1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "Plugins/Language/ObjC/ObjCLanguage.h"
13 
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/RichManglingContext.h"
16 #include "lldb/Core/STLUtils.h"
17 #include "lldb/Core/Section.h"
18 #include "lldb/Symbol/ObjectFile.h"
19 #include "lldb/Symbol/Symbol.h"
20 #include "lldb/Symbol/SymbolContext.h"
21 #include "lldb/Symbol/Symtab.h"
22 #include "lldb/Utility/RegularExpression.h"
23 #include "lldb/Utility/Stream.h"
24 #include "lldb/Utility/Timer.h"
25 
26 #include "llvm/ADT/StringRef.h"
27 
28 using namespace lldb;
29 using namespace lldb_private;
30 
31 Symtab::Symtab(ObjectFile *objfile)
32     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(),
33       m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
34       m_name_indexes_computed(false) {}
35 
36 Symtab::~Symtab() {}
37 
38 void Symtab::Reserve(size_t count) {
39   // Clients should grab the mutex from this symbol table and lock it manually
40   // when calling this function to avoid performance issues.
41   m_symbols.reserve(count);
42 }
43 
44 Symbol *Symtab::Resize(size_t count) {
45   // Clients should grab the mutex from this symbol table and lock it manually
46   // when calling this function to avoid performance issues.
47   m_symbols.resize(count);
48   return m_symbols.empty() ? nullptr : &m_symbols[0];
49 }
50 
51 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   uint32_t symbol_idx = m_symbols.size();
55   m_name_to_index.Clear();
56   m_file_addr_to_index.Clear();
57   m_symbols.push_back(symbol);
58   m_file_addr_to_index_computed = false;
59   m_name_indexes_computed = false;
60   return symbol_idx;
61 }
62 
63 size_t Symtab::GetNumSymbols() const {
64   std::lock_guard<std::recursive_mutex> guard(m_mutex);
65   return m_symbols.size();
66 }
67 
68 void Symtab::SectionFileAddressesChanged() {
69   m_name_to_index.Clear();
70   m_file_addr_to_index_computed = false;
71 }
72 
73 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) {
74   std::lock_guard<std::recursive_mutex> guard(m_mutex);
75 
76   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
77   s->Indent();
78   const FileSpec &file_spec = m_objfile->GetFileSpec();
79   const char *object_name = nullptr;
80   if (m_objfile->GetModule())
81     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
82 
83   if (file_spec)
84     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
85               file_spec.GetPath().c_str(), object_name ? "(" : "",
86               object_name ? object_name : "", object_name ? ")" : "",
87               (uint64_t)m_symbols.size());
88   else
89     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
90 
91   if (!m_symbols.empty()) {
92     switch (sort_order) {
93     case eSortOrderNone: {
94       s->PutCString(":\n");
95       DumpSymbolHeader(s);
96       const_iterator begin = m_symbols.begin();
97       const_iterator end = m_symbols.end();
98       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
99         s->Indent();
100         pos->Dump(s, target, std::distance(begin, pos));
101       }
102     } break;
103 
104     case eSortOrderByName: {
105       // Although we maintain a lookup by exact name map, the table isn't
106       // sorted by name. So we must make the ordered symbol list up ourselves.
107       s->PutCString(" (sorted by name):\n");
108       DumpSymbolHeader(s);
109       typedef std::multimap<const char *, const Symbol *,
110                             CStringCompareFunctionObject>
111           CStringToSymbol;
112       CStringToSymbol name_map;
113       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
114            pos != end; ++pos) {
115         const char *name = pos->GetName().AsCString();
116         if (name && name[0])
117           name_map.insert(std::make_pair(name, &(*pos)));
118       }
119 
120       for (CStringToSymbol::const_iterator pos = name_map.begin(),
121                                            end = name_map.end();
122            pos != end; ++pos) {
123         s->Indent();
124         pos->second->Dump(s, target, pos->second - &m_symbols[0]);
125       }
126     } break;
127 
128     case eSortOrderByAddress:
129       s->PutCString(" (sorted by address):\n");
130       DumpSymbolHeader(s);
131       if (!m_file_addr_to_index_computed)
132         InitAddressIndexes();
133       const size_t num_entries = m_file_addr_to_index.GetSize();
134       for (size_t i = 0; i < num_entries; ++i) {
135         s->Indent();
136         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
137         m_symbols[symbol_idx].Dump(s, target, symbol_idx);
138       }
139       break;
140     }
141   } else {
142     s->PutCString("\n");
143   }
144 }
145 
146 void Symtab::Dump(Stream *s, Target *target,
147                   std::vector<uint32_t> &indexes) const {
148   std::lock_guard<std::recursive_mutex> guard(m_mutex);
149 
150   const size_t num_symbols = GetNumSymbols();
151   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
152   s->Indent();
