1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #include "lldb/Target/ExecutionContext.h"
21 #include "lldb/Target/Target.h"
22 #include "lldb/Utility/Utils.h"
23 // Project includes
24 #include "Utility/StringExtractorGDBRemote.h"
25 #include "ProcessGDBRemote.h"
26 #include "ProcessGDBRemoteLog.h"
27 #include "ThreadGDBRemote.h"
28 #include "Utility/ARM_DWARF_Registers.h"
29 #include "Utility/ARM_ehframe_Registers.h"
30 
31 using namespace lldb;
32 using namespace lldb_private;
33 using namespace lldb_private::process_gdb_remote;
34 
35 //----------------------------------------------------------------------
36 // GDBRemoteRegisterContext constructor
37 //----------------------------------------------------------------------
38 GDBRemoteRegisterContext::GDBRemoteRegisterContext
39 (
40     ThreadGDBRemote &thread,
41     uint32_t concrete_frame_idx,
42     GDBRemoteDynamicRegisterInfo &reg_info,
43     bool read_all_at_once
44 ) :
45     RegisterContext (thread, concrete_frame_idx),
46     m_reg_info (reg_info),
47     m_reg_valid (),
48     m_reg_data (),
49     m_read_all_at_once (read_all_at_once)
50 {
51     // Resize our vector of bools to contain one bool for every register.
52     // We will use these boolean values to know when a register value
53     // is valid in m_reg_data.
54     m_reg_valid.resize (reg_info.GetNumRegisters());
55 
56     // Make a heap based buffer that is big enough to store all registers
57     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
58     m_reg_data.SetData (reg_data_sp);
59     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
60 }
61 
62 //----------------------------------------------------------------------
63 // Destructor
64 //----------------------------------------------------------------------
65 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
66 {
67 }
68 
69 void
70 GDBRemoteRegisterContext::InvalidateAllRegisters ()
71 {
72     SetAllRegisterValid (false);
73 }
74 
75 void
76 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
77 {
78     std::vector<bool>::iterator pos, end = m_reg_valid.end();
79     for (pos = m_reg_valid.begin(); pos != end; ++pos)
80         *pos = b;
81 }
82 
83 size_t
84 GDBRemoteRegisterContext::GetRegisterCount ()
85 {
86     return m_reg_info.GetNumRegisters ();
87 }
88 
89 const RegisterInfo *
90 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
91 {
92     return m_reg_info.GetRegisterInfoAtIndex (reg);
93 }
94 
95 size_t
96 GDBRemoteRegisterContext::GetRegisterSetCount ()
97 {
98     return m_reg_info.GetNumRegisterSets ();
99 }
100 
101 
102 
103 const RegisterSet *
104 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
105 {
106     return m_reg_info.GetRegisterSet (reg_set);
107 }
108 
109 
110 
111 bool
112 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
113 {
114     // Read the register
115     if (ReadRegisterBytes (reg_info, m_reg_data))
116     {
117         const bool partial_data_ok = false;
118         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
119         return error.Success();
120     }
121     return false;
122 }
123 
124 bool
125 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
126 {
127     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
128     if (reg_info == NULL)
129         return false;
130 
131     // Invalidate if needed
132     InvalidateIfNeeded(false);
133 
134     const uint32_t reg_byte_size = reg_info->byte_size;
135     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
136     bool success = bytes_copied == reg_byte_size;
137     if (success)
138     {
139         SetRegisterIsValid(reg, true);
140     }
141     else if (bytes_copied > 0)
142     {
143         // Only set register is valid to false if we copied some bytes, else
144         // leave it as it was.
