1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #ifndef LLDB_DISABLE_PYTHON 21 #include "lldb/Interpreter/PythonDataObjects.h" 22 #endif 23 #include "lldb/Target/ExecutionContext.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/Utils.h" 26 // Project includes 27 #include "Utility/StringExtractorGDBRemote.h" 28 #include "ProcessGDBRemote.h" 29 #include "ProcessGDBRemoteLog.h" 30 #include "ThreadGDBRemote.h" 31 #include "Utility/ARM_GCC_Registers.h" 32 #include "Utility/ARM_DWARF_Registers.h" 33 34 using namespace lldb; 35 using namespace lldb_private; 36 37 //---------------------------------------------------------------------- 38 // GDBRemoteRegisterContext constructor 39 //---------------------------------------------------------------------- 40 GDBRemoteRegisterContext::GDBRemoteRegisterContext 41 ( 42 ThreadGDBRemote &thread, 43 uint32_t concrete_frame_idx, 44 GDBRemoteDynamicRegisterInfo ®_info, 45 bool read_all_at_once 46 ) : 47 RegisterContext (thread, concrete_frame_idx), 48 m_reg_info (reg_info), 49 m_reg_valid (), 50 m_reg_data (), 51 m_read_all_at_once (read_all_at_once) 52 { 53 // Resize our vector of bools to contain one bool for every register. 54 // We will use these boolean values to know when a register value 55 // is valid in m_reg_data. 56 m_reg_valid.resize (reg_info.GetNumRegisters()); 57 58 // Make a heap based buffer that is big enough to store all registers 59 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 60 m_reg_data.SetData (reg_data_sp); 61 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 62 } 63 64 //---------------------------------------------------------------------- 65 // Destructor 66 //---------------------------------------------------------------------- 67 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 68 { 69 } 70 71 void 72 GDBRemoteRegisterContext::InvalidateAllRegisters () 73 { 74 SetAllRegisterValid (false); 75 } 76 77 void 78 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 79 { 80 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 81 for (pos = m_reg_valid.begin(); pos != end; ++pos) 82 *pos = b; 83 } 84 85 size_t 86 GDBRemoteRegisterContext::GetRegisterCount () 87 { 88 return m_reg_info.GetNumRegisters (); 89 } 90 91 const RegisterInfo * 92 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) 93 { 94 return m_reg_info.GetRegisterInfoAtIndex (reg); 95 } 96 97 size_t 98 GDBRemoteRegisterContext::GetRegisterSetCount () 99 { 100 return m_reg_info.GetNumRegisterSets (); 101 } 102 103 104 105 const RegisterSet * 106 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) 107 { 108 return m_reg_info.GetRegisterSet (reg_set); 109 } 110 111 112 113 bool 114 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 115 { 116 // Read the register 117 if (ReadRegisterBytes (reg_info, m_reg_data)) 118 { 119 const bool partial_data_ok = false; 120 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 121 return error.Success(); 122 } 123 return false; 124 } 125 126 bool 127 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 128 { 129 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 130 if (reg_info == NULL) 131 return false; 132 133 // Invalidate if needed 134 InvalidateIfNeeded(false); 135 136 const uint32_t reg_byte_size = reg_info->byte_size; 137 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 138 bool success = bytes_copied == reg_byte_size; 139 if (success) 140 { 141 SetRegisterIsValid(reg, true); 142 } 143 else if (bytes_copied > 0) 144 { 145 // Only set register is valid to false if we copied some bytes, else 146 // leave it as it was. 147 SetRegisterIsValid(reg, false); 148 } 149 return success; 150 } 151 152 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 153 bool 154 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, 155 GDBRemoteCommunicationClient &gdb_comm) 156 { 157 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 158 StringExtractorGDBRemote response; 159 if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response)) 160 return PrivateSetRegisterValue (reg, response); 161 return false; 162 } 163 164 bool 165 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 166 { 167 ExecutionContext exe_ctx (CalculateThread()); 168 169 Process *process = exe_ctx.GetProcessPtr(); 170 Thread *thread = exe_ctx.GetThreadPtr(); 171 if (process == NULL || thread == NULL) 172 return false; 173 174 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 175 176 InvalidateIfNeeded(false); 177 178 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 179 180 if (!GetRegisterIsValid(reg)) 181 { 182 if (m_read_all_at_once) 183 { 184 StringExtractorGDBRemote response; 185 if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response)) 186 return false; 187 if (response.IsNormalResponse()) 188 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 189 SetAllRegisterValid (true); 190 } 191 else if (reg_info->value_regs) 192 { 193 // Process this composite register request by delegating to the constituent 194 // primordial registers. 195 196 // Index of the primordial register. 197 bool success = true; 198 for (uint32_t idx = 0; success; ++idx) 199 { 200 const uint32_t prim_reg = reg_info->value_regs[idx]; 201 if (prim_reg == LLDB_INVALID_REGNUM) 202 break; 203 // We have a valid primordial register as our constituent. 204 // Grab the corresponding register info. 205 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 206 if (prim_reg_info == NULL) 207 success = false; 208 else 209 { 210 // Read the containing register if it hasn't already been read 211 if (!GetRegisterIsValid(prim_reg)) 212 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 213 } 214 } 215 216 if (success) 217 { 218 // If we reach this point, all primordial register requests have succeeded. 