
218 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
219   // Clients should grab the mutex from this symbol table and lock it manually
220   // when calling this function to avoid performance issues.
221   if (idx < m_symbols.size())
222     return &m_symbols[idx];
223   return nullptr;
224 }
225 
226 static bool lldb_skip_name(llvm::StringRef mangled,
227                            Mangled::ManglingScheme scheme) {
228   switch (scheme) {
229   case Mangled::eManglingSchemeItanium: {
230     if (mangled.size() < 3 || !mangled.startswith("_Z"))
231       return true;
232 
233     // Avoid the following types of symbols in the index.
234     switch (mangled[2]) {
235     case 'G': // guard variables
236     case 'T': // virtual tables, VTT structures, typeinfo structures + names
237     case 'Z': // named local entities (if we eventually handle
238               // eSymbolTypeData, we will want this back)
239       return true;
240 
241     default:
242       break;
243     }
244 
245     // Include this name in the index.
246     return false;
247   }
248 
249   // No filters for this scheme yet. Include all names in indexing.
250   case Mangled::eManglingSchemeMSVC:
251     return false;
252 
253   // No filters for this scheme yet. Include all names in indexing.
254   case Mangled::eManglingSchemeRustV0:
255     return false;
256 
257   // Don't try and demangle things we can't categorize.
258   case Mangled::eManglingSchemeNone:
259     return true;
260   }
261   llvm_unreachable("unknown scheme!");
262 }
263 
264 void Symtab::InitNameIndexes() {
265   // Protected function, no need to lock mutex...
266   if (!m_name_indexes_computed) {
267     m_name_indexes_computed = true;
268     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
269     LLDB_SCOPED_TIMER();
270 
271     // Collect all loaded language plugins.
272     std::vector<Language *> languages;
273     Language::ForEach([&languages](Language *l) {
274       languages.push_back(l);
275       return true;
276     });
277 
278     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
279     auto &basename_to_index =
280         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
281     auto &method_to_index =
282         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
283     auto &selector_to_index =
284         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
285     // Create the name index vector to be able to quickly search by name
286     const size_t num_symbols = m_symbols.size();
287     name_to_index.Reserve(num_symbols);
288 
289     // The "const char *" in "class_contexts" and backlog::value_type::second
290     // must come from a ConstString::GetCString()
291     std::set<const char *> class_contexts;
292     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
293     backlog.reserve(num_symbols / 2);
294 
295     // Instantiation of the demangler is expensive, so better use a single one
296     // for all entries during batch processing.
297     RichManglingContext rmc;
298     for (uint32_t value = 0; value < num_symbols; ++value) {
299       Symbol *symbol = &m_symbols[value];
300 
301       // Don't let trampolines get into the lookup by name map If we ever need
302       // the trampoline symbols to be searchable by name we can remove this and
303       // then possibly add a new bool to any of the Symtab functions that
304       // lookup symbols by name to indicate if they want trampolines. We also
305       // don't want any synthetic symbols with auto generated names in the
306       // name lookups.
307       if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
308         continue;
309 
310       // If the symbol's name string matched a Mangled::ManglingScheme, it is
311       // stored in the mangled field.
312       Mangled &mangled = symbol->GetMangled();
313       if (ConstString name = mangled.GetMangledName()) {
314         name_to_index.Append(name, value);
315 
316         if (symbol->ContainsLinkerAnnotations()) {
317           // If the symbol has linker annotations, also add the version without
318           // the annotations.
319           ConstString stripped = ConstString(
320               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
321           name_to_index.Append(stripped, value);
322         }
323 
324         const SymbolType type = symbol->GetType();
325         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
326           if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
327             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
328         }
329       }
330 
331       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
332       // stored in the demangled field.
333       if (ConstString name = mangled.GetDemangledName()) {
334         name_to_index.Append(name, value);
335 
336         if (symbol->ContainsLinkerAnnotations()) {
337           // If the symbol has linker annotations, also add the version without
338           // the annotations.
