1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/RichManglingContext.h" 14 #include "lldb/Core/Section.h" 15 #include "lldb/Symbol/ObjectFile.h" 16 #include "lldb/Symbol/Symbol.h" 17 #include "lldb/Symbol/SymbolContext.h" 18 #include "lldb/Symbol/Symtab.h" 19 #include "lldb/Target/Language.h" 20 #include "lldb/Utility/RegularExpression.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/Timer.h" 23 24 #include "llvm/ADT/StringRef.h" 25 26 using namespace lldb; 27 using namespace lldb_private; 28 29 Symtab::Symtab(ObjectFile *objfile) 30 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 31 m_name_to_symbol_indices(), m_mutex(), 32 m_file_addr_to_index_computed(false), m_name_indexes_computed(false) { 33 m_name_to_symbol_indices.emplace(std::make_pair( 34 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); 35 m_name_to_symbol_indices.emplace(std::make_pair( 36 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); 37 m_name_to_symbol_indices.emplace(std::make_pair( 38 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); 39 m_name_to_symbol_indices.emplace(std::make_pair( 40 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); 41 } 42 43 Symtab::~Symtab() {} 44 45 void Symtab::Reserve(size_t count) { 46 // Clients should grab the mutex from this symbol table and lock it manually 47 // when calling this function to avoid performance issues. 48 m_symbols.reserve(count); 49 } 50 51 Symbol *Symtab::Resize(size_t count) { 52 // Clients should grab the mutex from this symbol table and lock it manually 53 // when calling this function to avoid performance issues. 54 m_symbols.resize(count); 55 return m_symbols.empty() ? nullptr : &m_symbols[0]; 56 } 57 58 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 59 // Clients should grab the mutex from this symbol table and lock it manually 60 // when calling this function to avoid performance issues. 61 uint32_t symbol_idx = m_symbols.size(); 62 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 63 name_to_index.Clear(); 64 m_file_addr_to_index.Clear(); 65 m_symbols.push_back(symbol); 66 m_file_addr_to_index_computed = false; 67 m_name_indexes_computed = false; 68 return symbol_idx; 69 } 70 71 size_t Symtab::GetNumSymbols() const { 72 std::lock_guard<std::recursive_mutex> guard(m_mutex); 73 return m_symbols.size(); 74 } 75 76 void Symtab::SectionFileAddressesChanged() { 77 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 78 name_to_index.Clear(); 79 m_file_addr_to_index_computed = false; 80 } 81 82 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 83 Mangled::NamePreference name_preference) { 84 std::lock_guard<std::recursive_mutex> guard(m_mutex); 85 86 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 87 s->Indent(); 88 const FileSpec &file_spec = m_objfile->GetFileSpec(); 89 const char *object_name = nullptr; 90 if (m_objfile->GetModule()) 91 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 92 93 if (file_spec) 94 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 95 file_spec.GetPath().c_str(), object_name ? "(" : "", 96 object_name ? object_name : "", object_name ? ")" : "", 97 (uint64_t)m_symbols.size()); 98 else 99 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 100 101 if (!m_symbols.empty()) { 102 switch (sort_order) { 103 case eSortOrderNone: { 104 s->PutCString(":\n"); 105 DumpSymbolHeader(s); 106 const_iterator begin = m_symbols.begin(); 107 const_iterator end = m_symbols.end(); 108 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 109 s->Indent(); 110 pos->Dump(s, target, std::distance(begin, pos), name_preference); 111 } 112 } break; 113 114 case eSortOrderByName: { 115 // Although we maintain a lookup by exact name map, the table isn't 116 // sorted by name. So we must make the ordered symbol list up ourselves. 117 s->PutCString(" (sorted by name):\n"); 118 DumpSymbolHeader(s); 119 120 std::multimap<llvm::StringRef, const Symbol *> name_map; 121 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 122 pos != end; ++pos) { 123 const char *name = pos->GetName().AsCString(); 124 if (name && name[0]) 125 name_map.insert(std::make_pair(name, &(*pos))); 126 } 127 128 for (const auto &name_to_symbol : name_map) { 129 const Symbol *symbol = name_to_symbol.second; 130 s->Indent(); 131 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 132 } 133 } break; 134 135 case eSortOrderByAddress: 136 s->PutCString(" (sorted by address):\n"); 137 DumpSymbolHeader(s); 138 if (!m_file_addr_to_index_computed) 139 InitAddressIndexes(); 140 const size_t num_entries = m_file_addr_to_index.GetSize(); 141 for (size_t i = 0; i < num_entries; ++i) { 142 s->Indent(); 143 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 144 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 145 } 146 break; 147 } 148 } else { 149 