1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include <map> 11 #include <set> 12 13 #include "Plugins/Language/CPlusPlus/CPlusPlusLanguage.h" 14 #include "Plugins/Language/ObjC/ObjCLanguage.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/Section.h" 17 #include "lldb/Core/Timer.h" 18 #include "lldb/Symbol/ObjectFile.h" 19 #include "lldb/Symbol/Symbol.h" 20 #include "lldb/Symbol/SymbolContext.h" 21 #include "lldb/Symbol/Symtab.h" 22 #include "lldb/Utility/RegularExpression.h" 23 #include "lldb/Utility/Stream.h" 24 25 using namespace lldb; 26 using namespace lldb_private; 27 28 Symtab::Symtab(ObjectFile *objfile) 29 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(), 30 m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), 31 m_name_indexes_computed(false) {} 32 33 Symtab::~Symtab() {} 34 35 void Symtab::Reserve(size_t count) { 36 // Clients should grab the mutex from this symbol table and lock it manually 37 // when calling this function to avoid performance issues. 38 m_symbols.reserve(count); 39 } 40 41 Symbol *Symtab::Resize(size_t count) { 42 // Clients should grab the mutex from this symbol table and lock it manually 43 // when calling this function to avoid performance issues. 44 m_symbols.resize(count); 45 return m_symbols.empty() ? nullptr : &m_symbols[0]; 46 } 47 48 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 49 // Clients should grab the mutex from this symbol table and lock it manually 50 // when calling this function to avoid performance issues. 51 uint32_t symbol_idx = m_symbols.size(); 52 m_name_to_index.Clear(); 53 m_file_addr_to_index.Clear(); 54 m_symbols.push_back(symbol); 55 m_file_addr_to_index_computed = false; 56 m_name_indexes_computed = false; 57 return symbol_idx; 58 } 59 60 size_t Symtab::GetNumSymbols() const { 61 std::lock_guard<std::recursive_mutex> guard(m_mutex); 62 return m_symbols.size(); 63 } 64 65 void Symtab::SectionFileAddressesChanged() { 66 m_name_to_index.Clear(); 67 m_file_addr_to_index_computed = false; 68 } 69 70 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) { 71 std::lock_guard<std::recursive_mutex> guard(m_mutex); 72 73 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 74 s->Indent(); 75 const FileSpec &file_spec = m_objfile->GetFileSpec(); 76 const char *object_name = nullptr; 77 if (m_objfile->GetModule()) 78 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 79 80 if (file_spec) 81 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 82 file_spec.GetPath().c_str(), object_name ? "(" : "", 83 object_name ? object_name : "", object_name ? ")" : "", 84 (uint64_t)m_symbols.size()); 85 else 86 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 87 88 if (!m_symbols.empty()) { 89 switch (sort_order) { 90 case eSortOrderNone: { 91 s->PutCString(":\n"); 92 DumpSymbolHeader(s); 93 const_iterator begin = m_symbols.begin(); 94 const_iterator end = m_symbols.end(); 95 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 96 s->Indent(); 97 pos->Dump(s, target, std::distance(begin, pos)); 98 } 99 } break; 100 101 case eSortOrderByName: { 102 // Although we maintain a lookup by exact name map, the table 103 // isn't sorted by name. So we must make the ordered symbol list 104 // up ourselves. 105 s->PutCString(" (sorted by name):\n"); 106 DumpSymbolHeader(s); 107 typedef std::multimap<const char *, const Symbol *, 108 CStringCompareFunctionObject> 109 CStringToSymbol; 110 CStringToSymbol name_map; 111 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 112 pos != end; ++pos) { 113 const char *name = pos->GetName().AsCString(); 114 if (name && name[0]) 115 name_map.insert(std::make_pair(name, &(*pos))); 116 } 117 118 for (CStringToSymbol::const_iterator pos = name_map.begin(), 119 end = name_map.end(); 120 pos != end; ++pos) { 121 s->Indent(); 122 pos->second->Dump(s, target, pos->second - &m_symbols[0]); 123 } 124 } break; 125 126 case eSortOrderByAddress: 127 s->PutCString(" (sorted by address):\n"); 128 DumpSymbolHeader(s); 129 if (!m_file_addr_to_index_computed) 130 InitAddressIndexes(); 131 const size_t num_entries = m_file_addr_to_index.GetSize(); 132 for (size_t i = 0; i < num_entries; ++i) { 133 s->Indent(); 134 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 135 m_symbols[symbol_idx].Dump(s, target, symbol_idx); 136 } 137 break; 138 } 139 } 140 } 141 142 void Symtab::Dump(Stream *s, Target *target, 143 std::vector<uint32_t> &indexes) const { 144 std::lock_guard<std::recursive_mutex> guard(m_mutex); 145 146 const size_t num_symbols = GetNumSymbols(); 147 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 148 s->Indent(); 149 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 150 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 151 s->IndentMore(); 152 153 if (!indexes.empty()) { 154 std::vector<uint32_t>::const_iterator