219 // Validate this composite register. 220 SetRegisterIsValid (reg_info, true); 221 } 222 } 223 else 224 { 225 // Get each register individually 226 GetPrimordialRegister(reg_info, gdb_comm); 227 } 228 229 // Make sure we got a valid register value after reading it 230 if (!GetRegisterIsValid(reg)) 231 return false; 232 } 233 234 if (&data != &m_reg_data) 235 { 236 #if defined (LLDB_CONFIGURATION_DEBUG) 237 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 238 #endif 239 // If our register context and our register info disagree, which should never happen, don't 240 // read past the end of the buffer. 241 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 242 return false; 243 244 // If we aren't extracting into our own buffer (which 245 // only happens when this function is called from 246 // ReadRegisterValue(uint32_t, Scalar&)) then 247 // we transfer bytes from our buffer into the data 248 // buffer that was passed in 249 250 data.SetByteOrder (m_reg_data.GetByteOrder()); 251 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 252 } 253 return true; 254 } 255 256 bool 257 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 258 const RegisterValue &value) 259 { 260 DataExtractor data; 261 if (value.GetData (data)) 262 return WriteRegisterBytes (reg_info, data, 0); 263 return false; 264 } 265 266 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 267 bool 268 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, 269 GDBRemoteCommunicationClient &gdb_comm) 270 { 271 StreamString packet; 272 StringExtractorGDBRemote response; 273 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 274 packet.Printf ("P%x=", reg); 275 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 276 reg_info->byte_size, 277 lldb::endian::InlHostByteOrder(), 278 lldb::endian::InlHostByteOrder()); 279 280 if (gdb_comm.GetThreadSuffixSupported()) 281 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 282 283 // Invalidate just this register 284 SetRegisterIsValid(reg, false); 285 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 286 packet.GetString().size(), 287 response, 288 false) == GDBRemoteCommunication::PacketResult::Success) 289 { 290 if (response.IsOKResponse()) 291 return true; 292 } 293 return false; 294 } 295 296 void 297 GDBRemoteRegisterContext::SyncThreadState(Process *process) 298 { 299 // NB. We assume our caller has locked the sequence mutex. 300 301 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); 302 if (!gdb_comm.GetSyncThreadStateSupported()) 303 return; 304 305 StreamString packet; 306 StringExtractorGDBRemote response; 307 packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 308 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 309 packet.GetString().size(), 310 response, 311 false) == GDBRemoteCommunication::PacketResult::Success) 312 { 313 if (response.IsOKResponse()) 314 InvalidateAllRegisters(); 315 } 316 } 317 318 bool 319 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 320 { 321 ExecutionContext exe_ctx (CalculateThread()); 322 323 Process *process = exe_ctx.GetProcessPtr(); 324 Thread *thread = exe_ctx.GetThreadPtr(); 325 if (process == NULL || thread == NULL) 326 return false; 327 328 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 329 // FIXME: This check isn't right because IsRunning checks the Public state, but this 330 // is work you need to do - for instance in ShouldStop & friends - before the public 331 // state has been changed. 332 // if (gdb_comm.IsRunning()) 333 // return false; 334 335 336 #if defined (LLDB_CONFIGURATION_DEBUG) 337 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 338 #endif 339 340 // If our register context and our register info disagree, which should never happen, don't 341 // overwrite past the end of the buffer. 342 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 343 return false; 344 345 // Grab a pointer to where we are going to put this register 346 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 347 348 if (dst == NULL) 349 return false; 350 351 352 if (data.CopyByteOrderedData (data_offset, // src offset 353 reg_info->byte_size, // src length 354 dst, // dst 355 reg_info->byte_size, // dst length 356 m_reg_data.GetByteOrder())) // dst byte order 357 { 358 Mutex::Locker locker; 359 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) 360 { 361 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 362 ProcessSP process_sp (m_thread.GetProcess()); 363 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 364 { 365 StreamString packet; 366 StringExtractorGDBRemote response; 367 368 if (m_read_all_at_once) 369 { 370 // Set all registers in one packet 371 packet.PutChar ('G'); 372 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 373 m_reg_data.GetByteSize(), 374 lldb::endian::InlHostByteOrder(), 375 lldb::endian::InlHostByteOrder()); 376 377 if (thread_suffix_supported) 378 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 379 380 // Invalidate all register values 381 InvalidateIfNeeded (true); 382 383 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 384 packet.GetString().size(), 385 response, 386 false) == GDBRemoteCommunication::PacketResult::Success) 387 { 388 SetAllRegisterValid (false); 389 if (response.IsOKResponse()) 390 { 391 return true; 392 } 393 } 394 } 395 else 396 { 397 bool success = true; 398 399 if (reg_info->value_regs) 400 { 401 // This register is part of another register. In this case we read the actual 402 // register data for any "value_regs", and once all that data is read, we will 403 // have enough data in our register context bytes for the value of this register 404 405 // Invalidate this composite register first. 