339           name = ConstString(
340               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
341           name_to_index.Append(name, value);
342         }
343 
344         // If the demangled name turns out to be an ObjC name, and is a category
345         // name, add the version without categories to the index too.
346         for (Language *lang : languages) {
347           for (auto variant : lang->GetMethodNameVariants(name)) {
348             if (variant.GetType() & lldb::eFunctionNameTypeSelector)
349               selector_to_index.Append(variant.GetName(), value);
350             else if (variant.GetType() & lldb::eFunctionNameTypeFull)
351               name_to_index.Append(variant.GetName(), value);
352             else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
353               method_to_index.Append(variant.GetName(), value);
354             else if (variant.GetType() & lldb::eFunctionNameTypeBase)
355               basename_to_index.Append(variant.GetName(), value);
356           }
357         }
358       }
359     }
360 
361     for (const auto &record : backlog) {
362       RegisterBacklogEntry(record.first, record.second, class_contexts);
363     }
364 
365     name_to_index.Sort();
366     name_to_index.SizeToFit();
367     selector_to_index.Sort();
368     selector_to_index.SizeToFit();
369     basename_to_index.Sort();
370     basename_to_index.SizeToFit();
371     method_to_index.Sort();
372     method_to_index.SizeToFit();
373   }
374 }
375 
376 void Symtab::RegisterMangledNameEntry(
377     uint32_t value, std::set<const char *> &class_contexts,
378     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
379     RichManglingContext &rmc) {
380   // Only register functions that have a base name.
381   rmc.ParseFunctionBaseName();
382   llvm::StringRef base_name = rmc.GetBufferRef();
383   if (base_name.empty())
384     return;
385 
386   // The base name will be our entry's name.
387   NameToIndexMap::Entry entry(ConstString(base_name), value);
388 
389   rmc.ParseFunctionDeclContextName();
390   llvm::StringRef decl_context = rmc.GetBufferRef();
391 
392   // Register functions with no context.
393   if (decl_context.empty()) {
394     // This has to be a basename
395     auto &basename_to_index =
396         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
397     basename_to_index.Append(entry);
398     // If there is no context (no namespaces or class scopes that come before
399     // the function name) then this also could be a fullname.
400     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
401     name_to_index.Append(entry);
402     return;
403   }
404 
405   // Make sure we have a pool-string pointer and see if we already know the
406   // context name.
407   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
408   auto it = class_contexts.find(decl_context_ccstr);
409 
410   auto &method_to_index =
411       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
412   // Register constructors and destructors. They are methods and create
413   // declaration contexts.
414   if (rmc.IsCtorOrDtor()) {
415     method_to_index.Append(entry);
416     if (it == class_contexts.end())
417       class_contexts.insert(it, decl_context_ccstr);
418     return;
419   }
420 
421   // Register regular methods with a known declaration context.
422   if (it != class_contexts.end()) {
423     method_to_index.Append(entry);
424     return;
425   }
426 
427   // Regular methods in unknown declaration contexts are put to the backlog. We
428   // will revisit them once we processed all remaining symbols.