pos; 155 std::vector<uint32_t>::const_iterator end = indexes.end(); 156 DumpSymbolHeader(s); 157 for (pos = indexes.begin(); pos != end; ++pos) { 158 size_t idx = *pos; 159 if (idx < num_symbols) { 160 s->Indent(); 161 m_symbols[idx].Dump(s, target, idx); 162 } 163 } 164 } 165 s->IndentLess(); 166 } 167 168 void Symtab::DumpSymbolHeader(Stream *s) { 169 s->Indent(" Debug symbol\n"); 170 s->Indent(" |Synthetic symbol\n"); 171 s->Indent(" ||Externally Visible\n"); 172 s->Indent(" |||\n"); 173 s->Indent("Index UserID DSX Type File Address/Value Load " 174 "Address Size Flags Name\n"); 175 s->Indent("------- ------ --- --------------- ------------------ " 176 "------------------ ------------------ ---------- " 177 "----------------------------------\n"); 178 } 179 180 static int CompareSymbolID(const void *key, const void *p) { 181 const user_id_t match_uid = *(const user_id_t *)key; 182 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 183 if (match_uid < symbol_uid) 184 return -1; 185 if (match_uid > symbol_uid) 186 return 1; 187 return 0; 188 } 189 190 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 191 std::lock_guard<std::recursive_mutex> guard(m_mutex); 192 193 Symbol *symbol = 194 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 195 sizeof(m_symbols[0]), CompareSymbolID); 196 return symbol; 197 } 198 199 Symbol *Symtab::SymbolAtIndex(size_t idx) { 200 // Clients should grab the mutex from this symbol table and lock it manually 201 // when calling this function to avoid performance issues. 202 if (idx < m_symbols.size()) 203 return &m_symbols[idx]; 204 return nullptr; 205 } 206 207 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 208 // Clients should grab the mutex from this symbol table and lock it manually 209 // when calling this function to avoid performance issues. 210 if (idx < m_symbols.size()) 211 return &m_symbols[idx]; 212 return nullptr; 213 } 214 215 //---------------------------------------------------------------------- 216 // InitNameIndexes 217 //---------------------------------------------------------------------- 218 void Symtab::InitNameIndexes() { 219 // Protected function, no need to lock mutex... 220 if (!m_name_indexes_computed) { 221 m_name_indexes_computed = true; 222 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 223 // Create the name index vector to be able to quickly search by name 224 const size_t num_symbols = m_symbols.size(); 225 #if 1 226 m_name_to_index.Reserve(num_symbols); 227 #else 228 // TODO: benchmark this to see if we save any memory. Otherwise we 229 // will always keep the memory reserved in the vector unless we pull 230 // some STL swap magic and then recopy... 231 uint32_t actual_count = 0; 232 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 233 pos != end; ++pos) { 234 const Mangled &mangled = pos->GetMangled(); 235 if (mangled.GetMangledName()) 236 ++actual_count; 237 238 if (mangled.GetDemangledName()) 239 ++actual_count; 240 } 241 242 m_name_to_index.Reserve(actual_count); 243 #endif 244 245 NameToIndexMap::Entry entry; 246 247 // The "const char *" in "class_contexts" must come from a 248 // ConstString::GetCString() 249 std::set<const char *> class_contexts; 250 UniqueCStringMap<uint32_t> mangled_name_to_index; 251 std::vector<const char *> symbol_contexts(num_symbols, nullptr); 252 253 for (entry.value = 0; entry.value < num_symbols; ++entry.value) { 254 const Symbol *symbol = &m_symbols[entry.value]; 255 256 // Don't let trampolines get into the lookup by name map 257 // If we ever need the trampoline symbols to be searchable by name 258 // we can remove this and then possibly add a new bool to any of the 259 // Symtab functions that lookup symbols by name to indicate if they 260 // want trampolines. 261 if (symbol->IsTrampoline()) 262 continue; 263 264 const Mangled &mangled = symbol->GetMangled(); 265 entry.cstring = mangled.GetMangledName().GetStringRef(); 266 if (!entry.cstring.empty()) { 267 m_name_to_index.Append(entry); 268 269 if (symbol->ContainsLinkerAnnotations()) { 270 // If the symbol has linker annotations, also add the version without 271 // the annotations. 