1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include <map> 11 #include <set> 12 13 #include "Plugins/Language/CPlusPlus/CPlusPlusLanguage.h" 14 #include "Plugins/Language/ObjC/ObjCLanguage.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/RegularExpression.h" 17 #include "lldb/Core/Section.h" 18 #include "lldb/Core/Stream.h" 19 #include "lldb/Core/Timer.h" 20 #include "lldb/Symbol/ObjectFile.h" 21 #include "lldb/Symbol/Symbol.h" 22 #include "lldb/Symbol/SymbolContext.h" 23 #include "lldb/Symbol/Symtab.h" 24 25 using namespace lldb; 26 using namespace lldb_private; 27 28 Symtab::Symtab(ObjectFile *objfile) 29 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(), 30 m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), 31 m_name_indexes_computed(false) {} 32 33 Symtab::~Symtab() {} 34 35 void Symtab::Reserve(size_t count) { 36 // Clients should grab the mutex from this symbol table and lock it manually 37 // when calling this function to avoid performance issues. 38 m_symbols.reserve(count); 39 } 40 41 Symbol *Symtab::Resize(size_t count) { 42 // Clients should grab the mutex from this symbol table and lock it manually 43 // when calling this function to avoid performance issues. 44 m_symbols.resize(count); 45 return m_symbols.empty() ? nullptr : &m_symbols[0]; 46 } 47 48 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 49 // Clients should grab the mutex from this symbol table and lock it manually 50 // when calling this function to avoid performance issues. 51 uint32_t symbol_idx = m_symbols.size(); 52 m_name_to_index.Clear(); 53 m_file_addr_to_index.Clear(); 54 m_symbols.push_back(symbol); 55 m_file_addr_to_index_computed = false; 56 m_name_indexes_computed = false; 57 return symbol_idx; 58 } 59 60 size_t Symtab::GetNumSymbols() const { 61 std::lock_guard<std::recursive_mutex> guard(m_mutex); 62 return m_symbols.size(); 63 } 64 65 void Symtab::SectionFileAddressesChanged() { 66 m_name_to_index.Clear(); 67 m_file_addr_to_index_computed = false; 68 } 69 70 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) { 71 std::lock_guard<std::recursive_mutex> guard(m_mutex); 72 73 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 74 s->Indent(); 75 const FileSpec &file_spec = m_objfile->GetFileSpec(); 76 const char *object_name = nullptr; 77 if (m_objfile->GetModule()) 78 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 79 80 if (file_spec) 81 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 82 file_spec.GetPath().c_str(), object_name ? "(" : "", 83 object_name ? object_name : "", object_name ? ")" : "", 84 (uint64_t)m_symbols.size()); 85 else 86 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 87 88 if (!m_symbols.empty()) { 89 switch (sort_order) { 90 case eSortOrderNone: { 91 s->PutCString(":\n"); 92 DumpSymbolHeader(s); 93 const_iterator begin = m_symbols.begin(); 94 const_iterator end = m_symbols.end(); 95 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 96 s->Indent(); 97 pos->Dump(s, target, std::distance(begin, pos)); 98 } 99 } break; 100 101 case eSortOrderByName: { 102 // Although we maintain a lookup by exact name map, the table 103 // isn't sorted by name. So we must make the ordered symbol list 104 // up ourselves. 105 s->PutCString(" (sorted by name):\n"); 106 DumpSymbolHeader(s); 107 typedef std::multimap<const char *, const Symbol *, 108 CStringCompareFunctionObject> 109 CStringToSymbol; 110 CStringToSymbol name_map; 111 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 112 pos != end; ++pos) { 113 const char *name = pos->GetName().AsCString(); 114 if (name && name[0]) 115 name_map.insert(std::make_pair(name, &(*pos))); 116 } 117 118 for (CStringToSymbol::const_iterator pos = name_map.begin(), 119 end = name_map.end(); 120 pos != end; ++pos) { 121 s->Indent(); 122 pos->second->Dump(s, target, pos->second - &m_symbols[0]); 123 } 124 } break; 125 126 case eSortOrderByAddress: 127 s->PutCString(" (sorted by address):\n"); 128 DumpSymbolHeader(s); 129 if (!m_file_addr_to_index_computed) 130 InitAddressIndexes(); 131 const size_t num_entries = m_file_addr_to_index.GetSize(); 132 for (size_t i = 0; i < num_entries; ++i) { 133 s->Indent(); 134 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 135 m_symbols[symbol_idx].Dump(s, target, symbol_idx); 136 } 137 break; 138 } 139 } 140 } 141 142 void Symtab::Dump(Stream *s, Target *target, 143 std::vector<uint32_t> &indexes) const { 144 std::lock_guard<std::recursive_mutex> guard(m_mutex); 145 146 const size_t num_symbols = GetNumSymbols(); 147 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 148 s->Indent(); 149 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 150 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 151 s->IndentMore(); 152 153 if (!indexes.empty()) { 154 