153   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
154             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
155   s->IndentMore();
156 
157   if (!indexes.empty()) {
158     std::vector<uint32_t>::const_iterator pos;
159     std::vector<uint32_t>::const_iterator end = indexes.end();
160     DumpSymbolHeader(s);
161     for (pos = indexes.begin(); pos != end; ++pos) {
162       size_t idx = *pos;
163       if (idx < num_symbols) {
164         s->Indent();
165         m_symbols[idx].Dump(s, target, idx);
166       }
167     }
168   }
169   s->IndentLess();
170 }
171 
172 void Symtab::DumpSymbolHeader(Stream *s) {
173   s->Indent("               Debug symbol\n");
174   s->Indent("               |Synthetic symbol\n");
175   s->Indent("               ||Externally Visible\n");
176   s->Indent("               |||\n");
177   s->Indent("Index   UserID DSX Type            File Address/Value Load "
178             "Address       Size               Flags      Name\n");
179   s->Indent("------- ------ --- --------------- ------------------ "
180             "------------------ ------------------ ---------- "
181             "----------------------------------\n");
182 }
183 
184 static int CompareSymbolID(const void *key, const void *p) {
185   const user_id_t match_uid = *(const user_id_t *)key;
186   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
187   if (match_uid < symbol_uid)
188     return -1;
189   if (match_uid > symbol_uid)
190     return 1;
191   return 0;
192 }
193 
194 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
195   std::lock_guard<std::recursive_mutex> guard(m_mutex);
196 
197   Symbol *symbol =
198       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
199                           sizeof(m_symbols[0]), CompareSymbolID);
200   return symbol;
201 }
202 
203 Symbol *Symtab::SymbolAtIndex(size_t idx) {
204   // Clients should grab the mutex from this symbol table and lock it manually
205   // when calling this function to avoid performance issues.
206   if (idx < m_symbols.size())
207     return &m_symbols[idx];
208   return nullptr;
209 }
210 
211 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
212   // Clients should grab the mutex from this symbol table and lock it manually
213   // when calling this function to avoid performance issues.
214   if (idx < m_symbols.size())
215     return &m_symbols[idx];
216   return nullptr;
217 }
218 
219 // InitNameIndexes
220 static bool lldb_skip_name(llvm::StringRef mangled,
221                            Mangled::ManglingScheme scheme) {
222   switch (scheme) {
223   case Mangled::eManglingSchemeItanium: {
224     if (mangled.size() < 3 || !mangled.startswith("_Z"))
225       return true;
226 
227     // Avoid the following types of symbols in the index.
228     switch (mangled[2]) {
229     case 'G': // guard variables
230     case 'T': // virtual tables, VTT structures, typeinfo structures + names
231     case 'Z': // named local entities (if we eventually handle
232               // eSymbolTypeData, we will want this back)
233       return true;
234 
235     default:
236       break;
237     }
238 
239     // Include this name in the index.
240     return false;
241   }
242 
243   // No filters for this scheme yet. Include all names in indexing.
244   case Mangled::eManglingSchemeMSVC:
245     return false;
246 
247   // Don't try and demangle things we can't categorize.
248   case Mangled::eManglingSchemeNone:
249     return true;
250   }
251   llvm_unreachable("unknown scheme!");
252 }
253 
254 void Symtab::InitNameIndexes() {
255   // Protected function, no need to lock mutex...
256   if (!m_name_indexes_computed) {
257     m_name_indexes_computed = true;
258     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
259     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
260     // Create the name index vector to be able to quickly search by name
261     const size_t num_symbols = m_symbols.size();
262 #if 1
263     m_name_to_index.Reserve(num_symbols);
264 #else
265     // TODO: benchmark this to see if we save any memory. Otherwise we
266     // will always keep the memory reserved in the vector unless we pull some
267     // STL swap magic and then recopy...
268     uint32_t actual_count = 0;
269     for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
270          pos != end; ++pos) {
271       const Mangled &mangled = pos->GetMangled();
272       if (mangled.GetMangledName())
273         ++actual_count;
274 
275       if (mangled.GetDemangledName())
276         ++actual_count;
277     }
278 
279     m_name_to_index.Reserve(actual_count);
280 #endif
281 
282     // The "const char *" in "class_contexts" and backlog::value_type::second
283     // must come from a ConstString::GetCString()
284     std::set<const char *> class_contexts;
285     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
286     backlog.reserve(num_symbols / 2);
287 
288     // Instantiation of the demangler is expensive, so better use a single one
289     // for all entries during batch processing.