s->PutCString("\n"); 150 } 151 } 152 153 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 154 Mangled::NamePreference name_preference) const { 155 std::lock_guard<std::recursive_mutex> guard(m_mutex); 156 157 const size_t num_symbols = GetNumSymbols(); 158 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 159 s->Indent(); 160 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 161 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 162 s->IndentMore(); 163 164 if (!indexes.empty()) { 165 std::vector<uint32_t>::const_iterator pos; 166 std::vector<uint32_t>::const_iterator end = indexes.end(); 167 DumpSymbolHeader(s); 168 for (pos = indexes.begin(); pos != end; ++pos) { 169 size_t idx = *pos; 170 if (idx < num_symbols) { 171 s->Indent(); 172 m_symbols[idx].Dump(s, target, idx, name_preference); 173 } 174 } 175 } 176 s->IndentLess(); 177 } 178 179 void Symtab::DumpSymbolHeader(Stream *s) { 180 s->Indent(" Debug symbol\n"); 181 s->Indent(" |Synthetic symbol\n"); 182 s->Indent(" ||Externally Visible\n"); 183 s->Indent(" |||\n"); 184 s->Indent("Index UserID DSX Type File Address/Value Load " 185 "Address Size Flags Name\n"); 186 s->Indent("------- ------ --- --------------- ------------------ " 187 "------------------ ------------------ ---------- " 188 "----------------------------------\n"); 189 } 190 191 static int CompareSymbolID(const void *key, const void *p) { 192 const user_id_t match_uid = *(const user_id_t *)key; 193 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 194 if (match_uid < symbol_uid) 195 return -1; 196 if (match_uid > symbol_uid) 197 return 1; 198 return 0; 199 } 200 201 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 202 std::lock_guard<std::recursive_mutex> guard(m_mutex); 203 204 Symbol *symbol = 205 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 206 sizeof(m_symbols[0]), CompareSymbolID); 207 return symbol; 208 } 209 210 Symbol *Symtab::SymbolAtIndex(size_t idx) { 211 // Clients should grab the mutex from this symbol table and lock it manually 212 // when calling this function to avoid performance issues. 213 if (idx < m_symbols.size()) 214 return &m_symbols[idx]; 215 return nullptr; 216 } 217 218 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 219 // Clients should grab the mutex from this symbol table and lock it manually 220 // when calling this function to avoid performance issues. 221 if (idx < m_symbols.size()) 222 return &m_symbols[idx]; 223 return nullptr; 224 } 225 226 static bool lldb_skip_name(llvm::StringRef mangled, 227 Mangled::ManglingScheme scheme) { 228 switch (scheme) { 229 case Mangled::eManglingSchemeItanium: { 230 if (mangled.size() < 3 || !mangled.startswith("_Z")) 231 return true; 232 233 // Avoid the following types of symbols in the index. 234 switch (mangled[2]) { 235 case 'G': // guard variables 236 case 'T': // virtual tables, VTT structures, typeinfo structures + names 237 case 'Z': // named local entities (if we eventually handle 238 // eSymbolTypeData, we will want this back) 239 return true; 240 241 default: 242 break; 243 } 244 245 // Include this name in the index. 246 return false; 247 } 248 249 // No filters for this scheme yet. Include all names in indexing. 250 case Mangled::eManglingSchemeMSVC: 251 return false; 252 253 // No filters for this scheme yet. Include all names in indexing. 254 case Mangled::eManglingSchemeRustV0: 255 return false; 256 257 // Don't try and demangle things we can't categorize. 258 case Mangled::eManglingSchemeNone: 259 return true; 260 } 261 llvm_unreachable("unknown scheme!"); 262 } 263 264 void Symtab::InitNameIndexes() { 265 // Protected function, no need to lock mutex... 266 if (!m_name_indexes_computed) { 267 m_name_indexes_computed = true; 268 LLDB_SCOPED_TIMER(); 269 270 // Collect all loaded language plugins. 271 std::vector<Language *> languages; 272 Language::ForEach([&languages](Language *l) { 273 languages.push_back(l); 274 return true; 275 }); 276 277 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 278 auto &basename_to_index = 279 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 280 auto &method_to_index = 281 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 282 auto &selector_to_index = 283 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); 284 // Create the name index vector to be able to quickly search by name 285 const size_t num_symbols = m_symbols.size(); 286 name_to_index.Reserve(num_symbols); 287 288 // The "const char *" in "class_contexts" and backlog::value_type::second 289 // must come from a ConstString::GetCString() 290 std::set<const char *> class_contexts; 291 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 292 backlog.reserve(num_symbols / 2); 293 294 // Instantiation of the demangler is expensive, so better use a single one 295 // for all entries during batch processing. 