std::vector<uint32_t>::const_iterator pos; 155 std::vector<uint32_t>::const_iterator end = indexes.end(); 156 DumpSymbolHeader(s); 157 for (pos = indexes.begin(); pos != end; ++pos) { 158 size_t idx = *pos; 159 if (idx < num_symbols) { 160 s->Indent(); 161 m_symbols[idx].Dump(s, target, idx); 162 } 163 } 164 } 165 s->IndentLess(); 166 } 167 168 void Symtab::DumpSymbolHeader(Stream *s) { 169 s->Indent(" Debug symbol\n"); 170 s->Indent(" |Synthetic symbol\n"); 171 s->Indent(" ||Externally Visible\n"); 172 s->Indent(" |||\n"); 173 s->Indent("Index UserID DSX Type File Address/Value Load " 174 "Address Size Flags Name\n"); 175 s->Indent("------- ------ --- --------------- ------------------ " 176 "------------------ ------------------ ---------- " 177 "----------------------------------\n"); 178 } 179 180 static int CompareSymbolID(const void *key, const void *p) { 181 const user_id_t match_uid = *(const user_id_t *)key; 182 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 183 if (match_uid < symbol_uid) 184 return -1; 185 if (match_uid > symbol_uid) 186 return 1; 187 return 0; 188 } 189 190 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 191 std::lock_guard<std::recursive_mutex> guard(m_mutex); 192 193 Symbol *symbol = 194 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 195 sizeof(m_symbols[0]), CompareSymbolID); 196 return symbol; 197 } 198 199 Symbol *Symtab::SymbolAtIndex(size_t idx) { 200 // Clients should grab the mutex from this symbol table and lock it manually 201 // when calling this function to avoid performance issues. 202 if (idx < m_symbols.size()) 203 return &m_symbols[idx]; 204 return nullptr; 205 } 206 207 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 208 // Clients should grab the mutex from this symbol table and lock it manually 209 // when calling this function to avoid performance issues. 210 if (idx < m_symbols.size()) 211 return &m_symbols[idx]; 212 return nullptr; 213 } 214 215 //---------------------------------------------------------------------- 216 // InitNameIndexes 217 //---------------------------------------------------------------------- 218 void Symtab::InitNameIndexes() { 219 // Protected function, no need to lock mutex... 220 if (!m_name_indexes_computed) { 221 m_name_indexes_computed = true; 222 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 223 // Create the name index vector to be able to quickly search by name 224 const size_t num_symbols = m_symbols.size(); 225 #if 1 226 m_name_to_index.Reserve(num_symbols); 227 #else 228 // TODO: benchmark this to see if we save any memory. Otherwise we 229 // will always keep the memory reserved in the vector unless we pull 230 // some STL swap magic and then recopy... 231 uint32_t actual_count = 0; 232 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 233 pos != end; ++pos) { 234 const Mangled &mangled = pos->GetMangled(); 235 if (mangled.GetMangledName()) 236 ++actual_count; 237 238 if (mangled.GetDemangledName()) 239 ++actual_count; 240 } 241 242 m_name_to_index.Reserve(actual_count); 243 #endif 244 245 NameToIndexMap::Entry entry; 246 247 // The "const char *" in "class_contexts" must come from a 248 // ConstString::GetCString() 249 std::set<const char *> class_contexts; 250 UniqueCStringMap<uint32_t> mangled_name_to_index; 251 std::vector<const char *> symbol_contexts(num_symbols, nullptr); 252 253 for (entry.value = 0; entry.value < num_symbols; ++entry.value) { 254 const Symbol *symbol = &m_symbols[entry.value]; 255 256 // Don't let trampolines get into the lookup by name map 257 // If we ever need the trampoline symbols to be searchable by name 258 // we can remove this and then possibly add a new bool to any of the 259 // Symtab functions that lookup symbols by name to indicate if they 260 // want trampolines. 261 if (symbol->IsTrampoline()) 262 continue; 263 264 const Mangled &mangled = symbol->GetMangled(); 265 entry.cstring = mangled.GetMangledName().GetStringRef(); 266 if (!entry.cstring.empty()) { 267 m_name_to_index.Append(entry); 268 269 if (symbol->ContainsLinkerAnnotations()) { 270 // If the symbol has linker annotations, also add the version without 271 // the annotations. 