290     RichManglingContext rmc;
291     for (uint32_t value = 0; value < num_symbols; ++value) {
292       Symbol *symbol = &m_symbols[value];
293 
294       // Don't let trampolines get into the lookup by name map If we ever need
295       // the trampoline symbols to be searchable by name we can remove this and
296       // then possibly add a new bool to any of the Symtab functions that
297       // lookup symbols by name to indicate if they want trampolines.
298       if (symbol->IsTrampoline())
299         continue;
300 
301       // If the symbol's name string matched a Mangled::ManglingScheme, it is
302       // stored in the mangled field.
303       Mangled &mangled = symbol->GetMangled();
304       if (ConstString name = mangled.GetMangledName()) {
305         m_name_to_index.Append(name, value);
306 
307         if (symbol->ContainsLinkerAnnotations()) {
308           // If the symbol has linker annotations, also add the version without
309           // the annotations.
310           ConstString stripped = ConstString(
311               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
312           m_name_to_index.Append(stripped, value);
313         }
314 
315         const SymbolType type = symbol->GetType();
316         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
317           if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
318             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
319         }
320       }
321 
322       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
323       // stored in the demangled field.
324       if (ConstString name = mangled.GetDemangledName(symbol->GetLanguage())) {
325         m_name_to_index.Append(name, value);
326 
327         if (symbol->ContainsLinkerAnnotations()) {
328           // If the symbol has linker annotations, also add the version without
329           // the annotations.
330           name = ConstString(
331               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
332           m_name_to_index.Append(name, value);
333         }
334 
335         // If the demangled name turns out to be an ObjC name, and is a category
336         // name, add the version without categories to the index too.
337         ObjCLanguage::MethodName objc_method(name.GetStringRef(), true);
338         if (objc_method.IsValid(true)) {
339           m_selector_to_index.Append(objc_method.GetSelector(), value);
340 
341           if (ConstString objc_method_no_category =
342                   objc_method.GetFullNameWithoutCategory(true))
343             m_name_to_index.Append(objc_method_no_category, value);
344         }
345       }
346     }
347 
348     for (const auto &record : backlog) {
349       RegisterBacklogEntry(record.first, record.second, class_contexts);
350     }
351 
352     m_name_to_index.Sort();
353     m_name_to_index.SizeToFit();
354     m_selector_to_index.Sort();
355     m_selector_to_index.SizeToFit();
356     m_basename_to_index.Sort();
357     m_basename_to_index.SizeToFit();
358     m_method_to_index.Sort();
359     m_method_to_index.SizeToFit();
360   }
361 }
362 
363 void Symtab::RegisterMangledNameEntry(
364     uint32_t value, std::set<const char *> &class_contexts,
365     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
366     RichManglingContext &rmc) {
367   // Only register functions that have a base name.
368   rmc.ParseFunctionBaseName();
369   llvm::StringRef base_name = rmc.GetBufferRef();
370   if (base_name.empty())
371     return;
372 
373   // The base name will be our entry's name.
374   NameToIndexMap::Entry entry(ConstString(base_name), value);
375 
376   rmc.ParseFunctionDeclContextName();
377   llvm::StringRef decl_context = rmc.GetBufferRef();
378 
379   // Register functions with no context.
380   if (decl_context.empty()) {
381     // This has to be a basename
382     m_basename_to_index.Append(entry);
383     // If there is no context (no namespaces or class scopes that come before
384     // the function name) then this also could be a fullname.
385     m_name_to_index.Append(entry);
386     return;
387   }
388 
389   // Make sure we have a pool-string pointer and see if we already know the
390   // context name.
391   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
392   auto it = class_contexts.find(decl_context_ccstr);
393 
394   // Register constructors and destructors. They are methods and create
395   // declaration contexts.
396   if (rmc.IsCtorOrDtor()) {
397     m_method_to_index.Append(entry);
398     if (it == class_contexts.end())
399       class_contexts.insert(it, decl_context_ccstr);
400     return;
401   }
402 
403   // Register regular methods with a known declaration context.
404   if (it != class_contexts.end()) {
405     m_method_to_index.Append(entry);
406     return;
407   }
408 
409   // Regular methods in unknown declaration contexts are put to the backlog. We
410   // will revisit them once we processed all remaining symbols.