296 RichManglingContext rmc; 297 for (uint32_t value = 0; value < num_symbols; ++value) { 298 Symbol *symbol = &m_symbols[value]; 299 300 // Don't let trampolines get into the lookup by name map If we ever need 301 // the trampoline symbols to be searchable by name we can remove this and 302 // then possibly add a new bool to any of the Symtab functions that 303 // lookup symbols by name to indicate if they want trampolines. 304 if (symbol->IsTrampoline() || symbol->IsSynthetic()) 305 continue; 306 307 // If the symbol's name string matched a Mangled::ManglingScheme, it is 308 // stored in the mangled field. 309 Mangled &mangled = symbol->GetMangled(); 310 if (ConstString name = mangled.GetMangledName()) { 311 name_to_index.Append(name, value); 312 313 if (symbol->ContainsLinkerAnnotations()) { 314 // If the symbol has linker annotations, also add the version without 315 // the annotations. 316 ConstString stripped = ConstString( 317 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 318 name_to_index.Append(stripped, value); 319 } 320 321 const SymbolType type = symbol->GetType(); 322 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 323 if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name)) 324 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 325 } 326 } 327 328 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 329 // stored in the demangled field. 330 if (ConstString name = mangled.GetDemangledName()) { 331 name_to_index.Append(name, value); 332 333 if (symbol->ContainsLinkerAnnotations()) { 334 // If the symbol has linker annotations, also add the version without 335 // the annotations. 336 name = ConstString( 337 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 338 name_to_index.Append(name, value); 339 } 340 341 // If the demangled name turns out to be an ObjC name, and is a category 342 // name, add the version without categories to the index too. 343 for (Language *lang : languages) { 344 for (auto variant : lang->GetMethodNameVariants(name)) { 345 if (variant.GetType() & lldb::eFunctionNameTypeSelector) 346 selector_to_index.Append(variant.GetName(), value); 347 else if (variant.GetType() & lldb::eFunctionNameTypeFull) 348 name_to_index.Append(variant.GetName(), value); 349 else if (variant.GetType() & lldb::eFunctionNameTypeMethod) 350 method_to_index.Append(variant.GetName(), value); 351 else if (variant.GetType() & lldb::eFunctionNameTypeBase) 352 basename_to_index.Append(variant.GetName(), value); 353 } 354 } 355 } 356 } 357 358 for (const auto &record : backlog) { 359 RegisterBacklogEntry(record.first, record.second, class_contexts); 360 } 361 362 name_to_index.Sort(); 363 name_to_index.SizeToFit(); 364 selector_to_index.Sort(); 365 selector_to_index.SizeToFit(); 366 basename_to_index.Sort(); 367 basename_to_index.SizeToFit(); 368 method_to_index.Sort(); 369 method_to_index.SizeToFit(); 370 } 371 } 372 373 void Symtab::RegisterMangledNameEntry( 374 uint32_t value, std::set<const char *> &class_contexts, 375 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 376 RichManglingContext &rmc) { 377 // Only register functions that have a base name. 378 rmc.ParseFunctionBaseName(); 379 llvm::StringRef base_name = rmc.GetBufferRef(); 380 if (base_name.empty()) 381 return; 382 383 // The base name will be our entry's name. 384 NameToIndexMap::Entry entry(ConstString(base_name), value); 385 386 rmc.ParseFunctionDeclContextName(); 387 llvm::StringRef decl_context = rmc.GetBufferRef(); 388 389 // Register functions with no context. 390 if (decl_context.empty()) { 391 // This has to be a basename 392 auto &basename_to_index = 393 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 394 basename_to_index.Append(entry); 395 // If there is no context (no namespaces or class scopes that come before 396 // the function name) then this also could be a fullname. 397 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 398 name_to_index.Append(entry); 399 return; 400 } 401 402 // Make sure we have a pool-string pointer and see if we already know the 403 // context name. 404 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 405 auto it = class_contexts.find(decl_context_ccstr); 406 407 auto &method_to_index = 408 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 409 // Register constructors and destructors. They are methods and create 410 // declaration contexts. 411 if (rmc.IsCtorOrDtor()) { 412 method_to_index.Append(entry); 413 if (it == class_contexts.end()) 414 class_contexts.insert(it, decl_context_ccstr); 415 return; 416 } 417 418 // Register regular methods with a known declaration context. 419 if (it != class_contexts.end()) { 420 method_to_index.Append(entry); 421 return; 422 } 423 424 // Regular methods in unknown declaration contexts are put to the backlog. We 425 // will revisit them once we processed all remaining symbols. 