272 entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( 273 entry.cstring)) 274 .GetStringRef(); 275 m_name_to_index.Append(entry); 276 } 277 278 const SymbolType symbol_type = symbol->GetType(); 279 if (symbol_type == eSymbolTypeCode || 280 symbol_type == eSymbolTypeResolver) { 281 if (entry.cstring[0] == '_' && entry.cstring[1] == 'Z' && 282 (entry.cstring[2] != 'T' && // avoid virtual table, VTT structure, 283 // typeinfo structure, and typeinfo 284 // name 285 entry.cstring[2] != 'G' && // avoid guard variables 286 entry.cstring[2] != 'Z')) // named local entities (if we 287 // eventually handle eSymbolTypeData, 288 // we will want this back) 289 { 290 CPlusPlusLanguage::MethodName cxx_method( 291 mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus)); 292 entry.cstring = 293 ConstString(cxx_method.GetBasename()).GetStringRef(); 294 if (!entry.cstring.empty()) { 295 // ConstString objects permanently store the string in the pool so 296 // calling 297 // GetCString() on the value gets us a const char * that will 298 // never go away 299 const char *const_context = 300 ConstString(cxx_method.GetContext()).GetCString(); 301 302 if (entry.cstring[0] == '~' || 303 !cxx_method.GetQualifiers().empty()) { 304 // The first character of the demangled basename is '~' which 305 // means we have a class destructor. We can use this information 306 // to help us know what is a class and what isn't. 307 if (class_contexts.find(const_context) == class_contexts.end()) 308 class_contexts.insert(const_context); 309 m_method_to_index.Append(entry); 310 } else { 311 if (const_context && const_context[0]) { 312 if (class_contexts.find(const_context) != 313 class_contexts.end()) { 314 // The current decl context is in our "class_contexts" which 315 // means 316 // this is a method on a class 317 m_method_to_index.Append(entry); 318 } else { 319 // We don't know if this is a function basename or a method, 320 // so put it into a temporary collection so once we are done 321 // we can look in class_contexts to see if each entry is a 322 // class 323 // or just a function and will put any remaining items into 324 // m_method_to_index or m_basename_to_index as needed 325 mangled_name_to_index.Append(entry); 326 symbol_contexts[entry.value] = const_context; 327 } 328 } else { 329 // No context for this function so this has to be a basename 330 m_basename_to_index.Append(entry); 331 } 332 } 333 } 334 } 335 } 336 } 337 338 entry.cstring = 339 mangled.GetDemangledName(symbol->GetLanguage()).GetStringRef(); 340 if (!entry.cstring.empty()) { 341 m_name_to_index.Append(entry); 342 343 if (symbol->ContainsLinkerAnnotations()) { 344 // If the symbol has linker annotations, also add the version without 345 // the annotations. 346 entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( 347 entry.cstring)) 348 .GetStringRef(); 349 m_name_to_index.Append(entry); 350 } 351 } 352 353 // If the demangled name turns out to be an ObjC name, and 354 // is a category name, add the version without categories to the index 355 // too. 356 ObjCLanguage::MethodName objc_method(entry.cstring, true); 357 if (objc_method.IsValid(true)) { 358 entry.cstring = objc_method.GetSelector().GetStringRef(); 359 m_selector_to_index.Append(entry); 360 361 ConstString objc_method_no_category( 362 objc_method.GetFullNameWithoutCategory(true)); 363 if (objc_method_no_category) { 364 entry.cstring = objc_method_no_category.GetStringRef(); 365 m_name_to_index.Append(entry); 366 } 367 } 368 } 369 370 size_t count; 371 if (!mangled_name_to_index.IsEmpty()) { 372 count = mangled_name_to_index.GetSize(); 373 for (size_t i = 0; i < count; ++i) { 374 if (mangled_name_to_index.GetValueAtIndex(i, entry.value)) { 375 entry.cstring = mangled_name_to_index.GetCStringAtIndex(i); 376 if (symbol_contexts[entry.value] && 377 class_contexts.find(symbol_contexts[entry.value]) != 378 class_contexts.end()) { 379 m_method_to_index.Append(entry); 380 } else { 381 // If we got here, we have something that had a context (was inside 382 // a namespace or class) 383 // yet we don't know if the entry 384 m_method_to_index.Append(entry); 385 m_basename_to_index.Append(entry); 386 } 387 } 388 } 389 } 390 m_name_to_index.Sort(); 391 m_name_to_index.SizeToFit(); 392 m_selector_to_index.Sort(); 393 m_selector_to_index.SizeToFit(); 394 m_basename_to_index.Sort(); 395 m_basename_to_index.SizeToFit(); 396 m_method_to_index.Sort(); 397 m_method_to_index.SizeToFit(); 398 399 // static StreamFile a ("/tmp/a.txt"); 400 // 401 // count = m_basename_to_index.GetSize(); 402 // if (count) 403 // { 404 // for (size_t i=0; i<count; ++i) 405 // { 406 // if (m_basename_to_index.GetValueAtIndex(i, entry.value)) 407 // a.Printf ("%s BASENAME\n", 408 // m_symbols[entry.value].GetMangled().GetName().GetCString()); 409 // } 410 // } 411 // count = m_method_to_index.GetSize(); 412 // if (count) 413 // { 414 // for (size_t i=0; i<count; ++i) 415 // { 416 // if (m_method_to_index.GetValueAtIndex(i, entry.value)) 417 // a.Printf ("%s METHOD\n", 418 // m_symbols[entry.value].GetMangled().GetName().GetCString()); 419 // } 420 // } 421 } 422 } 423 424 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 425 bool add_demangled, bool add_mangled, 426 NameToIndexMap &name_to_index_map) const { 427 if (add_demangled || add_mangled) { 428 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 