406 407 for (uint32_t idx = 0; success; ++idx) 408 { 409 const uint32_t reg = reg_info->value_regs[idx]; 410 if (reg == LLDB_INVALID_REGNUM) 411 break; 412 // We have a valid primordial register as our constituent. 413 // Grab the corresponding register info. 414 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 415 if (value_reg_info == NULL) 416 success = false; 417 else 418 success = SetPrimordialRegister(value_reg_info, gdb_comm); 419 } 420 } 421 else 422 { 423 // This is an actual register, write it 424 success = SetPrimordialRegister(reg_info, gdb_comm); 425 } 426 427 // Check if writing this register will invalidate any other register values? 428 // If so, invalidate them 429 if (reg_info->invalidate_regs) 430 { 431 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 432 reg != LLDB_INVALID_REGNUM; 433 reg = reg_info->invalidate_regs[++idx]) 434 { 435 SetRegisterIsValid(reg, false); 436 } 437 } 438 439 return success; 440 } 441 } 442 } 443 else 444 { 445 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 446 if (log) 447 { 448 if (log->GetVerbose()) 449 { 450 StreamString strm; 451 gdb_comm.DumpHistory(strm); 452 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 453 } 454 else 455 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 456 } 457 } 458 } 459 return false; 460 } 461 462 bool 463 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb_private::RegisterCheckpoint ®_checkpoint) 464 { 465 ExecutionContext exe_ctx (CalculateThread()); 466 467 Process *process = exe_ctx.GetProcessPtr(); 468 Thread *thread = exe_ctx.GetThreadPtr(); 469 if (process == NULL || thread == NULL) 470 return false; 471 472 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 473 474 uint32_t save_id = 0; 475 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) 476 { 477 reg_checkpoint.SetID(save_id); 478 reg_checkpoint.GetData().reset(); 479 return true; 480 } 481 else 482 { 483 reg_checkpoint.SetID(0); // Invalid save ID is zero 484 return ReadAllRegisterValues(reg_checkpoint.GetData()); 485 } 486 } 487 488 bool 489 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb_private::RegisterCheckpoint ®_checkpoint) 490 { 491 uint32_t save_id = reg_checkpoint.GetID(); 492 if (save_id != 0) 493 { 494 ExecutionContext exe_ctx (CalculateThread()); 495 496 Process *process = exe_ctx.GetProcessPtr(); 497 Thread *thread = exe_ctx.GetThreadPtr(); 498 if (process == NULL || thread == NULL) 499 return false; 500 501 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 502 503 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 504 } 505 else 506 { 507 return WriteAllRegisterValues(reg_checkpoint.GetData()); 508 } 509 } 510 511 bool 512 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 513 { 514 ExecutionContext exe_ctx (CalculateThread()); 515 516 Process *process = exe_ctx.GetProcessPtr(); 517 Thread *thread = exe_ctx.GetThreadPtr(); 518 if (process == NULL || thread == NULL) 519 return false; 520 521 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 522 523 StringExtractorGDBRemote response; 524 525 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 526 527 Mutex::Locker locker; 528 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) 529 { 530 SyncThreadState(process); 531 532 char packet[32]; 533 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 534 ProcessSP process_sp (m_thread.GetProcess()); 535 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 536 { 537 int packet_len = 0; 538 if (thread_suffix_supported) 539 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 540 else 541 packet_len = ::snprintf (packet, sizeof(packet), "g"); 542 assert (packet_len < ((int)sizeof(packet) - 1)); 543 544 if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 545 { 546 int packet_len = 0; 547 if (thread_suffix_supported) 548 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 549 else 550 packet_len = ::snprintf (packet, sizeof(packet), "g"); 551 assert (packet_len < ((int)sizeof(packet) - 1)); 552 553 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 554 { 555 if (response.IsErrorResponse()) 556 return false; 557 558 std::string &response_str = response.GetStringRef(); 559 if (isxdigit(response_str[0])) 560 { 561 response_str.insert(0, 1, 'G'); 562 if (thread_suffix_supported) 563 { 564 char thread_id_cstr[64]; 565 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 566 response_str.append (thread_id_cstr); 567 } 568 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 569 return true; 570 } 571 } 572 } 573 else 574 { 575 // For the use_g_packet == false case, we're going to read each register 576 // individually and store them as binary data in a buffer instead of as ascii 577 // characters. 