411   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
412 }
413 
414 void Symtab::RegisterBacklogEntry(
415     const NameToIndexMap::Entry &entry, const char *decl_context,
416     const std::set<const char *> &class_contexts) {
417   auto it = class_contexts.find(decl_context);
418   if (it != class_contexts.end()) {
419     m_method_to_index.Append(entry);
420   } else {
421     // If we got here, we have something that had a context (was inside
422     // a namespace or class) yet we don't know the entry
423     m_method_to_index.Append(entry);
424     m_basename_to_index.Append(entry);
425   }
426 }
427 
428 void Symtab::PreloadSymbols() {
429   std::lock_guard<std::recursive_mutex> guard(m_mutex);
430   InitNameIndexes();
431 }
432 
433 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
434                                     bool add_demangled, bool add_mangled,
435                                     NameToIndexMap &name_to_index_map) const {
436   if (add_demangled || add_mangled) {
437     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
438     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
439     std::lock_guard<std::recursive_mutex> guard(m_mutex);
440 
441     // Create the name index vector to be able to quickly search by name
442     const size_t num_indexes = indexes.size();
443     for (size_t i = 0; i < num_indexes; ++i) {
444       uint32_t value = indexes[i];
445       assert(i < m_symbols.size());
446       const Symbol *symbol = &m_symbols[value];
447 
448       const Mangled &mangled = symbol->GetMangled();
449       if (add_demangled) {
450         if (ConstString name = mangled.GetDemangledName(symbol->GetLanguage()))
451           name_to_index_map.Append(name, value);
452       }
453 
454       if (add_mangled) {
455         if (ConstString name = mangled.GetMangledName())
456           name_to_index_map.Append(name, value);
457       }
458     }
459   }
460 }
461 
462 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
463                                              std::vector<uint32_t> &indexes,
464                                              uint32_t start_idx,
465                                              uint32_t end_index) const {
466   std::lock_guard<std::recursive_mutex> guard(m_mutex);
467 
468   uint32_t prev_size = indexes.size();
469 
470   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
471 
472   for (uint32_t i = start_idx; i < count; ++i) {
473     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
474       indexes.push_back(i);
475   }
476 
477   return indexes.size() - prev_size;
478 }
479 
480 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
481     SymbolType symbol_type, uint32_t flags_value,
482     std::vector<uint32_t> &indexes, uint32_t start_idx,
483     uint32_t end_index) const {
484   std::lock_guard<std::recursive_mutex> guard(m_mutex);
485 
486   uint32_t prev_size = indexes.size();
487 
488   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
489 
490   for (uint32_t i = start_idx; i < count; ++i) {
491     if ((symbol_type == eSymbolTypeAny ||
492          m_symbols[i].GetType() == symbol_type) &&
493         m_symbols[i].GetFlags() == flags_value)
494       indexes.push_back(i);
495   }
496 
497   return indexes.size() - prev_size;
498 }
499 
500 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
501                                              Debug symbol_debug_type,
502                                              Visibility symbol_visibility,
503                                              std::vector<uint32_t> &indexes,
504                                              uint32_t start_idx,
505                                              uint32_t end_index) const {
506   std::lock_guard<std::recursive_mutex> guard(m_mutex);
507 
508   uint32_t prev_size = indexes.size();
509 
510   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
511 
512   for (uint32_t i = start_idx; i < count; ++i) {
513     if (symbol_type == eSymbolTypeAny ||
514         m_symbols[i].GetType() == symbol_type) {
515       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
516         indexes.push_back(i);
517     }
518   }
519 
520   return indexes.size() - prev_size;
521 }
522 
523 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
524   if (!m_symbols.empty()) {
525     const Symbol *first_symbol = &m_symbols[0];
526     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
527       return symbol - first_symbol;
528   }
529   return UINT32_MAX;
530 }
531 
532 struct SymbolSortInfo {
533   const bool sort_by_load_addr;
534   const Symbol *symbols;
535 };
536 
537 namespace {
538 struct SymbolIndexComparator {
539   const std::vector<Symbol> &symbols;
540   std::vector<lldb::addr_t> &addr_cache;
541 
542   // Getting from the symbol to the Address to the File Address involves some
543   // work. Since there are potentially many symbols here, and we're using this
544   // for sorting so we're going to be computing the address many times, cache
545   // that in addr_cache. The array passed in has to be the same size as the
546   // symbols array passed into the member variable symbols, and should be
547   // initialized with LLDB_INVALID_ADDRESS.
548   // NOTE: You have to make addr_cache externally and pass it in because
549   // std::stable_sort
550   // makes copies of the comparator it is initially passed in, and you end up
551   // spending huge amounts of time copying this array...
552 
553   SymbolIndexComparator(const std::vector<Symbol> &s,
554                         std::vector<lldb::addr_t> &a)
555       : symbols(s), addr_cache(a) {
556     assert(symbols.size() == addr_cache.size());
557   }
558   bool operator()(uint32_t index_a, uint32_t index_b) {
559     addr_t value_a = addr_cache[index_a];
560     if (value_a == LLDB_INVALID_ADDRESS) {
561       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
562       addr_cache[index_a] = value_a;
563     }
564 
565     addr_t value_b = addr_cache[index_b];
566     if (value_b == LLDB_INVALID_ADDRESS) {
567       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
568       addr_cache[index_b] = value_b;
569     }
570 
571     if (value_a == value_b) {
572       // The if the values are equal, use the original symbol user ID
573       lldb::user_id_t uid_a = symbols[index_a].GetID();
574       lldb::user_id_t uid_b = symbols[index_b].GetID();
575       if (uid_a < uid_b)
576         return true;
577       if (uid_a > uid_b)
578         return false;
579       return false;
580     } else if (value_a < value_b)
581       return true;
582 
583     return false;
584   }
585 };
586 }
587 
588 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
589                                       bool remove_duplicates) const {
590   std::lock_guard<std::recursive_mutex> guard(m_mutex);
591 
592   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
593   Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION);
594   // No need to sort if we have zero or one items...