429   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
430 }
431 
432 void Symtab::RegisterBacklogEntry(
433     const NameToIndexMap::Entry &entry, const char *decl_context,
434     const std::set<const char *> &class_contexts) {
435   auto &method_to_index =
436       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
437   auto it = class_contexts.find(decl_context);
438   if (it != class_contexts.end()) {
439     method_to_index.Append(entry);
440   } else {
441     // If we got here, we have something that had a context (was inside
442     // a namespace or class) yet we don't know the entry
443     method_to_index.Append(entry);
444     auto &basename_to_index =
445         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
446     basename_to_index.Append(entry);
447   }
448 }
449 
450 void Symtab::PreloadSymbols() {
451   std::lock_guard<std::recursive_mutex> guard(m_mutex);
452   InitNameIndexes();
453 }
454 
455 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
456                                     bool add_demangled, bool add_mangled,
457                                     NameToIndexMap &name_to_index_map) const {
458   LLDB_SCOPED_TIMER();
459   if (add_demangled || add_mangled) {
460     std::lock_guard<std::recursive_mutex> guard(m_mutex);
461 
462     // Create the name index vector to be able to quickly search by name
463     const size_t num_indexes = indexes.size();
464     for (size_t i = 0; i < num_indexes; ++i) {
465       uint32_t value = indexes[i];
466       assert(i < m_symbols.size());
467       const Symbol *symbol = &m_symbols[value];
468 
469       const Mangled &mangled = symbol->GetMangled();
470       if (add_demangled) {
471         if (ConstString name = mangled.GetDemangledName())
472           name_to_index_map.Append(name, value);
473       }
474 
475       if (add_mangled) {
476         if (ConstString name = mangled.GetMangledName())
477           name_to_index_map.Append(name, value);
478       }
479     }
480   }
481 }
482 
483 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
484                                              std::vector<uint32_t> &indexes,
485                                              uint32_t start_idx,
486                                              uint32_t end_index) const {
487   std::lock_guard<std::recursive_mutex> guard(m_mutex);
488 
489   uint32_t prev_size = indexes.size();
490 
491   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
492 
493   for (uint32_t i = start_idx; i < count; ++i) {
494     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
495       indexes.push_back(i);
496   }
497 
498   return indexes.size() - prev_size;
499 }
500 
501 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
502     SymbolType symbol_type, uint32_t flags_value,
503     std::vector<uint32_t> &indexes, uint32_t start_idx,
504     uint32_t end_index) const {
505   std::lock_guard<std::recursive_mutex> guard(m_mutex);
506 
507   uint32_t prev_size = indexes.size();
508 
509   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
510 
511   for (uint32_t i = start_idx; i < count; ++i) {
512     if ((symbol_type == eSymbolTypeAny ||
513          m_symbols[i].GetType() == symbol_type) &&
514         m_symbols[i].GetFlags() == flags_value)
515       indexes.push_back(i);
516   }
517 
518   return indexes.size() - prev_size;
519 }
520 
521 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
522                                              Debug symbol_debug_type,
523                                              Visibility symbol_visibility,
524                                              std::vector<uint32_t> &indexes,
525                                              uint32_t start_idx,
526                                              uint32_t end_index) const {
527   std::lock_guard<std::recursive_mutex> guard(m_mutex);
528 
529   uint32_t prev_size = indexes.size();
530 
531   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
532 
533   for (uint32_t i = start_idx; i < count; ++i) {
534     if (symbol_type == eSymbolTypeAny ||
535         m_symbols[i].GetType() == symbol_type) {
536       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
537         indexes.push_back(i);
538     }
539   }
540 
541   return indexes.size() - prev_size;
542 }
543 
544 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
545   if (!m_symbols.empty()) {
546     const Symbol *first_symbol = &m_symbols[0];
547     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
548       return symbol - first_symbol;
549   }
550   return UINT32_MAX;
551 }
552 
553 struct SymbolSortInfo {
554   const bool sort_by_load_addr;
555   const Symbol *symbols;
556 };
557 
558 namespace {
559 struct SymbolIndexComparator {
560   const std::vector<Symbol> &symbols;
561   std::vector<lldb::addr_t> &addr_cache;
562 
563   // Getting from the symbol to the Address to the File Address involves some
564   // work. Since there are potentially many symbols here, and we're using this
565   // for sorting so we're going to be computing the address many times, cache
566   // that in addr_cache. The array passed in has to be the same size as the
567   // symbols array passed into the member variable symbols, and should be
568   // initialized with LLDB_INVALID_ADDRESS.
569   // NOTE: You have to make addr_cache externally and pass it in because
570   // std::stable_sort
571   // makes copies of the comparator it is initially passed in, and you end up
572   // spending huge amounts of time copying this array...