272 entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( 273 entry.cstring)) 274 .GetStringRef(); 275 m_name_to_index.Append(entry); 276 } 277 278 const SymbolType symbol_type = symbol->GetType(); 279 if (symbol_type == eSymbolTypeCode || 280 symbol_type == eSymbolTypeResolver) { 281 if (entry.cstring[0] == '_' && entry.cstring[1] == 'Z' && 282 (entry.cstring[2] != 'T' && // avoid virtual table, VTT structure, 283 // typeinfo structure, and typeinfo 284 // name 285 entry.cstring[2] != 'G' && // avoid guard variables 286 entry.cstring[2] != 'Z')) // named local entities (if we 287 // eventually handle eSymbolTypeData, 288 // we will want this back) 289 { 290 CPlusPlusLanguage::MethodName cxx_method( 291 mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus)); 292 entry.cstring = 293 ConstString(cxx_method.GetBasename()).GetStringRef(); 294 if (!entry.cstring.empty()) { 295 // ConstString objects permanently store the string in the pool so 296 // calling 297 // GetCString() on the value gets us a const char * that will 298 // never go away 299 const char *const_context = 300 ConstString(cxx_method.GetContext()).GetCString(); 301 302 if (entry.cstring[0] == '~' || 303 !cxx_method.GetQualifiers().empty()) { 304 // The first character of the demangled basename is '~' which 305 // means we have a class destructor. We can use this information 306 // to help us know what is a class and what isn't. 307 if (class_contexts.find(const_context) == class_contexts.end()) 308 class_contexts.insert(const_context); 309 m_method_to_index.Append(entry); 310 } else { 311 if (const_context && const_context[0]) { 312 if (class_contexts.find(const_context) != 313 class_contexts.end()) { 314 // The current decl context is in our "class_contexts" which 315 // means 316 // this is a method on a class 317 m_method_to_index.Append(entry); 318 } else { 319 // We don't know if this is a function basename or a method, 320 // so put it into a temporary collection so once we are done 321 // we can look in class_contexts to see if each entry is a 322 // class 323 // or just a function and will put any remaining items into 324 // m_method_to_index or m_basename_to_index as needed 325 mangled_name_to_index.Append(entry); 326 symbol_contexts[entry.value] = const_context; 327 } 328 } else { 329 // No context for this function so this has to be a basename 330 m_basename_to_index.Append(entry); 331 // If there is no context (no namespaces or class scopes that 332 // come before the function name) then this also could be a 333 // fullname. 334 if (cxx_method.GetContext().empty()) 335 m_name_to_index.Append(entry); 336 } 337 } 338 } 339 } 340 } 341 } 342 343 entry.cstring = 344 mangled.GetDemangledName(symbol->GetLanguage()).GetStringRef(); 345 if (!entry.cstring.empty()) { 346 m_name_to_index.Append(entry); 347 348 if (symbol->ContainsLinkerAnnotations()) { 349 // If the symbol has linker annotations, also add the version without 350 // the annotations. 351 entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( 352 entry.cstring)) 353 .GetStringRef(); 354 m_name_to_index.Append(entry); 355 } 356 } 357 358 // If the demangled name turns out to be an ObjC name, and 359 // is a category name, add the version without categories to the index 360 // too. 361 ObjCLanguage::MethodName objc_method(entry.cstring, true); 362 if (objc_method.IsValid(true)) { 363 entry.cstring = objc_method.GetSelector().GetStringRef(); 364 m_selector_to_index.Append(entry); 365 366 ConstString objc_method_no_category( 367 objc_method.GetFullNameWithoutCategory(true)); 368 if (objc_method_no_category) { 369 entry.cstring = objc_method_no_category.GetStringRef(); 370 m_name_to_index.Append(entry); 371 } 372 } 373 } 374 375 size_t count; 376 if (!mangled_name_to_index.IsEmpty()) { 377 count = mangled_name_to_index.GetSize(); 378 for (size_t i = 0; i < count; ++i) { 379 if (mangled_name_to_index.GetValueAtIndex(i, entry.value)) { 380 entry.cstring = mangled_name_to_index.GetCStringAtIndex(i); 381 if (symbol_contexts[entry.value] && 382 class_contexts.find(symbol_contexts[entry.value]) != 383 class_contexts.end()) { 384 m_method_to_index.Append(entry); 385 } else { 386 // If we got here, we have something that had a context (was inside 387 // a namespace or class) 388 // yet we don't know if the entry 389 m_method_to_index.Append(entry); 390 m_basename_to_index.Append(entry); 391 } 392 } 393 } 394 } 395 m_name_to_index.Sort(); 396 m_name_to_index.SizeToFit(); 397 m_selector_to_index.Sort(); 398 m_selector_to_index.SizeToFit(); 399 m_basename_to_index.Sort(); 400 m_basename_to_index.SizeToFit(); 401 m_method_to_index.Sort(); 402 m_method_to_index.SizeToFit(); 403 404 // static StreamFile a ("/tmp/a.txt"); 405 // 406 // count = m_basename_to_index.GetSize(); 407 // if (count) 408 // { 409 // for (size_t i=0; i<count; ++i) 410 // { 411 // if (m_basename_to_index.GetValueAtIndex(i, entry.value)) 412 // a.Printf ("%s BASENAME\n", 413 // m_symbols[entry.value].GetMangled().GetName().GetCString()); 414 // } 415 // } 416 // count = m_method_to_index.GetSize(); 417 // if (count) 418 // { 419 // for (size_t i=0; i<count; ++i) 420 // { 421 // if (m_method_to_index.GetValueAtIndex(i, entry.value)) 422 // a.Printf ("%s METHOD\n", 423 // m_symbols[entry.value].GetMangled().GetName().GetCString()); 424 // } 425 // } 426 } 427 } 428 429 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 430 bool add_demangled, bool add_mangled, 