1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Target/ExecutionContext.h"
16 #include "lldb/Target/Target.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/DataExtractor.h"
19 #include "lldb/Utility/RegisterValue.h"
20 #include "lldb/Utility/Scalar.h"
21 #include "lldb/Utility/StreamString.h"
22 // Project includes
23 #include "ProcessGDBRemote.h"
24 #include "ProcessGDBRemoteLog.h"
25 #include "ThreadGDBRemote.h"
26 #include "Utility/ARM_DWARF_Registers.h"
27 #include "Utility/ARM_ehframe_Registers.h"
28 #include "lldb/Utility/StringExtractorGDBRemote.h"
29 
30 using namespace lldb;
31 using namespace lldb_private;
32 using namespace lldb_private::process_gdb_remote;
33 
34 //----------------------------------------------------------------------
35 // GDBRemoteRegisterContext constructor
36 //----------------------------------------------------------------------
37 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
38     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
39     GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
40     : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
41       m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
42   // Resize our vector of bools to contain one bool for every register. We will
43   // use these boolean values to know when a register value is valid in
44   // m_reg_data.
45   m_reg_valid.resize(reg_info.GetNumRegisters());
46 
47   // Make a heap based buffer that is big enough to store all registers
48   DataBufferSP reg_data_sp(
49       new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
50   m_reg_data.SetData(reg_data_sp);
51   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
52 }
53 
54 //----------------------------------------------------------------------
55 // Destructor
56 //----------------------------------------------------------------------
57 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
58 
59 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
60   SetAllRegisterValid(false);
61 }
62 
63 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
64   std::vector<bool>::iterator pos, end = m_reg_valid.end();
65   for (pos = m_reg_valid.begin(); pos != end; ++pos)
66     *pos = b;
67 }
68 
69 size_t GDBRemoteRegisterContext::GetRegisterCount() {
70   return m_reg_info.GetNumRegisters();
71 }
72 
73 const RegisterInfo *
74 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
75   RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
76 
77   if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
78     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
79     uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
80     reg_info->byte_size = reg_size;
81   }
82   return reg_info;
83 }
84 
85 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
86   return m_reg_info.GetNumRegisterSets();
87 }
88 
89 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
90   return m_reg_info.GetRegisterSet(reg_set);
91 }
92 
93 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
94                                             RegisterValue &value) {
95   // Read the register
96   if (ReadRegisterBytes(reg_info, m_reg_data)) {
97     const bool partial_data_ok = false;
98     Status error(value.SetValueFromData(
99         reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
100     return error.Success();
101   }
102   return false;
103 }
104 
105 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
106     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
107   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
108   if (reg_info == NULL)
109     return false;
110 
111   // Invalidate if needed
112   InvalidateIfNeeded(false);
113 
114   const size_t reg_byte_size = reg_info->byte_size;
115   memcpy(const_cast<uint8_t *>(
116              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
117          data.data(), std::min(data.size(), reg_byte_size));
118   bool success = data.size() >= reg_byte_size;
119   if (success) {
120     SetRegisterIsValid(reg, true);
121   } else if (data.size() > 0) {
122     // Only set register is valid to false if we copied some bytes, else leave
123     // it as it was.
124     SetRegisterIsValid(reg, false);
125   }
126   return success;
127 }
128 
129 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
130                                                        uint64_t new_reg_val) {
131   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
132   if (reg_info == NULL)
133     return false;
134 
135   // Early in process startup, we can get a thread that has an invalid byte
136   // order because the process hasn't been completely set up yet (see the ctor
137   // where the byte order is setfrom the process).  If that's the case, we
138   // can't set the value here.
139   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
140     return false;
141   }
142 
143   // Invalidate if needed
144   InvalidateIfNeeded(false);
145 
146   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
147   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
148 
149   // If our register context and our register info disagree, which should never
150   // happen, don't overwrite past the end of the buffer.