573 
574   SymbolIndexComparator(const std::vector<Symbol> &s,
575                         std::vector<lldb::addr_t> &a)
576       : symbols(s), addr_cache(a) {
577     assert(symbols.size() == addr_cache.size());
578   }
579   bool operator()(uint32_t index_a, uint32_t index_b) {
580     addr_t value_a = addr_cache[index_a];
581     if (value_a == LLDB_INVALID_ADDRESS) {
582       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
583       addr_cache[index_a] = value_a;
584     }
585 
586     addr_t value_b = addr_cache[index_b];
587     if (value_b == LLDB_INVALID_ADDRESS) {
588       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
589       addr_cache[index_b] = value_b;
590     }
591 
592     if (value_a == value_b) {
593       // The if the values are equal, use the original symbol user ID
594       lldb::user_id_t uid_a = symbols[index_a].GetID();
595       lldb::user_id_t uid_b = symbols[index_b].GetID();
596       if (uid_a < uid_b)
597         return true;
598       if (uid_a > uid_b)
599         return false;
600       return false;
601     } else if (value_a < value_b)
602       return true;
603 
604     return false;
605   }
606 };
607 }
608 
609 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
610                                       bool remove_duplicates) const {
611   std::lock_guard<std::recursive_mutex> guard(m_mutex);
612   LLDB_SCOPED_TIMER();
613   // No need to sort if we have zero or one items...
614   if (indexes.size() <= 1)
615     return;
616 
617   // Sort the indexes in place using std::stable_sort.
618   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
619   // for performance, not correctness.  The indexes vector tends to be "close"
620   // to sorted, which the stable sort handles better.
621 
622   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
623 
624   SymbolIndexComparator comparator(m_symbols, addr_cache);
625   std::stable_sort(indexes.begin(), indexes.end(), comparator);
626 
627   // Remove any duplicates if requested
628   if (remove_duplicates) {
629     auto last = std::unique(indexes.begin(), indexes.end());
630     indexes.erase(last, indexes.end());
631   }
632 }
633 
634 uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
635                                 std::vector<uint32_t> &indexes) {
636   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
637   const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
638   if (count)
639     return count;
640   // Synthetic symbol names are not added to the name indexes, but they start
641   // with a prefix and end with a the symbol UserID. This allows users to find
642   // these symbols without having to add them to the name indexes. These
643   // queries will not happen very often since the names don't mean anything, so
644   // performance is not paramount in this case.
645   llvm::StringRef name = symbol_name.GetStringRef();
646   // String the synthetic prefix if the name starts with it.
647   if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
648     return 0; // Not a synthetic symbol name
649 
650   // Extract the user ID from the symbol name
651   unsigned long long uid = 0;
652   if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
653     return 0; // Failed to extract the user ID as an integer
654   Symbol *symbol = FindSymbolByID(uid);
655   if (symbol == nullptr)
656     return 0;
657   const uint32_t symbol_idx = GetIndexForSymbol(symbol);
658   if (symbol_idx == UINT32_MAX)
659     return 0;
660   indexes.push_back(symbol_idx);
661   return 1;
662 }
663 
664 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
665                                              std::vector<uint32_t> &indexes) {
666   std::lock_guard<std::recursive_mutex> guard(m_mutex);
667 
668   LLDB_SCOPED_TIMER();
669   if (symbol_name) {
670     if (!m_name_indexes_computed)
671       InitNameIndexes();
672 
673     return GetNameIndexes(symbol_name, indexes);
674   }
675   return 0;
676 }
677 
678 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
679                                              Debug symbol_debug_type,
680                                              Visibility symbol_visibility,
681                                              std::vector<uint32_t> &indexes) {
682   std::lock_guard<std::recursive_mutex> guard(m_mutex);
683 
684   LLDB_SCOPED_TIMER();
685   if (symbol_name) {
686     const size_t old_size = indexes.size();
687     if (!m_name_indexes_computed)
688       InitNameIndexes();
689 
690     std::vector<uint32_t> all_name_indexes;