431 NameToIndexMap &name_to_index_map) const { 432 if (add_demangled || add_mangled) { 433 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 434 std::lock_guard<std::recursive_mutex> guard(m_mutex); 435 436 // Create the name index vector to be able to quickly search by name 437 NameToIndexMap::Entry entry; 438 const size_t num_indexes = indexes.size(); 439 for (size_t i = 0; i < num_indexes; ++i) { 440 entry.value = indexes[i]; 441 assert(i < m_symbols.size()); 442 const Symbol *symbol = &m_symbols[entry.value]; 443 444 const Mangled &mangled = symbol->GetMangled(); 445 if (add_demangled) { 446 entry.cstring = 447 mangled.GetDemangledName(symbol->GetLanguage()).GetStringRef(); 448 if (!entry.cstring.empty()) 449 name_to_index_map.Append(entry); 450 } 451 452 if (add_mangled) { 453 entry.cstring = mangled.GetMangledName().GetStringRef(); 454 if (!entry.cstring.empty()) 455 name_to_index_map.Append(entry); 456 } 457 } 458 } 459 } 460 461 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 462 std::vector<uint32_t> &indexes, 463 uint32_t start_idx, 464 uint32_t end_index) const { 465 std::lock_guard<std::recursive_mutex> guard(m_mutex); 466 467 uint32_t prev_size = indexes.size(); 468 469 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 470 471 for (uint32_t i = start_idx; i < count; ++i) { 472 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 473 indexes.push_back(i); 474 } 475 476 return indexes.size() - prev_size; 477 } 478 479 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 480 SymbolType symbol_type, uint32_t flags_value, 481 std::vector<uint32_t> &indexes, uint32_t start_idx, 482 uint32_t end_index) const { 483 std::lock_guard<std::recursive_mutex> guard(m_mutex); 484 485 uint32_t prev_size = indexes.size(); 486 487 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 488 489 for (uint32_t i = start_idx; i < count; ++i) { 490 if ((symbol_type == eSymbolTypeAny || 491 m_symbols[i].GetType() == symbol_type) && 492 m_symbols[i].GetFlags() == flags_value) 493 indexes.push_back(i); 494 } 495 496 return indexes.size() - prev_size; 497 } 498 499 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 500 Debug symbol_debug_type, 501 Visibility symbol_visibility, 502 std::vector<uint32_t> &indexes, 503 uint32_t start_idx, 504 uint32_t end_index) const { 505 std::lock_guard<std::recursive_mutex> guard(m_mutex); 506 507 uint32_t prev_size = indexes.size(); 508 509 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 510 511 for (uint32_t i = start_idx; i < count; ++i) { 512 if (symbol_type == eSymbolTypeAny || 513 m_symbols[i].GetType() == symbol_type) { 514 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 515 indexes.push_back(i); 516 } 517 } 518 519 return indexes.size() - prev_size; 520 } 521 522 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 523 if (!m_symbols.empty()) { 524 const Symbol *first_symbol = &m_symbols[0]; 525 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 526 return symbol - first_symbol; 527 } 528 return UINT32_MAX; 529 } 530 531 struct SymbolSortInfo { 532 const bool sort_by_load_addr; 533 const Symbol *symbols; 534 }; 535 536 namespace { 537 struct SymbolIndexComparator { 538 const std::vector<Symbol> &symbols; 539 std::vector<lldb::addr_t> &addr_cache; 540 541 // Getting from the symbol to the Address to the File Address involves some 542 // work. 543 // Since there are potentially many symbols here, and we're using this for 544 // sorting so 545 // we're going to be computing the address many times, cache that in 546 // addr_cache. 547 // The array passed in has to be the same size as the symbols array passed 548 // into the 549 // member variable symbols, and should be initialized with 550 // LLDB_INVALID_ADDRESS. 551 // NOTE: You have to make addr_cache externally and pass it in because 552 // std::stable_sort 553 // makes copies of the comparator it is initially passed in, and you end up 554 // spending 555 // huge amounts of time copying this array... 556 557 SymbolIndexComparator(const std::vector<Symbol> &s, 558 std::vector<lldb::addr_t> &a) 559 : symbols(s), addr_cache(a) { 560 assert(symbols.size() == addr_cache.size()); 561 } 562 bool operator()(uint32_t index_a, uint32_t index_b) { 563 addr_t value_a = addr_cache[index_a]; 564 if (value_a == LLDB_INVALID_ADDRESS) { 565 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 566 addr_cache[index_a] = value_a; 567 } 568 569 addr_t value_b = addr_cache[index_b]; 570 if (value_b == LLDB_INVALID_ADDRESS) { 571 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 572 addr_cache[index_b] = value_b; 573 } 574 575 if (value_a == value_b) { 576 // The if the values are equal, use the original symbol user ID 577 lldb::user_id_t uid_a = symbols[index_a].GetID(); 578 lldb::user_id_t uid_b = symbols[index_b].GetID(); 579 if (uid_a < uid_b) 580 return true; 581 if (uid_a > uid_b) 582 return false; 583 return false; 584 } else if (value_a < value_b) 585 return true; 586 587 return false; 588 } 589 }; 590 } 591 592 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 593 bool remove_duplicates) const { 594 std::lock_guard<std::recursive_mutex> guard(m_mutex); 595 596 Timer scoped_timer(LLVM_PRETTY_FUNCTION, LLVM_PRETTY_FUNCTION); 597 // No need to sort if we have zero or one items... 