151   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
152     return false;
153 
154   // Grab a pointer to where we are going to put this register
155   uint8_t *dst = const_cast<uint8_t *>(
156       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
157 
158   if (dst == NULL)
159     return false;
160 
161   if (data.CopyByteOrderedData(0,                          // src offset
162                                reg_info->byte_size,        // src length
163                                dst,                        // dst
164                                reg_info->byte_size,        // dst length
165                                m_reg_data.GetByteOrder())) // dst byte order
166   {
167     SetRegisterIsValid(reg, true);
168     return true;
169   }
170   return false;
171 }
172 
173 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
174 bool GDBRemoteRegisterContext::GetPrimordialRegister(
175     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
176   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
177   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
178 
179   if (DataBufferSP buffer_sp =
180           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
181     return PrivateSetRegisterValue(
182         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
183                                           buffer_sp->GetByteSize()));
184   return false;
185 }
186 
187 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
188                                                  DataExtractor &data) {
189   ExecutionContext exe_ctx(CalculateThread());
190 
191   Process *process = exe_ctx.GetProcessPtr();
192   Thread *thread = exe_ctx.GetThreadPtr();
193   if (process == NULL || thread == NULL)
194     return false;
195 
196   GDBRemoteCommunicationClient &gdb_comm(
197       ((ProcessGDBRemote *)process)->GetGDBRemote());
198 
199   InvalidateIfNeeded(false);
200 
201   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
202 
203   if (!GetRegisterIsValid(reg)) {
204     if (m_read_all_at_once) {
205       if (DataBufferSP buffer_sp =
206               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
207         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
208                buffer_sp->GetBytes(),
209                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
210         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
211           SetAllRegisterValid(true);
212           return true;
213         }
214       }
215       return false;
216     }
217     if (reg_info->value_regs) {
218       // Process this composite register request by delegating to the
219       // constituent primordial registers.
220 
221       // Index of the primordial register.
222       bool success = true;
223       for (uint32_t idx = 0; success; ++idx) {
224         const uint32_t prim_reg = reg_info->value_regs[idx];
225         if (prim_reg == LLDB_INVALID_REGNUM)
226           break;
227         // We have a valid primordial register as our constituent. Grab the
228         // corresponding register info.
229         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
230         if (prim_reg_info == NULL)
231           success = false;
232         else {
233           // Read the containing register if it hasn't already been read
234           if (!GetRegisterIsValid(prim_reg))
235             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
236         }
237       }
238 
239       if (success) {
240         // If we reach this point, all primordial register requests have
241         // succeeded. Validate this composite register.
242         SetRegisterIsValid(reg_info, true);
243       }
244     } else {
245       // Get each register individually
246       GetPrimordialRegister(reg_info, gdb_comm);
247     }
248 
249     // Make sure we got a valid register value after reading it
250     if (!GetRegisterIsValid(reg))
251       return false;
252   }
253 
254   if (&data != &m_reg_data) {
255 #if defined(LLDB_CONFIGURATION_DEBUG)
256     assert(m_reg_data.GetByteSize() >=
257            reg_info->byte_offset + reg_info->byte_size);
258 #endif
259     // If our register context and our register info disagree, which should
260     // never happen, don't read past the end of the buffer.