691     const size_t name_match_count =
692         GetNameIndexes(symbol_name, all_name_indexes);
693     for (size_t i = 0; i < name_match_count; ++i) {
694       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
695                              symbol_visibility))
696         indexes.push_back(all_name_indexes[i]);
697     }
698     return indexes.size() - old_size;
699   }
700   return 0;
701 }
702 
703 uint32_t
704 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
705                                            SymbolType symbol_type,
706                                            std::vector<uint32_t> &indexes) {
707   std::lock_guard<std::recursive_mutex> guard(m_mutex);
708 
709   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
710     std::vector<uint32_t>::iterator pos = indexes.begin();
711     while (pos != indexes.end()) {
712       if (symbol_type == eSymbolTypeAny ||
713           m_symbols[*pos].GetType() == symbol_type)
714         ++pos;
715       else
716         pos = indexes.erase(pos);
717     }
718   }
719   return indexes.size();
720 }
721 
722 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
723     ConstString symbol_name, SymbolType symbol_type,
724     Debug symbol_debug_type, Visibility symbol_visibility,
725     std::vector<uint32_t> &indexes) {
726   std::lock_guard<std::recursive_mutex> guard(m_mutex);
727 
728   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
729                                   symbol_visibility, indexes) > 0) {
730     std::vector<uint32_t>::iterator pos = indexes.begin();
731     while (pos != indexes.end()) {
732       if (symbol_type == eSymbolTypeAny ||
733           m_symbols[*pos].GetType() == symbol_type)
734         ++pos;
735       else
736         pos = indexes.erase(pos);
737     }
738   }
739   return indexes.size();
740 }
741 
742 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
743     const RegularExpression &regexp, SymbolType symbol_type,
744     std::vector<uint32_t> &indexes) {
745   std::lock_guard<std::recursive_mutex> guard(m_mutex);
746 
747   uint32_t prev_size = indexes.size();
748   uint32_t sym_end = m_symbols.size();
749 
750   for (uint32_t i = 0; i < sym_end; i++) {
751     if (symbol_type == eSymbolTypeAny ||
752         m_symbols[i].GetType() == symbol_type) {
753       const char *name = m_symbols[i].GetName().AsCString();
754       if (name) {
755         if (regexp.Execute(name))
756           indexes.push_back(i);
757       }
758     }
759   }
760   return indexes.size() - prev_size;
761 }
762 
763 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
764     const RegularExpression &regexp, SymbolType symbol_type,
765     Debug symbol_debug_type, Visibility symbol_visibility,
766     std::vector<uint32_t> &indexes) {
767   std::lock_guard<std::recursive_mutex> guard(m_mutex);
768 
769   uint32_t prev_size = indexes.size();
770   uint32_t sym_end = m_symbols.size();
771 
772   for (uint32_t i = 0; i < sym_end; i++) {
773     if (symbol_type == eSymbolTypeAny ||
774         m_symbols[i].GetType() == symbol_type) {
775       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
776         continue;
777 
778       const char *name = m_symbols[i].GetName().AsCString();
779       if (name) {
780         if (regexp.Execute(name))
781           indexes.push_back(i);
782       }
783     }
784   }
785   return indexes.size() - prev_size;
786 }
787 
788 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
789                                    Debug symbol_debug_type,
790                                    Visibility symbol_visibility,
791                                    uint32_t &start_idx) {
792   std::lock_guard<std::recursive_mutex> guard(m_mutex);
793 
794   const size_t count = m_symbols.size();
795   for (size_t idx = start_idx; idx < count; ++idx) {
796     if (symbol_type == eSymbolTypeAny ||
797         m_symbols[idx].GetType() == symbol_type) {
798       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
799         start_idx = idx;
800         return &m_symbols[idx];
801       }
802     }
803   }
804   return nullptr;
805 }
806 
807 void
808 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
809                                       SymbolType symbol_type,
810                                       std::vector<uint32_t> &symbol_indexes) {
811   std::lock_guard<std::recursive_mutex> guard(m_mutex);
812 
813   LLDB_SCOPED_TIMER();
814   // Initialize all of the lookup by name indexes before converting NAME to a
815   // uniqued string NAME_STR below.