595   if (indexes.size() <= 1)
596     return;
597 
598   // Sort the indexes in place using std::stable_sort.
599   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
600   // for performance, not correctness.  The indexes vector tends to be "close"
601   // to sorted, which the stable sort handles better.
602 
603   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
604 
605   SymbolIndexComparator comparator(m_symbols, addr_cache);
606   std::stable_sort(indexes.begin(), indexes.end(), comparator);
607 
608   // Remove any duplicates if requested
609   if (remove_duplicates) {
610     auto last = std::unique(indexes.begin(), indexes.end());
611     indexes.erase(last, indexes.end());
612   }
613 }
614 
615 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
616                                              std::vector<uint32_t> &indexes) {
617   std::lock_guard<std::recursive_mutex> guard(m_mutex);
618 
619   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
620   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
621   if (symbol_name) {
622     if (!m_name_indexes_computed)
623       InitNameIndexes();
624 
625     return m_name_to_index.GetValues(symbol_name, indexes);
626   }
627   return 0;
628 }
629 
630 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
631                                              Debug symbol_debug_type,
632                                              Visibility symbol_visibility,
633                                              std::vector<uint32_t> &indexes) {
634   std::lock_guard<std::recursive_mutex> guard(m_mutex);
635 
636   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
637   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
638   if (symbol_name) {
639     const size_t old_size = indexes.size();
640     if (!m_name_indexes_computed)
641       InitNameIndexes();
642 
643     std::vector<uint32_t> all_name_indexes;
644     const size_t name_match_count =
645         m_name_to_index.GetValues(symbol_name, all_name_indexes);
646     for (size_t i = 0; i < name_match_count; ++i) {
647       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
648                              symbol_visibility))
649         indexes.push_back(all_name_indexes[i]);
650     }
651     return indexes.size() - old_size;
652   }
653   return 0;
654 }
655 
656 uint32_t
657 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
658                                            SymbolType symbol_type,
659                                            std::vector<uint32_t> &indexes) {
660   std::lock_guard<std::recursive_mutex> guard(m_mutex);
661 
662   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
663     std::vector<uint32_t>::iterator pos = indexes.begin();
664     while (pos != indexes.end()) {
665       if (symbol_type == eSymbolTypeAny ||
666           m_symbols[*pos].GetType() == symbol_type)
667         ++pos;
668       else
669         pos = indexes.erase(pos);
670     }
671   }
672   return indexes.size();
673 }
674 
675 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
676     ConstString symbol_name, SymbolType symbol_type,
677     Debug symbol_debug_type, Visibility symbol_visibility,
678     std::vector<uint32_t> &indexes) {
679   std::lock_guard<std::recursive_mutex> guard(m_mutex);
680 
681   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
682                                   symbol_visibility, indexes) > 0) {
683     std::vector<uint32_t>::iterator pos = indexes.begin();
684     while (pos != indexes.end()) {
685       if (symbol_type == eSymbolTypeAny ||
686           m_symbols[*pos].GetType() == symbol_type)
687         ++pos;
688       else
689         pos = indexes.erase(pos);
690     }
691   }
692   return indexes.size();
693 }
694 
695 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
696     const RegularExpression &regexp, SymbolType symbol_type,
697     std::vector<uint32_t> &indexes) {
698   std::lock_guard<std::recursive_mutex> guard(m_mutex);
699 
700   uint32_t prev_size = indexes.size();
701   uint32_t sym_end = m_symbols.size();
702 
703   for (uint32_t i = 0; i < sym_end; i++) {
704     if (symbol_type == eSymbolTypeAny ||
705         m_symbols[i].GetType() == symbol_type) {
706       const char *name = m_symbols[i].GetName().AsCString();
707       if (name) {
708         if (regexp.Execute(name))
709           indexes.push_back(i);
710       }
711     }
712   }
713   return indexes.size() - prev_size;
714 }
715 
716 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
717     const RegularExpression &regexp, SymbolType symbol_type,
718     Debug symbol_debug_type, Visibility symbol_visibility,
719     std::vector<uint32_t> &indexes) {
720   std::lock_guard<std::recursive_mutex> guard(m_mutex);
721 
722   uint32_t prev_size = indexes.size();
723   uint32_t sym_end = m_symbols.size();
724 
725   for (uint32_t i = 0; i < sym_end; i++) {
726     if (symbol_type == eSymbolTypeAny ||
727         m_symbols[i].GetType() == symbol_type) {
728       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
729         continue;
730 
731       const char *name = m_symbols[i].GetName().AsCString();
732       if (name) {
733         if (regexp.Execute(name))