261     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
262       return false;
263 
264     // If we aren't extracting into our own buffer (which only happens when
265     // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
266     // we transfer bytes from our buffer into the data buffer that was passed
267     // in
268 
269     data.SetByteOrder(m_reg_data.GetByteOrder());
270     data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
271   }
272   return true;
273 }
274 
275 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
276                                              const RegisterValue &value) {
277   DataExtractor data;
278   if (value.GetData(data))
279     return WriteRegisterBytes(reg_info, data, 0);
280   return false;
281 }
282 
283 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
284 bool GDBRemoteRegisterContext::SetPrimordialRegister(
285     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
286   StreamString packet;
287   StringExtractorGDBRemote response;
288   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
289   // Invalidate just this register
290   SetRegisterIsValid(reg, false);
291 
292   return gdb_comm.WriteRegister(
293       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
294       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
295        reg_info->byte_size});
296 }
297 
298 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
299                                                   DataExtractor &data,
300                                                   uint32_t data_offset) {
301   ExecutionContext exe_ctx(CalculateThread());
302 
303   Process *process = exe_ctx.GetProcessPtr();
304   Thread *thread = exe_ctx.GetThreadPtr();
305   if (process == NULL || thread == NULL)
306     return false;
307 
308   GDBRemoteCommunicationClient &gdb_comm(
309       ((ProcessGDBRemote *)process)->GetGDBRemote());
310 
311 #if defined(LLDB_CONFIGURATION_DEBUG)
312   assert(m_reg_data.GetByteSize() >=
313          reg_info->byte_offset + reg_info->byte_size);
314 #endif
315 
316   // If our register context and our register info disagree, which should never
317   // happen, don't overwrite past the end of the buffer.
318   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
319     return false;
320 
321   // Grab a pointer to where we are going to put this register
322   uint8_t *dst = const_cast<uint8_t *>(
323       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
324 
325   if (dst == NULL)
326     return false;
327 
328   if (data.CopyByteOrderedData(data_offset,                // src offset
329                                reg_info->byte_size,        // src length
330                                dst,                        // dst
331                                reg_info->byte_size,        // dst length
332                                m_reg_data.GetByteOrder())) // dst byte order
333   {
334     GDBRemoteClientBase::Lock lock(gdb_comm, false);
335     if (lock) {
336       if (m_read_all_at_once) {
337         // Invalidate all register values
338         InvalidateIfNeeded(true);
339 
340         // Set all registers in one packet
341         if (gdb_comm.WriteAllRegisters(
342                 m_thread.GetProtocolID(),
343                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
344 
345         {
346           SetAllRegisterValid(false);
347           return true;
348         }
349       } else {
350         bool success = true;
351 
352         if (reg_info->value_regs) {
353           // This register is part of another register. In this case we read
354           // the actual register data for any "value_regs", and once all that
355           // data is read, we will have enough data in our register context
356           // bytes for the value of this register
357 
358           // Invalidate this composite register first.
359 
360           for (uint32_t idx = 0; success; ++idx) {
361             const uint32_t reg = reg_info->value_regs[idx];
362             if (reg == LLDB_INVALID_REGNUM)
363               break;
364             // We have a valid primordial register as our constituent. Grab the
365             // corresponding register info.
366             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
367             if (value_reg_info == NULL)
368               success = false;
369             else
370               success = SetPrimordialRegister(value_reg_info, gdb_comm);
371           }
372         } else {
373           // This is an actual register, write it
374           success = SetPrimordialRegister(reg_info, gdb_comm);
375         }
376 
377         // Check if writing this register will invalidate any other register
378         // values? If so, invalidate them
379         if (reg_info->invalidate_regs) {
380           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
381                reg != LLDB_INVALID_REGNUM;
382                reg = reg_info->invalidate_regs[++idx]) {
383             SetRegisterIsValid(reg, false);
384           }
385         }
386 
387         return success;
388       }
389     } else {