426 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 427 } 428 429 void Symtab::RegisterBacklogEntry( 430 const NameToIndexMap::Entry &entry, const char *decl_context, 431 const std::set<const char *> &class_contexts) { 432 auto &method_to_index = 433 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 434 auto it = class_contexts.find(decl_context); 435 if (it != class_contexts.end()) { 436 method_to_index.Append(entry); 437 } else { 438 // If we got here, we have something that had a context (was inside 439 // a namespace or class) yet we don't know the entry 440 method_to_index.Append(entry); 441 auto &basename_to_index = 442 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 443 basename_to_index.Append(entry); 444 } 445 } 446 447 void Symtab::PreloadSymbols() { 448 std::lock_guard<std::recursive_mutex> guard(m_mutex); 449 InitNameIndexes(); 450 } 451 452 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 453 bool add_demangled, bool add_mangled, 454 NameToIndexMap &name_to_index_map) const { 455 LLDB_SCOPED_TIMER(); 456 if (add_demangled || add_mangled) { 457 std::lock_guard<std::recursive_mutex> guard(m_mutex); 458 459 // Create the name index vector to be able to quickly search by name 460 const size_t num_indexes = indexes.size(); 461 for (size_t i = 0; i < num_indexes; ++i) { 462 uint32_t value = indexes[i]; 463 assert(i < m_symbols.size()); 464 const Symbol *symbol = &m_symbols[value]; 465 466 const Mangled &mangled = symbol->GetMangled(); 467 if (add_demangled) { 468 if (ConstString name = mangled.GetDemangledName()) 469 name_to_index_map.Append(name, value); 470 } 471 472 if (add_mangled) { 473 if (ConstString name = mangled.GetMangledName()) 474 name_to_index_map.Append(name, value); 475 } 476 } 477 } 478 } 479 480 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 481 std::vector<uint32_t> &indexes, 482 uint32_t start_idx, 483 uint32_t end_index) const { 484 std::lock_guard<std::recursive_mutex> guard(m_mutex); 485 486 uint32_t prev_size = indexes.size(); 487 488 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 489 490 for (uint32_t i = start_idx; i < count; ++i) { 491 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 492 indexes.push_back(i); 493 } 494 495 return indexes.size() - prev_size; 496 } 497 498 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 499 SymbolType symbol_type, uint32_t flags_value, 500 std::vector<uint32_t> &indexes, uint32_t start_idx, 501 uint32_t end_index) const { 502 std::lock_guard<std::recursive_mutex> guard(m_mutex); 503 504 uint32_t prev_size = indexes.size(); 505 506 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 507 508 for (uint32_t i = start_idx; i < count; ++i) { 509 if ((symbol_type == eSymbolTypeAny || 510 m_symbols[i].GetType() == symbol_type) && 511 m_symbols[i].GetFlags() == flags_value) 512 indexes.push_back(i); 513 } 514 515 return indexes.size() - prev_size; 516 } 517 518 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 519 Debug symbol_debug_type, 520 Visibility symbol_visibility, 521 std::vector<uint32_t> &indexes, 522 uint32_t start_idx, 523 uint32_t end_index) const { 524 std::lock_guard<std::recursive_mutex> guard(m_mutex); 525 526 uint32_t prev_size = indexes.size(); 527 528 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 529 530 for (uint32_t i = start_idx; i < count; ++i) { 531 if (symbol_type == eSymbolTypeAny || 532 m_symbols[i].GetType() == symbol_type) { 533 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 534 indexes.push_back(i); 535 } 536 } 537 538 return indexes.size() - prev_size; 539 } 540 541 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 542 if (!m_symbols.empty()) { 543 const Symbol *first_symbol = &m_symbols[0]; 544 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 545 return symbol - first_symbol; 546 } 547 return UINT32_MAX; 548 } 549 550 struct SymbolSortInfo { 551 const bool sort_by_load_addr; 552 const Symbol *symbols; 553 }; 554 555 namespace { 556 struct SymbolIndexComparator { 557 const std::vector<Symbol> &symbols; 558 std::vector<lldb::addr_t> &addr_cache; 559 560 // Getting from the symbol to the Address to the File Address involves some 561 // work. Since there are potentially many symbols here, and we're using this 562 // for sorting so we're going to be computing the address many times, cache 563 // that in addr_cache. The array passed in has to be the same size as the 564 // symbols array passed into the member variable symbols, and should be 565 // initialized with LLDB_INVALID_ADDRESS. 566 // NOTE: You have to make addr_cache externally and pass it in because 567 // std::stable_sort 568 // makes copies of the comparator it is initially passed in, and you end up 569 // spending huge amounts of time copying this array... 