816   if (!m_name_indexes_computed)
817     InitNameIndexes();
818 
819   if (name) {
820     // The string table did have a string that matched, but we need to check
821     // the symbols and match the symbol_type if any was given.
822     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
823   }
824 }
825 
826 void Symtab::FindAllSymbolsWithNameAndType(
827     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
828     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
829   std::lock_guard<std::recursive_mutex> guard(m_mutex);
830 
831   LLDB_SCOPED_TIMER();
832   // Initialize all of the lookup by name indexes before converting NAME to a
833   // uniqued string NAME_STR below.
834   if (!m_name_indexes_computed)
835     InitNameIndexes();
836 
837   if (name) {
838     // The string table did have a string that matched, but we need to check
839     // the symbols and match the symbol_type if any was given.
840     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
841                                        symbol_visibility, symbol_indexes);
842   }
843 }
844 
845 void Symtab::FindAllSymbolsMatchingRexExAndType(
846     const RegularExpression &regex, SymbolType symbol_type,
847     Debug symbol_debug_type, Visibility symbol_visibility,
848     std::vector<uint32_t> &symbol_indexes) {
849   std::lock_guard<std::recursive_mutex> guard(m_mutex);
850 
851   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
852                                           symbol_visibility, symbol_indexes);
853 }
854 
855 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
856                                                SymbolType symbol_type,
857                                                Debug symbol_debug_type,
858                                                Visibility symbol_visibility) {
859   std::lock_guard<std::recursive_mutex> guard(m_mutex);
860   LLDB_SCOPED_TIMER();
861   if (!m_name_indexes_computed)
862     InitNameIndexes();
863 
864   if (name) {
865     std::vector<uint32_t> matching_indexes;
866     // The string table did have a string that matched, but we need to check
867     // the symbols and match the symbol_type if any was given.
868     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
869                                            symbol_visibility,
870                                            matching_indexes)) {
871       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
872       for (pos = matching_indexes.begin(); pos != end; ++pos) {
873         Symbol *symbol = SymbolAtIndex(*pos);
874 
875         if (symbol->Compare(name, symbol_type))
876           return symbol;
877       }
878     }
879   }
880   return nullptr;
881 }
882 
883 typedef struct {
884   const Symtab *symtab;
885   const addr_t file_addr;
886   Symbol *match_symbol;
887   const uint32_t *match_index_ptr;
888   addr_t match_offset;
889 } SymbolSearchInfo;
890 
891 // Add all the section file start address & size to the RangeVector, recusively
892 // adding any children sections.
893 static void AddSectionsToRangeMap(SectionList *sectlist,
894                                   RangeVector<addr_t, addr_t> &section_ranges) {
895   const int num_sections = sectlist->GetNumSections(0);
896   for (int i = 0; i < num_sections; i++) {
897     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
898     if (sect_sp) {
899       SectionList &child_sectlist = sect_sp->GetChildren();
900 
901       // If this section has children, add the children to the RangeVector.
902       // Else add this section to the RangeVector.
903       if (child_sectlist.GetNumSections(0) > 0) {
904         AddSectionsToRangeMap(&child_sectlist, section_ranges);
905       } else {
906         size_t size = sect_sp->GetByteSize();
907         if (size > 0) {
908           addr_t base_addr = sect_sp->GetFileAddress();
909           RangeVector<addr_t, addr_t>::Entry entry;
910           entry.SetRangeBase(base_addr);
911           entry.SetByteSize(size);
912           section_ranges.Append(entry);
913         }
914       }
915     }
916   }
917 }
918 
919 void Symtab::InitAddressIndexes() {
920   // Protected function, no need to lock mutex...