390       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
391                                                              GDBR_LOG_PACKETS));
392       if (log) {
393         if (log->GetVerbose()) {
394           StreamString strm;
395           gdb_comm.DumpHistory(strm);
396           log->Printf("error: failed to get packet sequence mutex, not sending "
397                       "write register for \"%s\":\n%s",
398                       reg_info->name, strm.GetData());
399         } else
400           log->Printf("error: failed to get packet sequence mutex, not sending "
401                       "write register for \"%s\"",
402                       reg_info->name);
403       }
404     }
405   }
406   return false;
407 }
408 
409 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
410     RegisterCheckpoint &reg_checkpoint) {
411   ExecutionContext exe_ctx(CalculateThread());
412 
413   Process *process = exe_ctx.GetProcessPtr();
414   Thread *thread = exe_ctx.GetThreadPtr();
415   if (process == NULL || thread == NULL)
416     return false;
417 
418   GDBRemoteCommunicationClient &gdb_comm(
419       ((ProcessGDBRemote *)process)->GetGDBRemote());
420 
421   uint32_t save_id = 0;
422   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
423     reg_checkpoint.SetID(save_id);
424     reg_checkpoint.GetData().reset();
425     return true;
426   } else {
427     reg_checkpoint.SetID(0); // Invalid save ID is zero
428     return ReadAllRegisterValues(reg_checkpoint.GetData());
429   }
430 }
431 
432 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
433     const RegisterCheckpoint &reg_checkpoint) {
434   uint32_t save_id = reg_checkpoint.GetID();
435   if (save_id != 0) {
436     ExecutionContext exe_ctx(CalculateThread());
437 
438     Process *process = exe_ctx.GetProcessPtr();
439     Thread *thread = exe_ctx.GetThreadPtr();
440     if (process == NULL || thread == NULL)
441       return false;
442 
443     GDBRemoteCommunicationClient &gdb_comm(
444         ((ProcessGDBRemote *)process)->GetGDBRemote());
445 
446     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
447   } else {
448     return WriteAllRegisterValues(reg_checkpoint.GetData());
449   }
450 }
451 
452 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
453     lldb::DataBufferSP &data_sp) {
454   ExecutionContext exe_ctx(CalculateThread());
455 
456   Process *process = exe_ctx.GetProcessPtr();
457   Thread *thread = exe_ctx.GetThreadPtr();
458   if (process == NULL || thread == NULL)
459     return false;
460 
461   GDBRemoteCommunicationClient &gdb_comm(
462       ((ProcessGDBRemote *)process)->GetGDBRemote());
463 
464   const bool use_g_packet =
465       gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
466 
467   GDBRemoteClientBase::Lock lock(gdb_comm, false);
468   if (lock) {
469     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
470       InvalidateAllRegisters();
471 
472     if (use_g_packet &&
473         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
474       return true;
475 
476     // We're going to read each register
477     // individually and store them as binary data in a buffer.
478     const RegisterInfo *reg_info;
479 
480     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) {
481       if (reg_info
482               ->value_regs) // skip registers that are slices of real registers
483         continue;
484       ReadRegisterBytes(reg_info, m_reg_data);
485       // ReadRegisterBytes saves the contents of the register in to the
486       // m_reg_data buffer
487     }
488     data_sp.reset(new DataBufferHeap(m_reg_data.GetDataStart(),
489                                      m_reg_info.GetRegisterDataByteSize()));
490     return true;
491   } else {
492 
493     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
494                                                            GDBR_LOG_PACKETS));
495     if (log) {
496       if (log->GetVerbose()) {
497         StreamString strm;
498         gdb_comm.DumpHistory(strm);
499         log->Printf("error: failed to get packet sequence mutex, not sending "
500                     "read all registers:\n%s",
501                     strm.GetData());
502       } else
503         log->Printf("error: failed to get packet sequence mutex, not sending "
504                     "read all registers");
505     }
506   }
507 
508   data_sp.reset();
509   return false;
510 }
511 
512 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
513     const lldb::DataBufferSP &data_sp) {
514   if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
515     return false;
516 
517   ExecutionContext exe_ctx(CalculateThread());
518 
519   Process *process = exe_ctx.GetProcessPtr();
520   Thread *thread = exe_ctx.GetThreadPtr();
521   if (process == NULL || thread == NULL)
522     return false;
523 
524   GDBRemoteCommunicationClient &gdb_comm(
525       ((ProcessGDBRemote *)process)->GetGDBRemote());
526 
527   const bool use_g_packet =
528       gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
529 
530   GDBRemoteClientBase::Lock lock(gdb_comm, false);
531   if (lock) {
532     // The data_sp contains the G response packet.