570 571 SymbolIndexComparator(const std::vector<Symbol> &s, 572 std::vector<lldb::addr_t> &a) 573 : symbols(s), addr_cache(a) { 574 assert(symbols.size() == addr_cache.size()); 575 } 576 bool operator()(uint32_t index_a, uint32_t index_b) { 577 addr_t value_a = addr_cache[index_a]; 578 if (value_a == LLDB_INVALID_ADDRESS) { 579 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 580 addr_cache[index_a] = value_a; 581 } 582 583 addr_t value_b = addr_cache[index_b]; 584 if (value_b == LLDB_INVALID_ADDRESS) { 585 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 586 addr_cache[index_b] = value_b; 587 } 588 589 if (value_a == value_b) { 590 // The if the values are equal, use the original symbol user ID 591 lldb::user_id_t uid_a = symbols[index_a].GetID(); 592 lldb::user_id_t uid_b = symbols[index_b].GetID(); 593 if (uid_a < uid_b) 594 return true; 595 if (uid_a > uid_b) 596 return false; 597 return false; 598 } else if (value_a < value_b) 599 return true; 600 601 return false; 602 } 603 }; 604 } 605 606 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 607 bool remove_duplicates) const { 608 std::lock_guard<std::recursive_mutex> guard(m_mutex); 609 LLDB_SCOPED_TIMER(); 610 // No need to sort if we have zero or one items... 611 if (indexes.size() <= 1) 612 return; 613 614 // Sort the indexes in place using std::stable_sort. 615 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 616 // for performance, not correctness. The indexes vector tends to be "close" 617 // to sorted, which the stable sort handles better. 618 619 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 620 621 SymbolIndexComparator comparator(m_symbols, addr_cache); 622 std::stable_sort(indexes.begin(), indexes.end(), comparator); 623 624 // Remove any duplicates if requested 625 if (remove_duplicates) { 626 auto last = std::unique(indexes.begin(), indexes.end()); 627 indexes.erase(last, indexes.end()); 628 } 629 } 630 631 uint32_t Symtab::GetNameIndexes(ConstString symbol_name, 632 std::vector<uint32_t> &indexes) { 633 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 634 const uint32_t count = name_to_index.GetValues(symbol_name, indexes); 635 if (count) 636 return count; 637 // Synthetic symbol names are not added to the name indexes, but they start 638 // with a prefix and end with a the symbol UserID. This allows users to find 639 // these symbols without having to add them to the name indexes. These 640 // queries will not happen very often since the names don't mean anything, so 641 // performance is not paramount in this case. 642 llvm::StringRef name = symbol_name.GetStringRef(); 643 // String the synthetic prefix if the name starts with it. 644 if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) 645 return 0; // Not a synthetic symbol name 646 647 // Extract the user ID from the symbol name 648 unsigned long long uid = 0; 649 if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) 650 return 0; // Failed to extract the user ID as an integer 651 Symbol *symbol = FindSymbolByID(uid); 652 if (symbol == nullptr) 653 return 0; 654 const uint32_t symbol_idx = GetIndexForSymbol(symbol); 655 if (symbol_idx == UINT32_MAX) 656 return 0; 657 indexes.push_back(symbol_idx); 658 return 1; 659 } 660 661 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 662 std::vector<uint32_t> &indexes) { 663 std::lock_guard<std::recursive_mutex> guard(m_mutex); 664 665 LLDB_SCOPED_TIMER(); 666 if (symbol_name) { 667 if (!m_name_indexes_computed) 668 InitNameIndexes(); 669 670 return GetNameIndexes(symbol_name, indexes); 671 } 672 return 0; 673 } 674 675 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 676 Debug symbol_debug_type, 677 Visibility symbol_visibility, 678 std::vector<uint32_t> &indexes) { 679 std::lock_guard<std::recursive_mutex> guard(m_mutex); 680 681 LLDB_SCOPED_TIMER(); 682 if (symbol_name) { 683 const size_t old_size = indexes.size(); 684 if (!m_name_indexes_computed) 685 InitNameIndexes(); 686 687 std::vector<uint32_t> all_name_indexes; 688 const size_t name_match_count = 689 GetNameIndexes(symbol_name, all_name_indexes); 690 for (size_t i = 0; i < name_match_count; ++i) { 691 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 692 symbol_visibility)) 693 indexes.push_back(all_name_indexes[i]); 694 } 695 return indexes.size() - old_size; 696 } 697 return 0; 698 } 699 700 uint32_t 701 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 702 SymbolType symbol_type, 703 std::vector<uint32_t> &indexes) { 704 std::lock_guard<std::recursive_mutex> guard(m_mutex); 705 706 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 707 std::vector<uint32_t>::iterator pos = indexes.begin(); 708 while (pos != indexes.end()) { 709 if (symbol_type == eSymbolTypeAny || 710 