578 const RegisterInfo *reg_info; 579 580 // data_sp will take ownership of this DataBufferHeap pointer soon. 581 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0)); 582 583 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 584 { 585 if (reg_info->value_regs) // skip registers that are slices of real registers 586 continue; 587 ReadRegisterBytes (reg_info, m_reg_data); 588 // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer 589 } 590 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 591 592 data_sp = reg_ctx; 593 return true; 594 } 595 } 596 } 597 else 598 { 599 600 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 601 if (log) 602 { 603 if (log->GetVerbose()) 604 { 605 StreamString strm; 606 gdb_comm.DumpHistory(strm); 607 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 608 } 609 else 610 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 611 } 612 } 613 614 data_sp.reset(); 615 return false; 616 } 617 618 bool 619 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 620 { 621 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 622 return false; 623 624 ExecutionContext exe_ctx (CalculateThread()); 625 626 Process *process = exe_ctx.GetProcessPtr(); 627 Thread *thread = exe_ctx.GetThreadPtr(); 628 if (process == NULL || thread == NULL) 629 return false; 630 631 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 632 633 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 634 635 StringExtractorGDBRemote response; 636 Mutex::Locker locker; 637 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) 638 { 639 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 640 ProcessSP process_sp (m_thread.GetProcess()); 641 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 642 { 643 // The data_sp contains the entire G response packet including the 644 // G, and if the thread suffix is supported, it has the thread suffix 645 // as well. 646 const char *G_packet = (const char *)data_sp->GetBytes(); 647 size_t G_packet_len = data_sp->GetByteSize(); 648 if (use_g_packet 649 && gdb_comm.SendPacketAndWaitForResponse (G_packet, 650 G_packet_len, 651 response, 652 false) == GDBRemoteCommunication::PacketResult::Success) 653 { 654 // The data_sp contains the entire G response packet including the 655 // G, and if the thread suffix is supported, it has the thread suffix 656 // as well. 657 const char *G_packet = (const char *)data_sp->GetBytes(); 658 size_t G_packet_len = data_sp->GetByteSize(); 659 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 660 G_packet_len, 661 response, 662 false) == GDBRemoteCommunication::PacketResult::Success) 663 { 664 if (response.IsOKResponse()) 665 return true; 666 else if (response.IsErrorResponse()) 667 { 668 uint32_t num_restored = 0; 669 // We need to manually go through all of the registers and 670 // restore them manually 671 672 response.GetStringRef().assign (G_packet, G_packet_len); 673 response.SetFilePos(1); // Skip the leading 'G' 674 675 // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier. 676 // This means buffer will be a little more than 2x larger than necessary but we resize 677 // it down once we've extracted all hex ascii chars from the packet. 678 DataBufferHeap buffer (G_packet_len, 0); 679 DataExtractor restore_data (buffer.GetBytes(), 680 buffer.GetByteSize(), 681 m_reg_data.GetByteOrder(), 682 m_reg_data.GetAddressByteSize()); 683 684 const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(), 685 restore_data.GetByteSize(), 686 '\xcc'); 687 688 if (bytes_extracted < restore_data.GetByteSize()) 689 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 690 691 const RegisterInfo *reg_info; 692 693 // The g packet contents may either include the slice registers (registers defined in 694 // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers 695 // should NOT be in the g packet, but some implementations may incorrectly include them. 696 // 697 // If the slice registers are included in the packet, we must step over the slice registers 698 // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect. 699 // If the slice registers are not included, then using the byte_offset values into the 700 // data buffer is the best way to find individual register values. 701 702 uint64_t size_including_slice_registers = 0; 703 uint64_t size_not_including_slice_registers = 0; 704 uint64_t size_by_highest_offset = 0; 705 706 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx) 707 { 708 size_including_slice_registers += reg_info->byte_size; 709 if (reg_info->value_regs == NULL) 710 size_not_including_slice_registers += reg_info->byte_size; 711 if (reg_info->byte_offset >= size_by_highest_offset) 712 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 713 } 714 715 bool use_byte_offset_into_buffer; 716 if (size_by_highest_offset == restore_data.GetByteSize()) 717 { 718 // The size of the packet agrees with the highest offset: + size in the register file 719 use_byte_offset_into_buffer = true; 720 } 721 else if (size_not_including_slice_registers == restore_data.GetByteSize()) 722 { 723 // The size of the packet is the same as concatenating all of the registers sequentially, 724 // skipping the slice registers 725 use_byte_offset_into_buffer = true; 726 } 727 else if (size_including_slice_registers == restore_data.GetByteSize()) 728 { 729 // The slice registers are present in the packet (when they shouldn't be). 730 // Don't try to use the RegisterInfo byte_offset into the restore_data, it will 731 // point to the wrong place. 732 use_byte_offset_into_buffer = false; 733 } 734 else { 735 // None of our expected sizes match the actual g packet data we're looking at. 736 // The most conservative approach here is to use the running total byte offset. 737 use_byte_offset_into_buffer = false; 738 } 739 740 // In case our register definitions don't include the correct offsets, 741 // keep track of the size of each reg & compute offset based on that. 742 uint32_t running_byte_offset = 0; 743 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size) 744 { 745 // Skip composite aka slice registers (e.g. eax is a slice of rax). 746 if (reg_info->value_regs) 747 continue; 748 749 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 750 751 uint32_t register_offset; 752 if (use_byte_offset_into_buffer) 753 { 754 register_offset = reg_info->byte_offset; 755 } 756 else 757 { 758 register_offset = running_byte_offset; 759 } 760 761 // Only write down the registers that need to be written 762 // if we are going to be doing registers individually. 