533     if (use_g_packet) {
534       if (gdb_comm.WriteAllRegisters(
535               m_thread.GetProtocolID(),
536               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
537         return true;
538 
539       uint32_t num_restored = 0;
540       // We need to manually go through all of the registers and restore them
541       // manually
542       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
543                                  m_reg_data.GetAddressByteSize());
544 
545       const RegisterInfo *reg_info;
546 
547       // The g packet contents may either include the slice registers
548       // (registers defined in terms of other registers, e.g. eax is a subset
549       // of rax) or not.  The slice registers should NOT be in the g packet,
550       // but some implementations may incorrectly include them.
551       //
552       // If the slice registers are included in the packet, we must step over
553       // the slice registers when parsing the packet -- relying on the
554       // RegisterInfo byte_offset field would be incorrect. If the slice
555       // registers are not included, then using the byte_offset values into the
556       // data buffer is the best way to find individual register values.
557 
558       uint64_t size_including_slice_registers = 0;
559       uint64_t size_not_including_slice_registers = 0;
560       uint64_t size_by_highest_offset = 0;
561 
562       for (uint32_t reg_idx = 0;
563            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) {
564         size_including_slice_registers += reg_info->byte_size;
565         if (reg_info->value_regs == NULL)
566           size_not_including_slice_registers += reg_info->byte_size;
567         if (reg_info->byte_offset >= size_by_highest_offset)
568           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
569       }
570 
571       bool use_byte_offset_into_buffer;
572       if (size_by_highest_offset == restore_data.GetByteSize()) {
573         // The size of the packet agrees with the highest offset: + size in the
574         // register file
575         use_byte_offset_into_buffer = true;
576       } else if (size_not_including_slice_registers ==
577                  restore_data.GetByteSize()) {
578         // The size of the packet is the same as concatenating all of the
579         // registers sequentially, skipping the slice registers
580         use_byte_offset_into_buffer = true;
581       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
582         // The slice registers are present in the packet (when they shouldn't
583         // be). Don't try to use the RegisterInfo byte_offset into the
584         // restore_data, it will point to the wrong place.
585         use_byte_offset_into_buffer = false;
586       } else {
587         // None of our expected sizes match the actual g packet data we're
588         // looking at. The most conservative approach here is to use the
589         // running total byte offset.
590         use_byte_offset_into_buffer = false;
591       }
592 
593       // In case our register definitions don't include the correct offsets,
594       // keep track of the size of each reg & compute offset based on that.
595       uint32_t running_byte_offset = 0;
596       for (uint32_t reg_idx = 0;
597            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL;
598            ++reg_idx, running_byte_offset += reg_info->byte_size) {
599         // Skip composite aka slice registers (e.g. eax is a slice of rax).
600         if (reg_info->value_regs)
601           continue;
602 
603         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
604 
605         uint32_t register_offset;
606         if (use_byte_offset_into_buffer) {
607           register_offset = reg_info->byte_offset;
608         } else {
609           register_offset = running_byte_offset;
610         }
611 
612         const uint32_t reg_byte_size = reg_info->byte_size;
613 
614         const uint8_t *restore_src =
615             restore_data.PeekData(register_offset, reg_byte_size);
616         if (restore_src) {
617           SetRegisterIsValid(reg, false);
618           if (gdb_comm.WriteRegister(
619                   m_thread.GetProtocolID(),
620                   reg_info->kinds[eRegisterKindProcessPlugin],
621                   {restore_src, reg_byte_size}))
622             ++num_restored;
623         }
624       }
625       return num_restored > 0;
626     } else {
627       // For the use_g_packet == false case, we're going to write each register
628       // individually.  The data buffer is binary data in this case, instead of
629       // ascii characters.