598 if (indexes.size() <= 1) 599 return; 600 601 // Sort the indexes in place using std::stable_sort. 602 // NOTE: The use of std::stable_sort instead of std::sort here is strictly for 603 // performance, 604 // not correctness. The indexes vector tends to be "close" to sorted, which 605 // the 606 // stable sort handles better. 607 608 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 609 610 SymbolIndexComparator comparator(m_symbols, addr_cache); 611 std::stable_sort(indexes.begin(), indexes.end(), comparator); 612 613 // Remove any duplicates if requested 614 if (remove_duplicates) 615 std::unique(indexes.begin(), indexes.end()); 616 } 617 618 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, 619 std::vector<uint32_t> &indexes) { 620 std::lock_guard<std::recursive_mutex> guard(m_mutex); 621 622 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 623 if (symbol_name) { 624 if (!m_name_indexes_computed) 625 InitNameIndexes(); 626 627 return m_name_to_index.GetValues(symbol_name.GetStringRef(), indexes); 628 } 629 return 0; 630 } 631 632 uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, 633 Debug symbol_debug_type, 634 Visibility symbol_visibility, 635 std::vector<uint32_t> &indexes) { 636 std::lock_guard<std::recursive_mutex> guard(m_mutex); 637 638 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 639 if (symbol_name) { 640 const size_t old_size = indexes.size(); 641 if (!m_name_indexes_computed) 642 InitNameIndexes(); 643 644 std::vector<uint32_t> all_name_indexes; 645 const size_t name_match_count = 646 m_name_to_index.GetValues(symbol_name.GetStringRef(), all_name_indexes); 647 for (size_t i = 0; i < name_match_count; ++i) { 648 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 649 symbol_visibility)) 650 indexes.push_back(all_name_indexes[i]); 651 } 652 return indexes.size() - old_size; 653 } 654 return 0; 655 } 656 657 uint32_t 658 Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name, 659 SymbolType symbol_type, 660 std::vector<uint32_t> &indexes) { 661 std::lock_guard<std::recursive_mutex> guard(m_mutex); 662 663 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 664 std::vector<uint32_t>::iterator pos = indexes.begin(); 665 while (pos != indexes.end()) { 666 if (symbol_type == eSymbolTypeAny || 667 m_symbols[*pos].GetType() == symbol_type) 668 ++pos; 669 else 670 pos = indexes.erase(pos); 671 } 672 } 673 return indexes.size(); 674 } 675 676 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 677 const ConstString &symbol_name, SymbolType symbol_type, 678 Debug symbol_debug_type, Visibility symbol_visibility, 679 std::vector<uint32_t> &indexes) { 680 std::lock_guard<std::recursive_mutex> guard(m_mutex); 681 682 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 683 symbol_visibility, indexes) > 0) { 684 std::vector<uint32_t>::iterator pos = indexes.begin(); 685 while (pos != indexes.end()) { 686 if (symbol_type == eSymbolTypeAny || 687 m_symbols[*pos].GetType() == symbol_type) 688 ++pos; 689 else 690 pos = indexes.erase(pos); 691 } 692 } 693 return indexes.size(); 694 } 695 696 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 697 const RegularExpression ®exp, SymbolType symbol_type, 698 std::vector<uint32_t> &indexes) { 699 std::lock_guard<std::recursive_mutex> guard(m_mutex); 700 701 uint32_t prev_size = indexes.size(); 702 uint32_t sym_end = m_symbols.size(); 703 704 for (uint32_t i = 0; i < sym_end; i++) { 705 if (symbol_type == eSymbolTypeAny || 706 m_symbols[i].GetType() == symbol_type) { 707 const char *name = m_symbols[i].GetName().AsCString(); 708 if (name) { 709 if (regexp.Execute(name)) 710 indexes.push_back(i); 711 } 712 } 713 } 714 return indexes.size() - prev_size; 715 } 716 717 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 718 const RegularExpression ®exp, SymbolType symbol_type, 719 Debug symbol_debug_type, Visibility symbol_visibility, 720 std::vector<uint32_t> &indexes) { 721 std::lock_guard<std::recursive_mutex> guard(m_mutex); 722 723 uint32_t prev_size = indexes.size(); 724 uint32_t sym_end = m_symbols.size(); 725 726 for (uint32_t i = 0; i < sym_end; i++) { 727 if (symbol_type == eSymbolTypeAny || 728 m_symbols[i].GetType() == symbol_type) { 729 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false) 730 continue; 731 732 const char *name = m_symbols[i].GetName().AsCString(); 733 if (name) { 734 if (regexp.Execute(name)) 735 indexes.push_back(i); 736 } 737 } 738 } 739 return indexes.size() - prev_size; 740 } 741 742 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 743 Debug symbol_debug_type, 744 Visibility symbol_visibility, 745 uint32_t &start_idx) { 746 std::lock_guard<std::recursive_mutex> guard(m_mutex); 747 748 const size_t count = m_symbols.size(); 749 for (size_t idx = start_idx; idx < count; ++idx) { 750 if (symbol_type == eSymbolTypeAny || 751 m_symbols[idx].GetType() == symbol_type) { 752 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 753 start_idx = idx; 754 return &m_symbols[idx]; 755 } 756 } 757 } 758 return nullptr; 759 } 760 761 size_t 762 Symtab::FindAllSymbolsWithNameAndType(const ConstString &name, 763 SymbolType symbol_type, 764 std::vector<uint32_t> &symbol_indexes) { 765 std::lock_guard<std::recursive_mutex> guard(m_mutex); 766 767 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 768 // Initialize all of the lookup by name indexes before converting NAME 769 // to a uniqued string NAME_STR below. 770 if (!m_name_indexes_computed) 771 InitNameIndexes(); 772 773 if (name) { 774 // The string table did have a string that matched, but we need 775 // to check the symbols and match the symbol_type if any was given. 776 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 777 } 778 return symbol_indexes.size(); 779 } 780 781 size_t Symtab::FindAllSymbolsWithNameAndType( 782 const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, 783 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 784 std::lock_guard<std::recursive_mutex> guard(m_mutex); 785 786 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 787 // Initialize all of the lookup by name indexes before converting NAME 788 // to a uniqued string NAME_STR below. 789 if (!m_name_indexes_computed) 790 InitNameIndexes(); 791 792 if (name) { 793 // The string table did have a string that matched, but we need 794 // to check the symbols and match the symbol_type if any was given. 795 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 796 symbol_visibility, symbol_indexes); 797 } 798 return symbol_indexes.size(); 799 } 800 801 size_t Symtab::FindAllSymbolsMatchingRexExAndType( 802 const RegularExpression ®ex, SymbolType symbol_type, 803 Debug symbol_debug_type, Visibility symbol_visibility, 804 std::vector<uint32_t> &symbol_indexes) { 805 std::lock_guard<std::recursive_mutex> guard(m_mutex); 806 807 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 808 symbol_visibility, symbol_indexes); 809 return symbol_indexes.size(); 810 } 811 812 Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name, 813 SymbolType symbol_type, 814 Debug symbol_debug_type, 815 Visibility symbol_visibility) { 816 std::lock_guard<std::recursive_mutex> guard(m_mutex); 817 818 Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); 819 if (!m_name_indexes_computed) 820 InitNameIndexes(); 821 822 if (name) { 823 std::vector<uint32_t> matching_indexes; 824 // The string table did have a string that matched, but we need 825 // to check the symbols and match the symbol_type if any was given. 826 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 827 symbol_visibility, 828 matching_indexes)) { 829 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 830 for (pos = matching_indexes.begin(); pos != end; ++pos) { 831 Symbol *symbol = SymbolAtIndex(*pos); 832 833 if (symbol->Compare(name, symbol_type)) 834 return symbol; 835 } 836 } 837 } 838 return nullptr; 839 } 840 841 typedef struct { 842 const Symtab *symtab; 843 const addr_t file_addr; 844 Symbol *match_symbol; 845 const uint32_t *match_index_ptr; 846 addr_t match_offset; 847 } SymbolSearchInfo; 848 849 // Add all the section file start address & size to the RangeVector, 850 // recusively adding any children sections. 851 static void AddSectionsToRangeMap(SectionList *sectlist, 852 RangeVector<addr_t, addr_t> §ion_ranges) { 853 const int num_sections = sectlist->GetNumSections(0); 854 for (int i = 0; i < num_sections; i++) { 855 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 856 if (sect_sp) { 857 SectionList &child_sectlist = sect_sp->GetChildren(); 858 859 // If this section has children, add the children to the RangeVector. 860 // Else add this section to the RangeVector. 861 if (child_sectlist.GetNumSections(0) > 0) { 862 AddSectionsToRangeMap(&child_sectlist, section_ranges); 863 } else { 864 size_t size = sect_sp->GetByteSize(); 865 if (size > 0) { 866 addr_t base_addr = sect_sp->GetFileAddress(); 867 RangeVector<addr_t, addr_t>::Entry entry; 868 entry.SetRangeBase(base_addr); 869 entry.SetByteSize(size); 870 section_ranges.Append(entry); 871 } 872 } 873 } 874 } 875 } 876 877 void Symtab::InitAddressIndexes() { 878 // Protected function, no need to lock mutex... 