734           indexes.push_back(i);
735       }
736     }
737   }
738   return indexes.size() - prev_size;
739 }
740 
741 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
742                                    Debug symbol_debug_type,
743                                    Visibility symbol_visibility,
744                                    uint32_t &start_idx) {
745   std::lock_guard<std::recursive_mutex> guard(m_mutex);
746 
747   const size_t count = m_symbols.size();
748   for (size_t idx = start_idx; idx < count; ++idx) {
749     if (symbol_type == eSymbolTypeAny ||
750         m_symbols[idx].GetType() == symbol_type) {
751       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
752         start_idx = idx;
753         return &m_symbols[idx];
754       }
755     }
756   }
757   return nullptr;
758 }
759 
760 size_t
761 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
762                                       SymbolType symbol_type,
763                                       std::vector<uint32_t> &symbol_indexes) {
764   std::lock_guard<std::recursive_mutex> guard(m_mutex);
765 
766   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
767   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
768   // Initialize all of the lookup by name indexes before converting NAME to a
769   // uniqued string NAME_STR below.
770   if (!m_name_indexes_computed)
771     InitNameIndexes();
772 
773   if (name) {
774     // The string table did have a string that matched, but we need to check
775     // the symbols and match the symbol_type if any was given.
776     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
777   }
778   return symbol_indexes.size();
779 }
780 
781 size_t Symtab::FindAllSymbolsWithNameAndType(
782     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
783     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
784   std::lock_guard<std::recursive_mutex> guard(m_mutex);
785 
786   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
787   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
788   // Initialize all of the lookup by name indexes before converting NAME to a
789   // uniqued string NAME_STR below.
790   if (!m_name_indexes_computed)
791     InitNameIndexes();
792 
793   if (name) {
794     // The string table did have a string that matched, but we need to check
795     // the symbols and match the symbol_type if any was given.
796     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
797                                        symbol_visibility, symbol_indexes);
798   }
799   return symbol_indexes.size();
800 }
801 
802 size_t Symtab::FindAllSymbolsMatchingRexExAndType(
803     const RegularExpression &regex, SymbolType symbol_type,
804     Debug symbol_debug_type, Visibility symbol_visibility,
805     std::vector<uint32_t> &symbol_indexes) {
806   std::lock_guard<std::recursive_mutex> guard(m_mutex);
807 
808   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
809                                           symbol_visibility, symbol_indexes);
810   return symbol_indexes.size();
811 }
812 
813 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
814                                                SymbolType symbol_type,
815                                                Debug symbol_debug_type,
816                                                Visibility symbol_visibility) {
817   std::lock_guard<std::recursive_mutex> guard(m_mutex);
818 
819   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
820   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
821   if (!m_name_indexes_computed)
822     InitNameIndexes();
823 
824   if (name) {
825     std::vector<uint32_t> matching_indexes;
826     // The string table did have a string that matched, but we need to check
827     // the symbols and match the symbol_type if any was given.
828     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
829                                            symbol_visibility,
830                                            matching_indexes)) {
831       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
832       for (pos = matching_indexes.begin(); pos != end; ++pos) {
833         Symbol *symbol = SymbolAtIndex(*pos);
834 
835         if (symbol->Compare(name, symbol_type))
836           return symbol;
837       }
838     }
839   }
840   return nullptr;
841 }
842 
843 typedef struct {
844   const Symtab *symtab;
845   const addr_t file_addr;
846   Symbol *match_symbol;
847   const uint32_t *match_index_ptr;
848   addr_t match_offset;
849 } SymbolSearchInfo;
850 
851 // Add all the section file start address & size to the RangeVector, recusively
852 // adding any children sections.
853 static void AddSectionsToRangeMap(SectionList *sectlist,
854                                   RangeVector<addr_t, addr_t> &section_ranges) {
855   const int num_sections = sectlist->GetNumSections(0);
856   for (int i = 0; i < num_sections; i++) {
857     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
858     if (sect_sp) {
859       SectionList &child_sectlist = sect_sp->GetChildren();
860 
861       // If this section has children, add the children to the RangeVector.
862       // Else add this section to the RangeVector.