921   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
922     m_file_addr_to_index_computed = true;
923 
924     FileRangeToIndexMap::Entry entry;
925     const_iterator begin = m_symbols.begin();
926     const_iterator end = m_symbols.end();
927     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
928       if (pos->ValueIsAddress()) {
929         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
930         entry.SetByteSize(pos->GetByteSize());
931         entry.data = std::distance(begin, pos);
932         m_file_addr_to_index.Append(entry);
933       }
934     }
935     const size_t num_entries = m_file_addr_to_index.GetSize();
936     if (num_entries > 0) {
937       m_file_addr_to_index.Sort();
938 
939       // Create a RangeVector with the start & size of all the sections for
940       // this objfile.  We'll need to check this for any FileRangeToIndexMap
941       // entries with an uninitialized size, which could potentially be a large
942       // number so reconstituting the weak pointer is busywork when it is
943       // invariant information.
944       SectionList *sectlist = m_objfile->GetSectionList();
945       RangeVector<addr_t, addr_t> section_ranges;
946       if (sectlist) {
947         AddSectionsToRangeMap(sectlist, section_ranges);
948         section_ranges.Sort();
949       }
950 
951       // Iterate through the FileRangeToIndexMap and fill in the size for any
952       // entries that didn't already have a size from the Symbol (e.g. if we
953       // have a plain linker symbol with an address only, instead of debug info
954       // where we get an address and a size and a type, etc.)
955       for (size_t i = 0; i < num_entries; i++) {
956         FileRangeToIndexMap::Entry *entry =
957             m_file_addr_to_index.GetMutableEntryAtIndex(i);
958         if (entry->GetByteSize() == 0) {
959           addr_t curr_base_addr = entry->GetRangeBase();
960           const RangeVector<addr_t, addr_t>::Entry *containing_section =
961               section_ranges.FindEntryThatContains(curr_base_addr);
962 
963           // Use the end of the section as the default max size of the symbol
964           addr_t sym_size = 0;
965           if (containing_section) {
966             sym_size =
967                 containing_section->GetByteSize() -
968                 (entry->GetRangeBase() - containing_section->GetRangeBase());
969           }
970 
971           for (size_t j = i; j < num_entries; j++) {
972             FileRangeToIndexMap::Entry *next_entry =
973                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
974             addr_t next_base_addr = next_entry->GetRangeBase();
975             if (next_base_addr > curr_base_addr) {
976               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
977 
978               // Take the difference between this symbol and the next one as
979               // its size, if it is less than the size of the section.
980               if (sym_size == 0 || size_to_next_symbol < sym_size) {
981                 sym_size = size_to_next_symbol;
982               }
983               break;
984             }
985           }
986 
987           if (sym_size > 0) {
988             entry->SetByteSize(sym_size);
989             Symbol &symbol = m_symbols[entry->data];
990             symbol.SetByteSize(sym_size);
991             symbol.SetSizeIsSynthesized(true);
992           }
993         }
994       }
995 
996       // Sort again in case the range size changes the ordering
997       m_file_addr_to_index.Sort();
998     }
999   }
1000 }
1001 
1002 void Symtab::CalculateSymbolSizes() {
1003   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1004   // Size computation happens inside InitAddressIndexes.