630 
631       bool arm64_debugserver = false;
632       if (m_thread.GetProcess().get()) {
633         const ArchSpec &arch =
634             m_thread.GetProcess()->GetTarget().GetArchitecture();
635         if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
636             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
637             arch.GetTriple().getOS() == llvm::Triple::IOS) {
638           arm64_debugserver = true;
639         }
640       }
641       uint32_t num_restored = 0;
642       const RegisterInfo *reg_info;
643       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL;
644            i++) {
645         if (reg_info->value_regs) // skip registers that are slices of real
646                                   // registers
647           continue;
648         // Skip the fpsr and fpcr floating point status/control register
649         // writing to work around a bug in an older version of debugserver that
650         // would lead to register context corruption when writing fpsr/fpcr.
651         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
652                                   strcmp(reg_info->name, "fpcr") == 0)) {
653           continue;
654         }
655 
656         SetRegisterIsValid(reg_info, false);
657         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
658                                    reg_info->kinds[eRegisterKindProcessPlugin],
659                                    {data_sp->GetBytes() + reg_info->byte_offset,
660                                     reg_info->byte_size}))
661           ++num_restored;
662       }
663       return num_restored > 0;
664     }
665   } else {
666     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
667                                                            GDBR_LOG_PACKETS));
668     if (log) {
669       if (log->GetVerbose()) {
670         StreamString strm;
671         gdb_comm.DumpHistory(strm);
672         log->Printf("error: failed to get packet sequence mutex, not sending "
673                     "write all registers:\n%s",
674                     strm.GetData());
675       } else
676         log->Printf("error: failed to get packet sequence mutex, not sending "
677                     "write all registers");
678     }
679   }
680   return false;
681 }
682 
683 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
684     lldb::RegisterKind kind, uint32_t num) {
685   return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
686 }
687 
688 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
689   // For Advanced SIMD and VFP register mapping.
690   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
691   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
692   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
693   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
694   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
695   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
696   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
697   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
698   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
699   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
700   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
701   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
702   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
703   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
704   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
705   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
706   static uint32_t g_q0_regs[] = {
707       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
708   static uint32_t g_q1_regs[] = {
709       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
710   static uint32_t g_q2_regs[] = {
711       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
712   static uint32_t g_q3_regs[] = {
713       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
714   static uint32_t g_q4_regs[] = {
715       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
716   static uint32_t g_q5_regs[] = {
717       46, 47, 48, 49,
718       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
719   static uint32_t g_q6_regs[] = {
720       50, 51, 52, 53,
721       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
722   static uint32_t g_q7_regs[] = {
723       54, 55, 56, 57,
724       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
725   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
726   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
727   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
728   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
729   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
730   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
731   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
732   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
733 
734   // This is our array of composite registers, with each element coming from
735   // the above register mappings.
736   static uint32_t *g_composites[] = {
737       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
738       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
739       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
740       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
741       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
742       g_q14_regs, g_q15_regs};
743 
744   // clang-format off
745     static RegisterInfo g_register_infos[] = {
746 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
747 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
748     { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
749     { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
750     { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
751     { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
752     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
753     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
754     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
755     { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
756     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
757     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
758     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
759     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
760     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
761     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
762     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
763     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
764     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
765     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
766     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
767     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
768     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
769     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
770     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
771     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
772     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
773     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
774     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
775     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
776     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
777     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
778     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
779     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
780     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
781     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
782     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
783     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
784     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
785     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
786     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
787     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
788     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
789     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
790     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
791     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
792     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
793     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
794     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
795     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
796     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
797     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
798     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
799     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
800     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
801     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
802     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
803     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
804     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
805     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
806     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
807     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
808     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
809     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
810     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
811     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
812     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
813     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
814     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
815     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
816     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
817     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
818     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
819     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
820     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
821     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
822     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
823     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
824     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
825     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
826     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
827     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
828     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
829     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
830     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
831     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
832     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
833     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
834     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
835     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
836     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
837     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
838     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
839     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
840     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
841     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
842     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
843     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
844     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
845     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
846     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
847     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
848     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
849     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
850     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
851     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
852     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
853     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
854     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
855     };
856   // clang-format on
857 
858   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
859   static ConstString gpr_reg_set("General Purpose Registers");
860   static ConstString sfp_reg_set("Software Floating Point Registers");
861   static ConstString vfp_reg_set("Floating Point Registers");
862   size_t i;
863   if (from_scratch) {
864     // Calculate the offsets of the registers
865     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
866     // which comes after the "primordial" registers is important.  This enables
867     // us to calculate the offset of the composite register by using the offset
868     // of its first primordial register.  For example, to calculate the offset
869     // of q0, use s0's offset.