429 std::lock_guard<std::recursive_mutex> guard(m_mutex); 430 431 // Create the name index vector to be able to quickly search by name 432 NameToIndexMap::Entry entry; 433 const size_t num_indexes = indexes.size(); 434 for (size_t i = 0; i < num_indexes; ++i) { 435 entry.value = indexes[i]; 436 assert(i < m_symbols.size()); 437 const Symbol *symbol = &m_symbols[entry.value]; 438 439 const Mangled &mangled = symbol->GetMangled(); 440 if (add_demangled) { 441 entry.cstring = 442 mangled.GetDemangledName(symbol->GetLanguage()).GetStringRef(); 443 if (!entry.cstring.empty()) 444 name_to_index_map.Append(entry); 445 } 446 447 if (add_mangled) { 448 entry.cstring = mangled.GetMangledName().GetStringRef(); 449 if (!entry.cstring.empty()) 450 name_to_index_map.Append(entry); 451 } 452 } 453 } 454 } 455 456 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 457 std::vector<uint32_t> &indexes, 458 uint32_t start_idx, 459 uint32_t end_index) const { 460 std::lock_guard<std::recursive_mutex> guard(m_mutex); 461 462 uint32_t prev_size = indexes.size(); 463 464 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 465 466 for (uint32_t i = start_idx; i < count; ++i) { 467 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 468 indexes.push_back(i); 469 } 470 471 return indexes.size() - prev_size; 472 } 473 474 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 475 SymbolType symbol_type, uint32_t flags_value, 476 std::vector<uint32_t> &indexes, uint32_t start_idx, 477 uint32_t end_index) const { 478 std::lock_guard<std::recursive_mutex> guard(m_mutex); 479 480 uint32_t prev_size = indexes.size(); 481 482 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 483 484 for (uint32_t i = start_idx; i < count; ++i) { 485 if ((symbol_type == eSymbolTypeAny || 486 m_symbols[i].GetType() == symbol_type) && 487 m_symbols[i].GetFlags() == flags_value) 488 indexes.push_back(i); 489 } 490 491 return indexes.size() - prev_size; 492 } 493 494 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 495 Debug symbol_debug_type, 496 Visibility symbol_visibility, 497 std::vector<uint32_t> &indexes, 498 uint32_t start_idx, 499 uint32_t end_index) const { 500 std::lock_guard<std::recursive_mutex> guard(m_mutex); 501 502 uint32_t prev_size = indexes.size(); 503 504 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 505 506 for (uint32_t i = start_idx; i < count; ++i) { 507 if (symbol_type == eSymbolTypeAny || 508 m_symbols[i].GetType() == symbol_type) { 509 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 510 indexes.push_back(i); 511 } 512 } 513 514 return indexes.size() - prev_size; 515 } 516 517 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 518 if (!m_symbols.empty()) { 519 const Symbol *first_symbol = &m_symbols[0]; 520 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 521 return symbol - first_symbol; 522 } 523 return UINT32_MAX; 524 } 525 526 struct SymbolSortInfo { 527 const bool sort_by_load_addr; 528 const Symbol *symbols; 529 }; 530 531 namespace { 532 struct SymbolIndexComparator { 533 const std::vector<Symbol> &symbols; 534 std::vector<lldb::addr_t> &addr_cache; 535 536 // Getting from the symbol to the Address to the File Address involves some 537 // work. 538 // Since there are potentially many symbols here, and we're using this for 539 // sorting so 540 // we're going to be computing the address many times, cache that in 541 // addr_cache. 542 // The array passed in has to be the same size as the symbols array passed 543 // into the 544 // member variable symbols, and should be initialized with 545 // LLDB_INVALID_ADDRESS. 546 // NOTE: You have to make addr_cache externally and pass it in because 547 // std::stable_sort 548 // makes copies of the comparator it is initially passed in, and you end up 549 // spending 550 // huge amounts of time copying this array... 551 552 SymbolIndexComparator(const std::vector<Symbol> &s, 553 std::vector<lldb::addr_t> &a) 554 : symbols(s), addr_cache(a) { 555 assert(symbols.size() == addr_cache.size()); 556 } 557 bool operator()(uint32_t index_a, uint32_t index_b) { 558 addr_t value_a = addr_cache[index_a]; 559 if (value_a == LLDB_INVALID_ADDRESS) { 560 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 561 addr_cache[index_a] = value_a; 562 } 563 564 addr_t value_b = addr_cache[index_b]; 565 if (value_b == LLDB_INVALID_ADDRESS) { 566 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 567 addr_cache[index_b] = value_b; 568 } 569 570 if (value_a == value_b) { 571 // The if the values are equal, use the original symbol user ID 572 lldb::user_id_t uid_a = symbols[index_a].GetID(); 573 lldb::user_id_t uid_b = symbols[index_b].GetID(); 574 if (uid_a < uid_b) 575 return true; 576 if (uid_a > uid_b) 577 return false; 578 return false; 579 } else if (value_a < value_b) 580 return true; 581 582 return false; 583 } 584 }; 585 } 586 587 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 588 bool remove_duplicates) const { 589 std::lock_guard<std::recursive_mutex> guard(m_mutex); 590 591 Timer scoped_timer(LLVM_PRETTY_FUNCTION, LLVM_PRETTY_FUNCTION); 592 // No need to sort if we have zero or one items... 