m_symbols[*pos].GetType() == symbol_type) 711 ++pos; 712 else 713 pos = indexes.erase(pos); 714 } 715 } 716 return indexes.size(); 717 } 718 719 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 720 ConstString symbol_name, SymbolType symbol_type, 721 Debug symbol_debug_type, Visibility symbol_visibility, 722 std::vector<uint32_t> &indexes) { 723 std::lock_guard<std::recursive_mutex> guard(m_mutex); 724 725 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 726 symbol_visibility, indexes) > 0) { 727 std::vector<uint32_t>::iterator pos = indexes.begin(); 728 while (pos != indexes.end()) { 729 if (symbol_type == eSymbolTypeAny || 730 m_symbols[*pos].GetType() == symbol_type) 731 ++pos; 732 else 733 pos = indexes.erase(pos); 734 } 735 } 736 return indexes.size(); 737 } 738 739 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 740 const RegularExpression ®exp, SymbolType symbol_type, 741 std::vector<uint32_t> &indexes) { 742 std::lock_guard<std::recursive_mutex> guard(m_mutex); 743 744 uint32_t prev_size = indexes.size(); 745 uint32_t sym_end = m_symbols.size(); 746 747 for (uint32_t i = 0; i < sym_end; i++) { 748 if (symbol_type == eSymbolTypeAny || 749 m_symbols[i].GetType() == symbol_type) { 750 const char *name = m_symbols[i].GetName().AsCString(); 751 if (name) { 752 if (regexp.Execute(name)) 753 indexes.push_back(i); 754 } 755 } 756 } 757 return indexes.size() - prev_size; 758 } 759 760 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 761 const RegularExpression ®exp, SymbolType symbol_type, 762 Debug symbol_debug_type, Visibility symbol_visibility, 763 std::vector<uint32_t> &indexes) { 764 std::lock_guard<std::recursive_mutex> guard(m_mutex); 765 766 uint32_t prev_size = indexes.size(); 767 uint32_t sym_end = m_symbols.size(); 768 769 for (uint32_t i = 0; i < sym_end; i++) { 770 if (symbol_type == eSymbolTypeAny || 771 m_symbols[i].GetType() == symbol_type) { 772 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 773 continue; 774 775 const char *name = m_symbols[i].GetName().AsCString(); 776 if (name) { 777 if (regexp.Execute(name)) 778 indexes.push_back(i); 779 } 780 } 781 } 782 return indexes.size() - prev_size; 783 } 784 785 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 786 Debug symbol_debug_type, 787 Visibility symbol_visibility, 788 uint32_t &start_idx) { 789 std::lock_guard<std::recursive_mutex> guard(m_mutex); 790 791 const size_t count = m_symbols.size(); 792 for (size_t idx = start_idx; idx < count; ++idx) { 793 if (symbol_type == eSymbolTypeAny || 794 m_symbols[idx].GetType() == symbol_type) { 795 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 796 start_idx = idx; 797 return &m_symbols[idx]; 798 } 799 } 800 } 801 return nullptr; 802 } 803 804 void 805 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 806 SymbolType symbol_type, 807 std::vector<uint32_t> &symbol_indexes) { 808 std::lock_guard<std::recursive_mutex> guard(m_mutex); 809 810 LLDB_SCOPED_TIMER(); 811 // Initialize all of the lookup by name indexes before converting NAME to a 812 // uniqued string NAME_STR below. 813 if (!m_name_indexes_computed) 814 InitNameIndexes(); 815 816 if (name) { 817 // The string table did have a string that matched, but we need to check 818 // the symbols and match the symbol_type if any was given. 819 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 820 } 821 } 822 823 void Symtab::FindAllSymbolsWithNameAndType( 824 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 825 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 826 std::lock_guard<std::recursive_mutex> guard(m_mutex); 827 828 LLDB_SCOPED_TIMER(); 829 // Initialize all of the lookup by name indexes before converting NAME to a 830 // uniqued string NAME_STR below. 831 if (!m_name_indexes_computed) 832 InitNameIndexes(); 833 834 if (name) { 835 // The string table did have a string that matched, but we need to check 836 // the symbols and match the symbol_type if any was given. 837 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 838 symbol_visibility, symbol_indexes); 839 } 840 } 841 842 void Symtab::FindAllSymbolsMatchingRexExAndType( 843 const RegularExpression ®ex, SymbolType symbol_type, 844 Debug symbol_debug_type, Visibility symbol_visibility, 845 std::vector<uint32_t> &symbol_indexes) { 846 std::lock_guard<std::recursive_mutex> guard(m_mutex); 847 848 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 849 symbol_visibility, symbol_indexes); 850 } 851 852 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 853 SymbolType symbol_type, 854 Debug symbol_debug_type, 855 Visibility symbol_visibility) { 856 std::lock_guard<std::recursive_mutex> guard(m_mutex); 857 LLDB_SCOPED_TIMER(); 858 if (!m_name_indexes_computed) 859 InitNameIndexes(); 860 861 if (name) { 862 std::vector<uint32_t> matching_indexes; 863 // The string table did have a string that matched, but we need to check 864 // the symbols and match the symbol_type if any was given. 