763 bool write_reg = true; 764 const uint32_t reg_byte_size = reg_info->byte_size; 765 766 const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size); 767 if (restore_src) 768 { 769 StreamString packet; 770 packet.Printf ("P%x=", reg); 771 packet.PutBytesAsRawHex8 (restore_src, 772 reg_byte_size, 773 lldb::endian::InlHostByteOrder(), 774 lldb::endian::InlHostByteOrder()); 775 776 if (thread_suffix_supported) 777 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 778 779 SetRegisterIsValid(reg, false); 780 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 781 packet.GetString().size(), 782 response, 783 false) == GDBRemoteCommunication::PacketResult::Success) 784 { 785 const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size); 786 if (current_src) 787 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 788 } 789 790 if (write_reg) 791 { 792 StreamString packet; 793 packet.Printf ("P%x=", reg); 794 packet.PutBytesAsRawHex8 (restore_src, 795 reg_byte_size, 796 lldb::endian::InlHostByteOrder(), 797 lldb::endian::InlHostByteOrder()); 798 799 if (thread_suffix_supported) 800 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 801 802 SetRegisterIsValid(reg, false); 803 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 804 packet.GetString().size(), 805 response, 806 false) == GDBRemoteCommunication::PacketResult::Success) 807 { 808 if (response.IsOKResponse()) 809 ++num_restored; 810 } 811 } 812 } 813 } 814 return num_restored > 0; 815 } 816 } 817 } 818 else 819 { 820 // For the use_g_packet == false case, we're going to write each register 821 // individually. The data buffer is binary data in this case, instead of 822 // ascii characters. 823 824 bool arm64_debugserver = false; 825 if (m_thread.GetProcess().get()) 826 { 827 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 828 if (arch.IsValid() 829 && arch.GetMachine() == llvm::Triple::aarch64 830 && arch.GetTriple().getVendor() == llvm::Triple::Apple 831 && arch.GetTriple().getOS() == llvm::Triple::IOS) 832 { 833 arm64_debugserver = true; 834 } 835 } 836 uint32_t num_restored = 0; 837 const RegisterInfo *reg_info; 838 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 839 { 840 if (reg_info->value_regs) // skip registers that are slices of real registers 841 continue; 842 // Skip the fpsr and fpcr floating point status/control register writing to 843 // work around a bug in an older version of debugserver that would lead to 844 // register context corruption when writing fpsr/fpcr. 845 if (arm64_debugserver && 846 (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0)) 847 { 848 continue; 849 } 850 StreamString packet; 851 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]); 852 packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder()); 853 if (thread_suffix_supported) 854 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 855 856 SetRegisterIsValid(reg_info, false); 857 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 858 packet.GetString().size(), 859 response, 860 false) == GDBRemoteCommunication::PacketResult::Success) 861 { 862 if (response.IsOKResponse()) 863 ++num_restored; 864 } 865 } 866 return num_restored > 0; 867 } 868 } 869 } 870 else 871 { 872 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 873 if (log) 874 { 875 if (log->GetVerbose()) 876 { 877 StreamString strm; 878 gdb_comm.DumpHistory(strm); 879 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 880 } 881 else 882 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 883 } 884 } 885 return false; 886 } 887 888 889 uint32_t 890 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) 891 { 892 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 893 } 894 895 896 void 897 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) 898 { 899 // For Advanced SIMD and VFP register mapping. 900 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 901 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 902 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 903 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 904 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 905 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 906 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 907 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 908 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 909 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 910 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 911 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 912 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 913 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 914 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 915 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 916 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 917 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 918 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 919 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 920 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 921 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 922 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 923 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 924 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 925 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 926 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 927 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 928 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 929 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 930 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 931 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 932 933 // This is our array of composite registers, with each element coming from the above register mappings. 