593 if (indexes.size() <= 1) 594 return; 595 596 // Sort the indexes in place using std::stable_sort. 597 // NOTE: The use of std::stable_sort instead of std::sort here is strictly for 598 // performance, 599 // not correctness. The indexes vector tends to be "close" to sorted, which 600 // the 601 // stable sort handles better. 602 603 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 604 605 SymbolIndexComparator comparator(m_symbols, addr_cache); 606 std::stable_sort(indexes.begin(), indexes.end(), comparator); 607 608 // Remove any duplicates if requested 609 if (remove_duplicates) 610 std::unique(indexes.begin(), indexes.end()); 611 } 612 613 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, 614 std::vector<uint32_t> &indexes) { 615 std::lock_guard<std::recursive_mutex> guard(m_mutex); 616 617 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 618 if (symbol_name) { 619 if (!m_name_indexes_computed) 620 InitNameIndexes(); 621 622 return m_name_to_index.GetValues(symbol_name.GetStringRef(), indexes); 623 } 624 return 0; 625 } 626 627 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, 628 Debug symbol_debug_type, 629 Visibility symbol_visibility, 630 std::vector<uint32_t> &indexes) { 631 std::lock_guard<std::recursive_mutex> guard(m_mutex); 632 633 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 634 if (symbol_name) { 635 const size_t old_size = indexes.size(); 636 if (!m_name_indexes_computed) 637 InitNameIndexes(); 638 639 std::vector<uint32_t> all_name_indexes; 640 const size_t name_match_count = 641 m_name_to_index.GetValues(symbol_name.GetStringRef(), all_name_indexes); 642 for (size_t i = 0; i < name_match_count; ++i) { 643 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 644 symbol_visibility)) 645 indexes.push_back(all_name_indexes[i]); 646 } 647 return indexes.size() - old_size; 648 } 649 return 0; 650 } 651 652 uint32_t 653 Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name, 654 SymbolType symbol_type, 655 std::vector<uint32_t> &indexes) { 656 std::lock_guard<std::recursive_mutex> guard(m_mutex); 657 658 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 659 std::vector<uint32_t>::iterator pos = indexes.begin(); 660 while (pos != indexes.end()) { 661 if (symbol_type == eSymbolTypeAny || 662 m_symbols[*pos].GetType() == symbol_type) 663 ++pos; 664 else 665 pos = indexes.erase(pos); 666 } 667 } 668 return indexes.size(); 669 } 670 671 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 672 const ConstString &symbol_name, SymbolType symbol_type, 673 Debug symbol_debug_type, Visibility symbol_visibility, 674 std::vector<uint32_t> &indexes) { 675 std::lock_guard<std::recursive_mutex> guard(m_mutex); 676 677 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 678 symbol_visibility, indexes) > 0) { 679 std::vector<uint32_t>::iterator pos = indexes.begin(); 680 while (pos != indexes.end()) { 681 if (symbol_type == eSymbolTypeAny || 682 m_symbols[*pos].GetType() == symbol_type) 683 ++pos; 684 else 685 pos = indexes.erase(pos); 686 } 687 } 688 return indexes.size(); 689 } 690 691 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 692 const RegularExpression ®exp, SymbolType symbol_type, 693 std::vector<uint32_t> &indexes) { 694 std::lock_guard<std::recursive_mutex> guard(m_mutex); 695 696 uint32_t prev_size = indexes.size(); 697 uint32_t sym_end = m_symbols.size(); 698 699 for (uint32_t i = 0; i < sym_end; i++) { 700 if (symbol_type == eSymbolTypeAny || 701 m_symbols[i].GetType() == symbol_type) { 702 const char *name = m_symbols[i].GetName().AsCString(); 703 if (name) { 704 if (regexp.Execute(name)) 705 indexes.push_back(i); 706 } 707 } 708 } 709 return indexes.size() - prev_size; 710 } 711 712 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 713 const RegularExpression ®exp, SymbolType symbol_type, 714 Debug symbol_debug_type, Visibility symbol_visibility, 715 std::vector<uint32_t> &indexes) { 716 std::lock_guard<std::recursive_mutex> guard(m_mutex); 717 718 uint32_t prev_size = indexes.size(); 719 uint32_t sym_end = m_symbols.size(); 720 721 for (uint32_t i = 0; i < sym_end; i++) { 722 if (symbol_type == eSymbolTypeAny || 723 m_symbols[i].GetType() == symbol_type) { 724 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false) 725 continue; 726 727 const char *name = m_symbols[i].GetName().AsCString(); 728 if (name) { 729 if (regexp.Execute(name)) 730 