863       if (child_sectlist.GetNumSections(0) > 0) {
864         AddSectionsToRangeMap(&child_sectlist, section_ranges);
865       } else {
866         size_t size = sect_sp->GetByteSize();
867         if (size > 0) {
868           addr_t base_addr = sect_sp->GetFileAddress();
869           RangeVector<addr_t, addr_t>::Entry entry;
870           entry.SetRangeBase(base_addr);
871           entry.SetByteSize(size);
872           section_ranges.Append(entry);
873         }
874       }
875     }
876   }
877 }
878 
879 void Symtab::InitAddressIndexes() {
880   // Protected function, no need to lock mutex...
881   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
882     m_file_addr_to_index_computed = true;
883 
884     FileRangeToIndexMap::Entry entry;
885     const_iterator begin = m_symbols.begin();
886     const_iterator end = m_symbols.end();
887     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
888       if (pos->ValueIsAddress()) {
889         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
890         entry.SetByteSize(pos->GetByteSize());
891         entry.data = std::distance(begin, pos);
892         m_file_addr_to_index.Append(entry);
893       }
894     }
895     const size_t num_entries = m_file_addr_to_index.GetSize();
896     if (num_entries > 0) {
897       m_file_addr_to_index.Sort();
898 
899       // Create a RangeVector with the start & size of all the sections for
900       // this objfile.  We'll need to check this for any FileRangeToIndexMap
901       // entries with an uninitialized size, which could potentially be a large
902       // number so reconstituting the weak pointer is busywork when it is
903       // invariant information.
904       SectionList *sectlist = m_objfile->GetSectionList();
905       RangeVector<addr_t, addr_t> section_ranges;
906       if (sectlist) {
907         AddSectionsToRangeMap(sectlist, section_ranges);
908         section_ranges.Sort();
909       }
910 
911       // Iterate through the FileRangeToIndexMap and fill in the size for any
912       // entries that didn't already have a size from the Symbol (e.g. if we
913       // have a plain linker symbol with an address only, instead of debug info
914       // where we get an address and a size and a type, etc.)
915       for (size_t i = 0; i < num_entries; i++) {
916         FileRangeToIndexMap::Entry *entry =
917             m_file_addr_to_index.GetMutableEntryAtIndex(i);
918         if (entry->GetByteSize() == 0) {
919           addr_t curr_base_addr = entry->GetRangeBase();
920           const RangeVector<addr_t, addr_t>::Entry *containing_section =
921               section_ranges.FindEntryThatContains(curr_base_addr);
922 
923           // Use the end of the section as the default max size of the symbol
924           addr_t sym_size = 0;
925           if (containing_section) {
926             sym_size =
927                 containing_section->GetByteSize() -
928                 (entry->GetRangeBase() - containing_section->GetRangeBase());
929           }
930 
931           for (size_t j = i; j < num_entries; j++) {
932             FileRangeToIndexMap::Entry *next_entry =
933                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
934             addr_t next_base_addr = next_entry->GetRangeBase();
935             if (next_base_addr > curr_base_addr) {
936               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
937 
938               // Take the difference between this symbol and the next one as
939               // its size, if it is less than the size of the section.
940               if (sym_size == 0 || size_to_next_symbol < sym_size) {
941                 sym_size = size_to_next_symbol;
942               }
943               break;
944             }
945           }
946 
947           if (sym_size > 0) {
948             entry->SetByteSize(sym_size);
949             Symbol &symbol = m_symbols[entry->data];
950             symbol.SetByteSize(sym_size);
951             symbol.SetSizeIsSynthesized(true);
952           }
953         }
954       }
955 
956       // Sort again in case the range size changes the ordering
957       m_file_addr_to_index.Sort();
958     }
959   }
960 }
961 
962 void Symtab::CalculateSymbolSizes() {
963   std::lock_guard<std::recursive_mutex> guard(m_mutex);
964   // Size computation happens inside InitAddressIndexes.
965   InitAddressIndexes();
966 }
967 
968 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
969   std::lock_guard<std::recursive_mutex> guard(m_mutex);
970   if (!m_file_addr_to_index_computed)
971     InitAddressIndexes();
972 
973   const FileRangeToIndexMap::Entry *entry =
974       m_file_addr_to_index.FindEntryStartsAt(file_addr);
975   if (entry) {
976     Symbol *symbol = SymbolAtIndex(entry->data);
977     if (symbol->GetFileAddress() == file_addr)
978       return symbol;
979   }
980   return nullptr;
981 }
982 
983 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
984   std::lock_guard<std::recursive_mutex> guard(m_mutex);
985 
986   if (!m_file_addr_to_index_computed)
987     InitAddressIndexes();
988 
989   const FileRangeToIndexMap::Entry *entry =
990       m_file_addr_to_index.FindEntryThatContains(file_addr);
991   if (entry) {
992     Symbol *symbol = SymbolAtIndex(entry->data);
993     if (symbol->ContainsFileAddress(file_addr))
994       return symbol;
995   }
996   return nullptr;
997 }
998 
999 void Symtab::ForEachSymbolContainingFileAddress(
1000     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1001   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1002 
1003   if (!m_file_addr_to_index_computed)
1004     InitAddressIndexes();
1005 
1006   std::vector<uint32_t> all_addr_indexes;
1007 
1008   // Get all symbols with file_addr
1009   const size_t addr_match_count =
1010       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1011                                                        all_addr_indexes);
1012 
1013   for (size_t i = 0; i < addr_match_count; ++i) {
1014     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1015     if (symbol->ContainsFileAddress(file_addr)) {
1016       if (!callback(symbol))
1017         break;
1018     }
1019   }
1020 }
1021 
1022 void Symtab::SymbolIndicesToSymbolContextList(
1023     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1024   // No need to protect this call using m_mutex all other method calls are
1025   // already thread safe.