865 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 866 symbol_visibility, 867 matching_indexes)) { 868 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 869 for (pos = matching_indexes.begin(); pos != end; ++pos) { 870 Symbol *symbol = SymbolAtIndex(*pos); 871 872 if (symbol->Compare(name, symbol_type)) 873 return symbol; 874 } 875 } 876 } 877 return nullptr; 878 } 879 880 typedef struct { 881 const Symtab *symtab; 882 const addr_t file_addr; 883 Symbol *match_symbol; 884 const uint32_t *match_index_ptr; 885 addr_t match_offset; 886 } SymbolSearchInfo; 887 888 // Add all the section file start address & size to the RangeVector, recusively 889 // adding any children sections. 890 static void AddSectionsToRangeMap(SectionList *sectlist, 891 RangeVector<addr_t, addr_t> §ion_ranges) { 892 const int num_sections = sectlist->GetNumSections(0); 893 for (int i = 0; i < num_sections; i++) { 894 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 895 if (sect_sp) { 896 SectionList &child_sectlist = sect_sp->GetChildren(); 897 898 // If this section has children, add the children to the RangeVector. 899 // Else add this section to the RangeVector. 900 if (child_sectlist.GetNumSections(0) > 0) { 901 AddSectionsToRangeMap(&child_sectlist, section_ranges); 902 } else { 903 size_t size = sect_sp->GetByteSize(); 904 if (size > 0) { 905 addr_t base_addr = sect_sp->GetFileAddress(); 906 RangeVector<addr_t, addr_t>::Entry entry; 907 entry.SetRangeBase(base_addr); 908 entry.SetByteSize(size); 909 section_ranges.Append(entry); 910 } 911 } 912 } 913 } 914 } 915 916 void Symtab::InitAddressIndexes() { 917 // Protected function, no need to lock mutex... 918 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 919 m_file_addr_to_index_computed = true; 920 921 FileRangeToIndexMap::Entry entry; 922 const_iterator begin = m_symbols.begin(); 923 const_iterator end = m_symbols.end(); 924 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 925 if (pos->ValueIsAddress()) { 926 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 927 entry.SetByteSize(pos->GetByteSize()); 928 entry.data = std::distance(begin, pos); 929 m_file_addr_to_index.Append(entry); 930 } 931 } 932 const size_t num_entries = m_file_addr_to_index.GetSize(); 933 if (num_entries > 0) { 934 m_file_addr_to_index.Sort(); 935 936 // Create a RangeVector with the start & size of all the sections for 937 // this objfile. We'll need to check this for any FileRangeToIndexMap 938 // entries with an uninitialized size, which could potentially be a large 939 // number so reconstituting the weak pointer is busywork when it is 940 // invariant information. 941 SectionList *sectlist = m_objfile->GetSectionList(); 942 RangeVector<addr_t, addr_t> section_ranges; 943 if (sectlist) { 944 AddSectionsToRangeMap(sectlist, section_ranges); 945 section_ranges.Sort(); 946 } 947 948 // Iterate through the FileRangeToIndexMap and fill in the size for any 949 // entries that didn't already have a size from the Symbol (e.g. if we 950 // have a plain linker symbol with an address only, instead of debug info 951 // where we get an address and a size and a type, etc.) 952 for (size_t i = 0; i < num_entries; i++) { 953 FileRangeToIndexMap::Entry *entry = 954 m_file_addr_to_index.GetMutableEntryAtIndex(i); 955 if (entry->GetByteSize() == 0) { 956 addr_t curr_base_addr = entry->GetRangeBase(); 957 const RangeVector<addr_t, addr_t>::Entry *containing_section = 958 section_ranges.FindEntryThatContains(curr_base_addr); 959 960 // Use the end of the section as the default max size of the symbol 961 addr_t sym_size = 0; 962 if (containing_section) { 963 sym_size = 964 containing_section->GetByteSize() - 965 (entry->GetRangeBase() - containing_section->GetRangeBase()); 966 } 967 968 for (size_t j = i; j < num_entries; j++) { 969 FileRangeToIndexMap::Entry *next_entry = 970 m_file_addr_to_index.GetMutableEntryAtIndex(j); 971 addr_t next_base_addr = next_entry->GetRangeBase(); 972 if (next_base_addr > curr_base_addr) { 973 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 974 975 // Take the difference between this symbol and the next one as 976 // its size, if it is less than the size of the section. 977 if (sym_size == 0 || size_to_next_symbol < sym_size) { 978 sym_size = size_to_next_symbol; 979 } 980 break; 981 } 982 } 983 984 if (sym_size > 0) { 985 entry->SetByteSize(sym_size); 986 Symbol &symbol = m_symbols[entry->data]; 987 symbol.SetByteSize(sym_size); 988 symbol.SetSizeIsSynthesized(true); 989 } 990 } 991 } 992 993 // Sort again in case the range size changes the ordering 994 m_file_addr_to_index.Sort(); 995 } 996 } 997 } 998 999 void Symtab::CalculateSymbolSizes() { 1000 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1001 // Size computation happens inside InitAddressIndexes. 