indexes.push_back(i); 731 } 732 } 733 } 734 return indexes.size() - prev_size; 735 } 736 737 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 738 Debug symbol_debug_type, 739 Visibility symbol_visibility, 740 uint32_t &start_idx) { 741 std::lock_guard<std::recursive_mutex> guard(m_mutex); 742 743 const size_t count = m_symbols.size(); 744 for (size_t idx = start_idx; idx < count; ++idx) { 745 if (symbol_type == eSymbolTypeAny || 746 m_symbols[idx].GetType() == symbol_type) { 747 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 748 start_idx = idx; 749 return &m_symbols[idx]; 750 } 751 } 752 } 753 return nullptr; 754 } 755 756 size_t 757 Symtab::FindAllSymbolsWithNameAndType(const ConstString &name, 758 SymbolType symbol_type, 759 std::vector<uint32_t> &symbol_indexes) { 760 std::lock_guard<std::recursive_mutex> guard(m_mutex); 761 762 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 763 // Initialize all of the lookup by name indexes before converting NAME 764 // to a uniqued string NAME_STR below. 765 if (!m_name_indexes_computed) 766 InitNameIndexes(); 767 768 if (name) { 769 // The string table did have a string that matched, but we need 770 // to check the symbols and match the symbol_type if any was given. 771 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 772 } 773 return symbol_indexes.size(); 774 } 775 776 size_t Symtab::FindAllSymbolsWithNameAndType( 777 const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, 778 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 779 std::lock_guard<std::recursive_mutex> guard(m_mutex); 780 781 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 782 // Initialize all of the lookup by name indexes before converting NAME 783 // to a uniqued string NAME_STR below. 784 if (!m_name_indexes_computed) 785 InitNameIndexes(); 786 787 if (name) { 788 // The string table did have a string that matched, but we need 789 // to check the symbols and match the symbol_type if any was given. 790 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 791 symbol_visibility, symbol_indexes); 792 } 793 return symbol_indexes.size(); 794 } 795 796 size_t Symtab::FindAllSymbolsMatchingRexExAndType( 797 const RegularExpression ®ex, SymbolType symbol_type, 798 Debug symbol_debug_type, Visibility symbol_visibility, 799 std::vector<uint32_t> &symbol_indexes) { 800 std::lock_guard<std::recursive_mutex> guard(m_mutex); 801 802 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 803 symbol_visibility, symbol_indexes); 804 return symbol_indexes.size(); 805 } 806 807 Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name, 808 SymbolType symbol_type, 809 Debug symbol_debug_type, 810 Visibility symbol_visibility) { 811 std::lock_guard<std::recursive_mutex> guard(m_mutex); 812 813 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 814 if (!m_name_indexes_computed) 815 InitNameIndexes(); 816 817 if (name) { 818 std::vector<uint32_t> matching_indexes; 819 // The string table did have a string that matched, but we need 820 // to check the symbols and match the symbol_type if any was given. 821 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 822 symbol_visibility, 823 matching_indexes)) { 824 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 825 for (pos = matching_indexes.begin(); pos != end; ++pos) { 826 Symbol *symbol = SymbolAtIndex(*pos); 827 828 if (symbol->Compare(name, symbol_type)) 829 return symbol; 830 } 831 } 832 } 833 return nullptr; 834 } 835 836 typedef struct { 837 const Symtab *symtab; 838 const addr_t file_addr; 839 Symbol *match_symbol; 840 const uint32_t *match_index_ptr; 841 addr_t match_offset; 842 } SymbolSearchInfo; 843 844 // Add all the section file start address & size to the RangeVector, 845 // recusively adding any children sections. 846 static void AddSectionsToRangeMap(SectionList *sectlist, 847 RangeVector<addr_t, addr_t> §ion_ranges) { 848 const int num_sections = sectlist->GetNumSections(0); 849 for (int i = 0; i < num_sections; i++) { 850 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 851 if (sect_sp) { 852 SectionList &child_sectlist = sect_sp->GetChildren(); 853 854 // If this section has children, add the children to the RangeVector. 855 // Else add this section to the RangeVector. 856 if (child_sectlist.GetNumSections(0) > 0) { 857 AddSectionsToRangeMap(&child_sectlist, section_ranges); 858 } else { 859 size_t size = sect_sp->GetByteSize(); 860 if (size > 0) { 861 addr_t base_addr = sect_sp->GetFileAddress(); 862 RangeVector<addr_t, addr_t>::Entry entry; 863 entry.SetRangeBase(base_addr); 864 entry.SetByteSize(size); 865 section_ranges.Append(entry); 866 } 867 } 868 } 869 } 870 } 871 872 void Symtab::InitAddressIndexes() { 873 // Protected function, no need to lock mutex... 