934 static uint32_t *g_composites[] = { 935 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, 936 g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, 937 g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 938 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs 939 }; 940 941 static RegisterInfo g_register_infos[] = { 942 // NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB VALUE REGS INVALIDATE REGS 943 // ====== ====== === === ============= ============ =================== =================== ====================== === ==== ========== =============== 944 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 945 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 946 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 947 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 948 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 949 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 950 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 951 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 952 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 953 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 954 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 955 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 956 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 957 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 958 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 959 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 960 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 961 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 962 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 963 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 964 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 965 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 966 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 967 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 968 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 969 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 970 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 971 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 972 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 973 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 974 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 975 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 976 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 977 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 978 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 979 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 980 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 981 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 982 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 983 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 984 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 985 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 986 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 987 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 988 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 989 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 990 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 991 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 992 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 993 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 994 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 995 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 996 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 997 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 998 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 999 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 1000 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 1001 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 1002 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 1003 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 1004 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 1005 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 1006 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 1007 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 1008 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 1009 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 1010 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 1011 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 1012 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 1013 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 1014 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 1015 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 1016 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 1017 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 1018 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 1019 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 1020 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 1021 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 1022 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 1023 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 1024 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 1025 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 1026 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 1027 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 1028 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 1029 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 1030 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 1031 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 1032 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 1033 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 1034 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 1035 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 1036 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 1037 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 1038 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 1039 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 1040 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 1041 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 1042 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 1043 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 1044 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 1045 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 1046 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 1047 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 1048 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 1049 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 1050 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 1051 }; 1052 1053 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 1054 static ConstString gpr_reg_set ("General Purpose Registers"); 1055 static ConstString sfp_reg_set ("Software Floating Point Registers"); 1056 static ConstString vfp_reg_set ("Floating Point Registers"); 1057 size_t i; 1058 if (from_scratch) 1059 { 1060 // Calculate the offsets of the registers 1061 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 1062 // "primordial" registers is important. This enables us to calculate the offset of the composite 1063 // register by using the offset of its first primordial register. For example, to calculate the 1064 // offset of q0, use s0's offset. 1065 if (g_register_infos[2].byte_offset == 0) 1066 { 1067 uint32_t byte_offset = 0; 1068 for (i=0; i<num_registers; ++i) 1069 { 1070 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 1071 // byte_offset for the next register. Otherwise, we have a composite register whose 1072 // offset can be calculated by consulting the offset of its first primordial register. 1073 if (!g_register_infos[i].value_regs) 1074 { 1075 g_register_infos[i].byte_offset = byte_offset; 1076 byte_offset += g_register_infos[i].byte_size; 1077 } 1078 else 1079 { 1080 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 1081 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 1082 } 1083 } 1084 } 1085 for (i=0; i<num_registers; ++i) 1086 { 1087 ConstString name; 1088 ConstString alt_name; 1089 if (g_register_infos[i].name && g_register_infos[i].name[0]) 1090 name.SetCString(g_register_infos[i].name); 1091 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 1092 alt_name.SetCString(g_register_infos[i].alt_name); 1093 1094 if (i <= 15 || i == 25) 1095 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 1096 else if (i <= 24) 1097 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 1098 else 1099 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 1100 } 1101 } 1102 else 1103 { 1104 // Add composite registers to our primordial registers, then. 1105 const size_t num_composites = llvm::array_lengthof(g_composites); 1106 const size_t num_dynamic_regs = GetNumRegisters(); 1107 const size_t num_common_regs = num_registers - num_composites; 1108 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 1109 1110 // First we need to validate that all registers that we already have match the non composite regs. 1111 // If so, then we can add the registers, else we need to bail 1112 bool match = true; 1113 if (num_dynamic_regs == num_common_regs) 1114 { 1115 for (i=0; match && i<num_dynamic_regs; ++i) 1116 { 1117 // Make sure all register names match 1118 if (m_regs[i].name && g_register_infos[i].name) 1119 { 1120 if (strcmp(m_regs[i].name, g_register_infos[i].name)) 1121 { 1122 match = false; 1123 break; 1124 } 1125 } 1126 1127 // Make sure all register byte sizes match 1128 if (m_regs[i].byte_size != g_register_infos[i].byte_size) 1129 { 1130 match = false; 1131 break; 1132 } 1133 } 1134 } 1135 else 1136 { 1137 // Wrong number of registers. 1138 match = false; 1139 } 1140 // If "match" is true, then we can add extra registers. 1141 if (match) 1142 { 1143 for (i=0; i<num_composites; ++i) 1144 { 1145 ConstString name; 1146 ConstString alt_name; 1147 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; 1148 const char *reg_name = g_register_infos[first_primordial_reg].name; 1149 if (reg_name && reg_name[0]) 1150 { 1151 for (uint32_t j = 0; j < num_dynamic_regs; ++j) 1152 { 1153 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 1154 // Find a matching primordial register info entry. 1155 if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) 1156 { 1157 // The name matches the existing primordial entry. 1158 // Find and assign the offset, and then add this composite register entry. 1159 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 1160 name.SetCString(g_comp_register_infos[i].name); 1161 AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); 1162 } 1163 } 1164 } 1165 } 1166 } 1167 } 1168 } 1169