870     if (g_register_infos[2].byte_offset == 0) {
871       uint32_t byte_offset = 0;
872       for (i = 0; i < num_registers; ++i) {
873         // For primordial registers, increment the byte_offset by the byte_size
874         // to arrive at the byte_offset for the next register.  Otherwise, we
875         // have a composite register whose offset can be calculated by
876         // consulting the offset of its first primordial register.
877         if (!g_register_infos[i].value_regs) {
878           g_register_infos[i].byte_offset = byte_offset;
879           byte_offset += g_register_infos[i].byte_size;
880         } else {
881           const uint32_t first_primordial_reg =
882               g_register_infos[i].value_regs[0];
883           g_register_infos[i].byte_offset =
884               g_register_infos[first_primordial_reg].byte_offset;
885         }
886       }
887     }
888     for (i = 0; i < num_registers; ++i) {
889       ConstString name;
890       ConstString alt_name;
891       if (g_register_infos[i].name && g_register_infos[i].name[0])
892         name.SetCString(g_register_infos[i].name);
893       if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
894         alt_name.SetCString(g_register_infos[i].alt_name);
895 
896       if (i <= 15 || i == 25)
897         AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
898       else if (i <= 24)
899         AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
900       else
901         AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
902     }
903   } else {
904     // Add composite registers to our primordial registers, then.
905     const size_t num_composites = llvm::array_lengthof(g_composites);
906     const size_t num_dynamic_regs = GetNumRegisters();
907     const size_t num_common_regs = num_registers - num_composites;
908     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
909 
910     // First we need to validate that all registers that we already have match
911     // the non composite regs. If so, then we can add the registers, else we
912     // need to bail
913     bool match = true;
914     if (num_dynamic_regs == num_common_regs) {
915       for (i = 0; match && i < num_dynamic_regs; ++i) {
916         // Make sure all register names match
917         if (m_regs[i].name && g_register_infos[i].name) {
918           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
919             match = false;
920             break;
921           }
922         }
923 
924         // Make sure all register byte sizes match
925         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
926           match = false;
927           break;
928         }
929       }
930     } else {
931       // Wrong number of registers.
932       match = false;
933     }
934     // If "match" is true, then we can add extra registers.
935     if (match) {
936       for (i = 0; i < num_composites; ++i) {
937         ConstString name;
938         ConstString alt_name;
939         const uint32_t first_primordial_reg =
940             g_comp_register_infos[i].value_regs[0];
941         const char *reg_name = g_register_infos[first_primordial_reg].name;
942         if (reg_name && reg_name[0]) {
943           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
944             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
945             // Find a matching primordial register info entry.
946             if (reg_info && reg_info->name &&
947                 ::strcasecmp(reg_info->name, reg_name) == 0) {
948               // The name matches the existing primordial entry. Find and
949               // assign the offset, and then add this composite register entry.
950               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
951               name.SetCString(g_comp_register_infos[i].name);
952               AddRegister(g_comp_register_infos[i], name, alt_name,
953                           vfp_reg_set);
954             }
955           }
956         }
957       }
958     }
959   }
960 }
961