874 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 875 m_file_addr_to_index_computed = true; 876 877 FileRangeToIndexMap::Entry entry; 878 const_iterator begin = m_symbols.begin(); 879 const_iterator end = m_symbols.end(); 880 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 881 if (pos->ValueIsAddress()) { 882 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 883 entry.SetByteSize(pos->GetByteSize()); 884 entry.data = std::distance(begin, pos); 885 m_file_addr_to_index.Append(entry); 886 } 887 } 888 const size_t num_entries = m_file_addr_to_index.GetSize(); 889 if (num_entries > 0) { 890 m_file_addr_to_index.Sort(); 891 892 // Create a RangeVector with the start & size of all the sections for 893 // this objfile. We'll need to check this for any FileRangeToIndexMap 894 // entries with an uninitialized size, which could potentially be a 895 // large number so reconstituting the weak pointer is busywork when it 896 // is invariant information. 897 SectionList *sectlist = m_objfile->GetSectionList(); 898 RangeVector<addr_t, addr_t> section_ranges; 899 if (sectlist) { 900 AddSectionsToRangeMap(sectlist, section_ranges); 901 section_ranges.Sort(); 902 } 903 904 // Iterate through the FileRangeToIndexMap and fill in the size for any 905 // entries that didn't already have a size from the Symbol (e.g. if we 906 // have a plain linker symbol with an address only, instead of debug info 907 // where we get an address and a size and a type, etc.) 908 for (size_t i = 0; i < num_entries; i++) { 909 FileRangeToIndexMap::Entry *entry = 910 m_file_addr_to_index.GetMutableEntryAtIndex(i); 911 if (entry->GetByteSize() == 0) { 912 addr_t curr_base_addr = entry->GetRangeBase(); 913 const RangeVector<addr_t, addr_t>::Entry *containing_section = 914 section_ranges.FindEntryThatContains(curr_base_addr); 915 916 // Use the end of the section as the default max size of the symbol 917 addr_t sym_size = 0; 918 if (containing_section) { 919 sym_size = 920 containing_section->GetByteSize() - 921 (entry->GetRangeBase() - containing_section->GetRangeBase()); 922 } 923 924 for (size_t j = i; j < num_entries; j++) { 925 FileRangeToIndexMap::Entry *next_entry = 926 m_file_addr_to_index.GetMutableEntryAtIndex(j); 927 addr_t next_base_addr = next_entry->GetRangeBase(); 928 if (next_base_addr > curr_base_addr) { 929 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 930 931 // Take the difference between this symbol and the next one as its 932 // size, 933 // if it is less than the size of the section. 934 if (sym_size == 0 || size_to_next_symbol < sym_size) { 935 sym_size = size_to_next_symbol; 936 } 937 break; 938 } 939 } 940 941 if (sym_size > 0) { 942 entry->SetByteSize(sym_size); 943 Symbol &symbol = m_symbols[entry->data]; 944 symbol.SetByteSize(sym_size); 945 symbol.SetSizeIsSynthesized(true); 946 } 947 } 948 } 949 950 // Sort again in case the range size changes the ordering 951 m_file_addr_to_index.Sort(); 952 } 953 } 954 } 955 956 void Symtab::CalculateSymbolSizes() { 957 std::lock_guard<std::recursive_mutex> guard(m_mutex); 958 959 if (!m_symbols.empty()) { 960 if (!m_file_addr_to_index_computed) 961 InitAddressIndexes(); 962 963 const size_t num_entries = m_file_addr_to_index.GetSize(); 964 965 for (size_t i = 0; i < num_entries; ++i) { 966 // The entries in the m_file_addr_to_index have calculated the sizes 967 // already 968 // so we will use this size if we need to. 969 const FileRangeToIndexMap::Entry &entry = 970 m_file_addr_to_index.GetEntryRef(i); 971 972 Symbol &symbol = m_symbols[entry.data]; 973 974 // If the symbol size is already valid, no need to do anything 975 if (symbol.GetByteSizeIsValid()) 976 continue; 977 978 const addr_t range_size = entry.GetByteSize(); 979 if (range_size > 0) { 980 symbol.SetByteSize(range_size); 981 symbol.SetSizeIsSynthesized(true); 982 } 983 } 984 } 985 } 986 987 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 988 std::lock_guard<std::recursive_mutex> guard(m_mutex); 989 if (!m_file_addr_to_index_computed) 990 InitAddressIndexes(); 991 992 const FileRangeToIndexMap::Entry *entry = 993 m_file_addr_to_index.FindEntryStartsAt(file_addr); 994 if (entry) { 995 Symbol *symbol = SymbolAtIndex(entry->data); 996 if (symbol->GetFileAddress() == file_addr) 997 return symbol; 998 } 999 return nullptr; 1000 } 1001 1002 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1003 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1004 1005 if (!m_file_addr_to_index_computed) 1006 InitAddressIndexes(); 1007 1008 const FileRangeToIndexMap::Entry *entry = 1009 m_file_addr_to_index.FindEntryThatContains(file_addr); 1010 if (entry) { 1011 Symbol *symbol = SymbolAtIndex(entry->data); 1012 if (symbol->ContainsFileAddress(file_addr)) 1013 return symbol; 1014 } 1015 return nullptr; 