879 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 880 m_file_addr_to_index_computed = true; 881 882 FileRangeToIndexMap::Entry entry; 883 const_iterator begin = m_symbols.begin(); 884 const_iterator end = m_symbols.end(); 885 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 886 if (pos->ValueIsAddress()) { 887 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 888 entry.SetByteSize(pos->GetByteSize()); 889 entry.data = std::distance(begin, pos); 890 m_file_addr_to_index.Append(entry); 891 } 892 } 893 const size_t num_entries = m_file_addr_to_index.GetSize(); 894 if (num_entries > 0) { 895 m_file_addr_to_index.Sort(); 896 897 // Create a RangeVector with the start & size of all the sections for 898 // this objfile. We'll need to check this for any FileRangeToIndexMap 899 // entries with an uninitialized size, which could potentially be a 900 // large number so reconstituting the weak pointer is busywork when it 901 // is invariant information. 902 SectionList *sectlist = m_objfile->GetSectionList(); 903 RangeVector<addr_t, addr_t> section_ranges; 904 if (sectlist) { 905 AddSectionsToRangeMap(sectlist, section_ranges); 906 section_ranges.Sort(); 907 } 908 909 // Iterate through the FileRangeToIndexMap and fill in the size for any 910 // entries that didn't already have a size from the Symbol (e.g. if we 911 // have a plain linker symbol with an address only, instead of debug info 912 // where we get an address and a size and a type, etc.) 913 for (size_t i = 0; i < num_entries; i++) { 914 FileRangeToIndexMap::Entry *entry = 915 m_file_addr_to_index.GetMutableEntryAtIndex(i); 916 if (entry->GetByteSize() == 0) { 917 addr_t curr_base_addr = entry->GetRangeBase(); 918 const RangeVector<addr_t, addr_t>::Entry *containing_section = 919 section_ranges.FindEntryThatContains(curr_base_addr); 920 921 // Use the end of the section as the default max size of the symbol 922 addr_t sym_size = 0; 923 if (containing_section) { 924 sym_size = 925 containing_section->GetByteSize() - 926 (entry->GetRangeBase() - containing_section->GetRangeBase()); 927 } 928 929 for (size_t j = i; j < num_entries; j++) { 930 FileRangeToIndexMap::Entry *next_entry = 931 m_file_addr_to_index.GetMutableEntryAtIndex(j); 932 addr_t next_base_addr = next_entry->GetRangeBase(); 933 if (next_base_addr > curr_base_addr) { 934 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 935 936 // Take the difference between this symbol and the next one as its 937 // size, 938 // if it is less than the size of the section. 939 if (sym_size == 0 || size_to_next_symbol < sym_size) { 940 sym_size = size_to_next_symbol; 941 } 942 break; 943 } 944 } 945 946 if (sym_size > 0) { 947 entry->SetByteSize(sym_size); 948 Symbol &symbol = m_symbols[entry->data]; 949 symbol.SetByteSize(sym_size); 950 symbol.SetSizeIsSynthesized(true); 951 } 952 } 953 } 954 955 // Sort again in case the range size changes the ordering 956 m_file_addr_to_index.Sort(); 957 } 958 } 959 } 960 961 void Symtab::CalculateSymbolSizes() { 962 std::lock_guard<std::recursive_mutex> guard(m_mutex); 963 964 if (!m_symbols.empty()) { 965 if (!m_file_addr_to_index_computed) 966 InitAddressIndexes(); 967 968 const size_t num_entries = m_file_addr_to_index.GetSize(); 969 970 for (size_t i = 0; i < num_entries; ++i) { 971 // The entries in the m_file_addr_to_index have calculated the sizes 972 // already 973 // so we will use this size if we need to. 974 const FileRangeToIndexMap::Entry &entry = 975 m_file_addr_to_index.GetEntryRef(i); 976 977 Symbol &symbol = m_symbols[entry.data]; 978 979 // If the symbol size is already valid, no need to do anything 980 if (symbol.GetByteSizeIsValid()) 981 continue; 982 983 const addr_t range_size = entry.GetByteSize(); 984 if (range_size > 0) { 985 symbol.SetByteSize(range_size); 986 symbol.SetSizeIsSynthesized(true); 987 } 988 } 989 } 990 } 991 992 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 993 std::lock_guard<std::recursive_mutex> guard(m_mutex); 994 if (!m_file_addr_to_index_computed) 995 InitAddressIndexes(); 996 997 const FileRangeToIndexMap::Entry *entry = 998 m_file_addr_to_index.FindEntryStartsAt(file_addr); 999 if (entry) { 1000 Symbol *symbol = SymbolAtIndex(entry->data); 1001 if (symbol->GetFileAddress() == file_addr) 1002 return symbol; 1003 } 1004 return nullptr; 1005 } 1006 1007 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1008 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1009 1010 if (!m_file_addr_to_index_computed) 1011 InitAddressIndexes(); 1012 1013 const FileRangeToIndexMap::Entry *entry = 1014 m_file_addr_to_index.FindEntryThatContains(file_addr); 1015 if (entry) { 1016 Symbol *symbol = SymbolAtIndex(entry->data); 1017 if (symbol->ContainsFileAddress(file_addr)) 1018 return symbol; 