1002 InitAddressIndexes(); 1003 } 1004 1005 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 1006 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1007 if (!m_file_addr_to_index_computed) 1008 InitAddressIndexes(); 1009 1010 const FileRangeToIndexMap::Entry *entry = 1011 m_file_addr_to_index.FindEntryStartsAt(file_addr); 1012 if (entry) { 1013 Symbol *symbol = SymbolAtIndex(entry->data); 1014 if (symbol->GetFileAddress() == file_addr) 1015 return symbol; 1016 } 1017 return nullptr; 1018 } 1019 1020 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1021 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1022 1023 if (!m_file_addr_to_index_computed) 1024 InitAddressIndexes(); 1025 1026 const FileRangeToIndexMap::Entry *entry = 1027 m_file_addr_to_index.FindEntryThatContains(file_addr); 1028 if (entry) { 1029 Symbol *symbol = SymbolAtIndex(entry->data); 1030 if (symbol->ContainsFileAddress(file_addr)) 1031 return symbol; 1032 } 1033 return nullptr; 1034 } 1035 1036 void Symtab::ForEachSymbolContainingFileAddress( 1037 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1038 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1039 1040 if (!m_file_addr_to_index_computed) 1041 InitAddressIndexes(); 1042 1043 std::vector<uint32_t> all_addr_indexes; 1044 1045 // Get all symbols with file_addr 1046 const size_t addr_match_count = 1047 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1048 all_addr_indexes); 1049 1050 for (size_t i = 0; i < addr_match_count; ++i) { 1051 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1052 if (symbol->ContainsFileAddress(file_addr)) { 1053 if (!callback(symbol)) 1054 break; 1055 } 1056 } 1057 } 1058 1059 void Symtab::SymbolIndicesToSymbolContextList( 1060 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1061 // No need to protect this call using m_mutex all other method calls are 1062 // already thread safe. 1063 1064 const bool merge_symbol_into_function = true; 1065 size_t num_indices = symbol_indexes.size(); 1066 if (num_indices > 0) { 1067 SymbolContext sc; 1068 sc.module_sp = m_objfile->GetModule(); 1069 for (size_t i = 0; i < num_indices; i++) { 1070 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1071 if (sc.symbol) 1072 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1073 } 1074 } 1075 } 1076 1077 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1078 SymbolContextList &sc_list) { 1079 std::vector<uint32_t> symbol_indexes; 1080 1081 // eFunctionNameTypeAuto should be pre-resolved by a call to 1082 // Module::LookupInfo::LookupInfo() 1083 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1084 1085 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1086 std::vector<uint32_t> temp_symbol_indexes; 1087 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1088 1089 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1090 if (temp_symbol_indexes_size > 0) { 1091 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1092 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1093 SymbolContext sym_ctx; 1094 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1095 if (sym_ctx.symbol) { 1096 switch (sym_ctx.symbol->GetType()) { 1097 case eSymbolTypeCode: 1098 case eSymbolTypeResolver: 1099 case eSymbolTypeReExported: 1100 symbol_indexes.push_back(temp_symbol_indexes[i]); 1101 break; 1102 default: 1103 break; 1104 } 1105 } 1106 } 1107 } 1108 } 1109 1110 if (!m_name_indexes_computed) 1111 InitNameIndexes(); 1112 1113 for (lldb::FunctionNameType type : 1114 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, 1115 lldb::eFunctionNameTypeSelector}) { 1116 if (name_type_mask & type) { 1117 auto map = GetNameToSymbolIndexMap(type); 1118 1119 const UniqueCStringMap<uint32_t>::Entry *match; 1120 for (match = map.FindFirstValueForName(name); match != nullptr; 1121 match = map.FindNextValueForName(match)) { 1122 symbol_indexes.push_back(match->value); 1123 } 1124 } 1125 } 1126 1127 if (!symbol_indexes.empty()) { 1128 llvm::sort(symbol_indexes.begin(), symbol_indexes.end()); 1129 symbol_indexes.erase( 1130 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1131 symbol_indexes.end()); 1132 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1133 } 1134 } 1135 1136 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1137 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1138 if (child_idx != UINT32_MAX && child_idx > 0) { 1139 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1140 const Symbol *symbol = SymbolAtIndex(idx); 1141 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1142 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1143 return symbol; 1144 } 1145 } 1146 return nullptr; 1147 } 1148