1016 } 1017 1018 void Symtab::ForEachSymbolContainingFileAddress( 1019 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1020 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1021 1022 if (!m_file_addr_to_index_computed) 1023 InitAddressIndexes(); 1024 1025 std::vector<uint32_t> all_addr_indexes; 1026 1027 // Get all symbols with file_addr 1028 const size_t addr_match_count = 1029 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1030 all_addr_indexes); 1031 1032 for (size_t i = 0; i < addr_match_count; ++i) { 1033 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1034 if (symbol->ContainsFileAddress(file_addr)) { 1035 if (!callback(symbol)) 1036 break; 1037 } 1038 } 1039 } 1040 1041 void Symtab::SymbolIndicesToSymbolContextList( 1042 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1043 // No need to protect this call using m_mutex all other method calls are 1044 // already thread safe. 1045 1046 const bool merge_symbol_into_function = true; 1047 size_t num_indices = symbol_indexes.size(); 1048 if (num_indices > 0) { 1049 SymbolContext sc; 1050 sc.module_sp = m_objfile->GetModule(); 1051 for (size_t i = 0; i < num_indices; i++) { 1052 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1053 if (sc.symbol) 1054 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1055 } 1056 } 1057 } 1058 1059 size_t Symtab::FindFunctionSymbols(const ConstString &name, 1060 uint32_t name_type_mask, 1061 SymbolContextList &sc_list) { 1062 size_t count = 0; 1063 std::vector<uint32_t> symbol_indexes; 1064 1065 llvm::StringRef name_cstr = name.GetStringRef(); 1066 1067 // eFunctionNameTypeAuto should be pre-resolved by a call to 1068 // Module::LookupInfo::LookupInfo() 1069 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1070 1071 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1072 std::vector<uint32_t> temp_symbol_indexes; 1073 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1074 1075 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1076 if (temp_symbol_indexes_size > 0) { 1077 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1078 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1079 SymbolContext sym_ctx; 1080 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1081 if (sym_ctx.symbol) { 1082 switch (sym_ctx.symbol->GetType()) { 1083 case eSymbolTypeCode: 1084 case eSymbolTypeResolver: 1085 case eSymbolTypeReExported: 1086 symbol_indexes.push_back(temp_symbol_indexes[i]); 1087 break; 1088 default: 1089 break; 1090 } 1091 } 1092 } 1093 } 1094 } 1095 1096 if (name_type_mask & eFunctionNameTypeBase) { 1097 // From mangled names we can't tell what is a basename and what 1098 // is a method name, so we just treat them the same 1099 if (!m_name_indexes_computed) 1100 InitNameIndexes(); 1101 1102 if (!m_basename_to_index.IsEmpty()) { 1103 const UniqueCStringMap<uint32_t>::Entry *match; 1104 for (match = m_basename_to_index.FindFirstValueForName(name_cstr); 1105 match != nullptr; 1106 match = m_basename_to_index.FindNextValueForName(match)) { 1107 symbol_indexes.push_back(match->value); 1108 } 1109 } 1110 } 1111 1112 if (name_type_mask & eFunctionNameTypeMethod) { 1113 if (!m_name_indexes_computed) 1114 InitNameIndexes(); 1115 1116 if (!m_method_to_index.IsEmpty()) { 1117 const UniqueCStringMap<uint32_t>::Entry *match; 1118 for (match = m_method_to_index.FindFirstValueForName(name_cstr); 1119 match != nullptr; 1120 match = m_method_to_index.FindNextValueForName(match)) { 1121 symbol_indexes.push_back(match->value); 1122 } 1123 } 1124 } 1125 1126 if (name_type_mask & eFunctionNameTypeSelector) { 1127 if (!m_name_indexes_computed) 1128 InitNameIndexes(); 1129 1130 if (!m_selector_to_index.IsEmpty()) { 1131 const UniqueCStringMap<uint32_t>::Entry *match; 1132 for (match = m_selector_to_index.FindFirstValueForName(name_cstr); 1133 match != nullptr; 1134 match = m_selector_to_index.FindNextValueForName(match)) { 1135 symbol_indexes.push_back(match->value); 1136 } 1137 } 1138 } 1139 1140 if (!symbol_indexes.empty()) { 1141 std::sort(symbol_indexes.begin(), symbol_indexes.end()); 1142 symbol_indexes.erase( 1143 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1144 symbol_indexes.end()); 1145 count = symbol_indexes.size(); 1146 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1147 } 1148 1149 return count; 1150 } 1151 1152 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1153 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1154 if (child_idx != UINT32_MAX && child_idx > 0) { 1155 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1156 const Symbol *symbol = SymbolAtIndex(idx); 1157 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1158 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1159 return symbol; 1160 } 1161 } 1162 return NULL; 1163 } 1164