1019 } 1020 return nullptr; 1021 } 1022 1023 void Symtab::ForEachSymbolContainingFileAddress( 1024 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1025 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1026 1027 if (!m_file_addr_to_index_computed) 1028 InitAddressIndexes(); 1029 1030 std::vector<uint32_t> all_addr_indexes; 1031 1032 // Get all symbols with file_addr 1033 const size_t addr_match_count = 1034 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1035 all_addr_indexes); 1036 1037 for (size_t i = 0; i < addr_match_count; ++i) { 1038 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1039 if (symbol->ContainsFileAddress(file_addr)) { 1040 if (!callback(symbol)) 1041 break; 1042 } 1043 } 1044 } 1045 1046 void Symtab::SymbolIndicesToSymbolContextList( 1047 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1048 // No need to protect this call using m_mutex all other method calls are 1049 // already thread safe. 1050 1051 const bool merge_symbol_into_function = true; 1052 size_t num_indices = symbol_indexes.size(); 1053 if (num_indices > 0) { 1054 SymbolContext sc; 1055 sc.module_sp = m_objfile->GetModule(); 1056 for (size_t i = 0; i < num_indices; i++) { 1057 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1058 if (sc.symbol) 1059 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1060 } 1061 } 1062 } 1063 1064 size_t Symtab::FindFunctionSymbols(const ConstString &name, 1065 uint32_t name_type_mask, 1066 SymbolContextList &sc_list) { 1067 size_t count = 0; 1068 std::vector<uint32_t> symbol_indexes; 1069 1070 llvm::StringRef name_cstr = name.GetStringRef(); 1071 1072 // eFunctionNameTypeAuto should be pre-resolved by a call to 1073 // Module::LookupInfo::LookupInfo() 1074 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1075 1076 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1077 std::vector<uint32_t> temp_symbol_indexes; 1078 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1079 1080 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1081 if (temp_symbol_indexes_size > 0) { 1082 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1083 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1084 SymbolContext sym_ctx; 1085 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1086 if (sym_ctx.symbol) { 1087 switch (sym_ctx.symbol->GetType()) { 1088 case eSymbolTypeCode: 1089 case eSymbolTypeResolver: 1090 case eSymbolTypeReExported: 1091 symbol_indexes.push_back(temp_symbol_indexes[i]); 1092 break; 1093 default: 1094 break; 1095 } 1096 } 1097 } 1098 } 1099 } 1100 1101 if (name_type_mask & eFunctionNameTypeBase) { 1102 // From mangled names we can't tell what is a basename and what 1103 // is a method name, so we just treat them the same 1104 if (!m_name_indexes_computed) 1105 InitNameIndexes(); 1106 1107 if (!m_basename_to_index.IsEmpty()) { 1108 const UniqueCStringMap<uint32_t>::Entry *match; 1109 for (match = m_basename_to_index.FindFirstValueForName(name_cstr); 1110 match != nullptr; 1111 match = m_basename_to_index.FindNextValueForName(match)) { 1112 symbol_indexes.push_back(match->value); 1113 } 1114 } 1115 } 1116 1117 if (name_type_mask & eFunctionNameTypeMethod) { 1118 if (!m_name_indexes_computed) 1119 InitNameIndexes(); 1120 1121 if (!m_method_to_index.IsEmpty()) { 1122 const UniqueCStringMap<uint32_t>::Entry *match; 1123 for (match = m_method_to_index.FindFirstValueForName(name_cstr); 1124 match != nullptr; 1125 match = m_method_to_index.FindNextValueForName(match)) { 1126 symbol_indexes.push_back(match->value); 1127 } 1128 } 1129 } 1130 1131 if (name_type_mask & eFunctionNameTypeSelector) { 1132 if (!m_name_indexes_computed) 1133 InitNameIndexes(); 1134 1135 if (!m_selector_to_index.IsEmpty()) { 1136 const UniqueCStringMap<uint32_t>::Entry *match; 1137 for (match = m_selector_to_index.FindFirstValueForName(name_cstr); 1138 match != nullptr; 1139 match = m_selector_to_index.FindNextValueForName(match)) { 1140 symbol_indexes.push_back(match->value); 1141 } 1142 } 1143 } 1144 1145 if (!symbol_indexes.empty()) { 1146 std::sort(symbol_indexes.begin(), symbol_indexes.end()); 1147 symbol_indexes.erase( 1148 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1149 symbol_indexes.end()); 1150 count = symbol_indexes.size(); 1151 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1152 } 1153 1154 return count; 1155 } 1156 1157 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1158 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1159 if (child_idx != UINT32_MAX && child_idx > 0) { 1160 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1161 const Symbol *symbol = SymbolAtIndex(idx); 1162 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1163 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1164 return symbol; 1165 } 1166 } 1167 return NULL; 1168 } 1169