1026 
1027   const bool merge_symbol_into_function = true;
1028   size_t num_indices = symbol_indexes.size();
1029   if (num_indices > 0) {
1030     SymbolContext sc;
1031     sc.module_sp = m_objfile->GetModule();
1032     for (size_t i = 0; i < num_indices; i++) {
1033       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1034       if (sc.symbol)
1035         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1036     }
1037   }
1038 }
1039 
1040 size_t Symtab::FindFunctionSymbols(ConstString name,
1041                                    uint32_t name_type_mask,
1042                                    SymbolContextList &sc_list) {
1043   size_t count = 0;
1044   std::vector<uint32_t> symbol_indexes;
1045 
1046   // eFunctionNameTypeAuto should be pre-resolved by a call to
1047   // Module::LookupInfo::LookupInfo()
1048   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1049 
1050   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1051     std::vector<uint32_t> temp_symbol_indexes;
1052     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1053 
1054     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1055     if (temp_symbol_indexes_size > 0) {
1056       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1057       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1058         SymbolContext sym_ctx;
1059         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1060         if (sym_ctx.symbol) {
1061           switch (sym_ctx.symbol->GetType()) {
1062           case eSymbolTypeCode:
1063           case eSymbolTypeResolver:
1064           case eSymbolTypeReExported:
1065             symbol_indexes.push_back(temp_symbol_indexes[i]);
1066             break;
1067           default:
1068             break;
1069           }
1070         }
1071       }
1072     }
1073   }
1074 
1075   if (name_type_mask & eFunctionNameTypeBase) {
1076     // From mangled names we can't tell what is a basename and what is a method
1077     // name, so we just treat them the same
1078     if (!m_name_indexes_computed)
1079       InitNameIndexes();
1080 
1081     if (!m_basename_to_index.IsEmpty()) {
1082       const UniqueCStringMap<uint32_t>::Entry *match;
1083       for (match = m_basename_to_index.FindFirstValueForName(name);
1084            match != nullptr;
1085            match = m_basename_to_index.FindNextValueForName(match)) {
1086         symbol_indexes.push_back(match->value);
1087       }
1088     }
1089   }
1090 
1091   if (name_type_mask & eFunctionNameTypeMethod) {
1092     if (!m_name_indexes_computed)
1093       InitNameIndexes();
1094 
1095     if (!m_method_to_index.IsEmpty()) {
1096       const UniqueCStringMap<uint32_t>::Entry *match;
1097       for (match = m_method_to_index.FindFirstValueForName(name);
1098            match != nullptr;
1099            match = m_method_to_index.FindNextValueForName(match)) {
1100         symbol_indexes.push_back(match->value);
1101       }
1102     }
1103   }
1104 
1105   if (name_type_mask & eFunctionNameTypeSelector) {
1106     if (!m_name_indexes_computed)
1107       InitNameIndexes();
1108 
1109     if (!m_selector_to_index.IsEmpty()) {
1110       const UniqueCStringMap<uint32_t>::Entry *match;
1111       for (match = m_selector_to_index.FindFirstValueForName(name);
1112            match != nullptr;
1113            match = m_selector_to_index.FindNextValueForName(match)) {
1114         symbol_indexes.push_back(match->value);
1115       }
1116     }
1117   }
1118 
1119   if (!symbol_indexes.empty()) {
1120     llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
1121     symbol_indexes.erase(
1122         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1123         symbol_indexes.end());
1124     count = symbol_indexes.size();
1125     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1126   }
1127 
1128   return count;
1129 }
1130 
1131 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1132   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1133   if (child_idx != UINT32_MAX && child_idx > 0) {
1134     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1135       const Symbol *symbol = SymbolAtIndex(idx);
1136       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1137       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1138         return symbol;
1139     }
1140   }
1141   return nullptr;
1142 }
1143