1005   InitAddressIndexes();
1006 }
1007 
1008 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1009   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1010   if (!m_file_addr_to_index_computed)
1011     InitAddressIndexes();
1012 
1013   const FileRangeToIndexMap::Entry *entry =
1014       m_file_addr_to_index.FindEntryStartsAt(file_addr);
1015   if (entry) {
1016     Symbol *symbol = SymbolAtIndex(entry->data);
1017     if (symbol->GetFileAddress() == file_addr)
1018       return symbol;
1019   }
1020   return nullptr;
1021 }
1022 
1023 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1024   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1025 
1026   if (!m_file_addr_to_index_computed)
1027     InitAddressIndexes();
1028 
1029   const FileRangeToIndexMap::Entry *entry =
1030       m_file_addr_to_index.FindEntryThatContains(file_addr);
1031   if (entry) {
1032     Symbol *symbol = SymbolAtIndex(entry->data);
1033     if (symbol->ContainsFileAddress(file_addr))
1034       return symbol;
1035   }
1036   return nullptr;
1037 }
1038 
1039 void Symtab::ForEachSymbolContainingFileAddress(
1040     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1041   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1042 
1043   if (!m_file_addr_to_index_computed)
1044     InitAddressIndexes();
1045 
1046   std::vector<uint32_t> all_addr_indexes;
1047 
1048   // Get all symbols with file_addr
1049   const size_t addr_match_count =
1050       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1051                                                        all_addr_indexes);
1052 
1053   for (size_t i = 0; i < addr_match_count; ++i) {
1054     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1055     if (symbol->ContainsFileAddress(file_addr)) {
1056       if (!callback(symbol))
1057         break;
1058     }
1059   }
1060 }
1061 
1062 void Symtab::SymbolIndicesToSymbolContextList(
1063     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1064   // No need to protect this call using m_mutex all other method calls are
1065   // already thread safe.
1066 
1067   const bool merge_symbol_into_function = true;
1068   size_t num_indices = symbol_indexes.size();
1069   if (num_indices > 0) {
1070     SymbolContext sc;
1071     sc.module_sp = m_objfile->GetModule();
1072     for (size_t i = 0; i < num_indices; i++) {
1073       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1074       if (sc.symbol)
1075         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1076     }
1077   }
1078 }
1079 
1080 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1081                                  SymbolContextList &sc_list) {
1082   std::vector<uint32_t> symbol_indexes;
1083 
1084   // eFunctionNameTypeAuto should be pre-resolved by a call to
1085   // Module::LookupInfo::LookupInfo()
1086   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1087 
1088   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1089     std::vector<uint32_t> temp_symbol_indexes;
1090     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1091 
1092     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1093     if (temp_symbol_indexes_size > 0) {
1094       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1095       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1096         SymbolContext sym_ctx;
1097         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1098         if (sym_ctx.symbol) {
1099           switch (sym_ctx.symbol->GetType()) {
1100           case eSymbolTypeCode:
1101           case eSymbolTypeResolver:
1102           case eSymbolTypeReExported:
1103           case eSymbolTypeAbsolute:
1104             symbol_indexes.push_back(temp_symbol_indexes[i]);
1105             break;
1106           default:
1107             break;
1108           }
1109         }
1110       }
1111     }
1112   }
1113 
1114   if (!m_name_indexes_computed)
1115     InitNameIndexes();
1116 
1117   for (lldb::FunctionNameType type :
1118        {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
1119         lldb::eFunctionNameTypeSelector}) {
1120     if (name_type_mask & type) {
1121       auto map = GetNameToSymbolIndexMap(type);
1122 
1123       const UniqueCStringMap<uint32_t>::Entry *match;
1124       for (match = map.FindFirstValueForName(name); match != nullptr;
1125            match = map.FindNextValueForName(match)) {
1126         symbol_indexes.push_back(match->value);
1127       }
1128     }
1129   }
1130 
1131   if (!symbol_indexes.empty()) {
1132     llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
1133     symbol_indexes.erase(
1134         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1135         symbol_indexes.end());
1136     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1137   }
1138 }
1139 
1140 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1141   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1142   if (child_idx != UINT32_MAX && child_idx > 0) {
1143     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1144       const Symbol *symbol = SymbolAtIndex(idx);
1145       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1146       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1147         return symbol;
1148     }
1149   }
1150   return nullptr;
1151 }
1152