145         SetRegisterIsValid(reg, false);
146     }
147     return success;
148 }
149 
150 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
151 bool
152 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info,
153                                                 GDBRemoteCommunicationClient &gdb_comm)
154 {
155     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
156     StringExtractorGDBRemote response;
157     if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response))
158         return PrivateSetRegisterValue (reg, response);
159     return false;
160 }
161 
162 bool
163 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
164 {
165     ExecutionContext exe_ctx (CalculateThread());
166 
167     Process *process = exe_ctx.GetProcessPtr();
168     Thread *thread = exe_ctx.GetThreadPtr();
169     if (process == NULL || thread == NULL)
170         return false;
171 
172     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
173 
174     InvalidateIfNeeded(false);
175 
176     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
177 
178     if (!GetRegisterIsValid(reg))
179     {
180         if (m_read_all_at_once)
181         {
182             StringExtractorGDBRemote response;
183             if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
184                 return false;
185             if (response.IsNormalResponse())
186                 if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())),
187                                          m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
188                     SetAllRegisterValid (true);
189         }
190         else if (reg_info->value_regs)
191         {
192             // Process this composite register request by delegating to the constituent
193             // primordial registers.
194 
195             // Index of the primordial register.
196             bool success = true;
197             for (uint32_t idx = 0; success; ++idx)
198             {
199                 const uint32_t prim_reg = reg_info->value_regs[idx];
200                 if (prim_reg == LLDB_INVALID_REGNUM)
201                     break;
202                 // We have a valid primordial register as our constituent.
203                 // Grab the corresponding register info.
204                 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
205                 if (prim_reg_info == NULL)
206                     success = false;
207                 else
208                 {
209                     // Read the containing register if it hasn't already been read
210                     if (!GetRegisterIsValid(prim_reg))
211                         success = GetPrimordialRegister(prim_reg_info, gdb_comm);
212                 }
213             }
214 
215             if (success)
216             {
217                 // If we reach this point, all primordial register requests have succeeded.
218                 // Validate this composite register.
219                 SetRegisterIsValid (reg_info, true);
220             }
221         }
222         else
223         {
224             // Get each register individually
225             GetPrimordialRegister(reg_info, gdb_comm);
226         }
227 
228         // Make sure we got a valid register value after reading it
229         if (!GetRegisterIsValid(reg))
230             return false;
231     }
232 
233     if (&data != &m_reg_data)
234     {
235 #if defined (LLDB_CONFIGURATION_DEBUG)
236         assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
237 #endif
238         // If our register context and our register info disagree, which should never happen, don't
239         // read past the end of the buffer.
240         if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
241             return false;
242 
243         // If we aren't extracting into our own buffer (which
244         // only happens when this function is called from
245         // ReadRegisterValue(uint32_t, Scalar&)) then
246         // we transfer bytes from our buffer into the data
247         // buffer that was passed in
248 
249         data.SetByteOrder (m_reg_data.GetByteOrder());
250         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
251     }
252     return true;
253 }
254 
255 bool
256 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
257                                          const RegisterValue &value)
258 {
259     DataExtractor data;
260     if (value.GetData (data))
261         return WriteRegisterBytes (reg_info, data, 0);
262     return false;
263 }
264 
265 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
266 bool
267 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info,
268                                                 GDBRemoteCommunicationClient &gdb_comm)
269 {
270     StreamString packet;
271     StringExtractorGDBRemote response;
272     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
273     packet.Printf ("P%x=", reg);
274     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
275                               reg_info->byte_size,
276                               endian::InlHostByteOrder(),
277                               endian::InlHostByteOrder());
278 
279     if (gdb_comm.GetThreadSuffixSupported())
280         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
281 
282     // Invalidate just this register
283     SetRegisterIsValid(reg, false);
284     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
285                                               packet.GetString().size(),
286                                               response,
287                                               false) == GDBRemoteCommunication::PacketResult::Success)
288     {
289         if (response.IsOKResponse())
290             return true;
291     }
292     return false;
293 }
294 
295 void
296 GDBRemoteRegisterContext::SyncThreadState(Process *process)
297 {
298     // NB.  We assume our caller has locked the sequence mutex.
299 
300     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
301     if (!gdb_comm.GetSyncThreadStateSupported())
302         return;
303 
304     StreamString packet;
305     StringExtractorGDBRemote response;
306     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
307     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
308                                               packet.GetString().size(),
309                                               response,
310                                               false) == GDBRemoteCommunication::PacketResult::Success)
311     {
312         if (response.IsOKResponse())
313             InvalidateAllRegisters();
314     }
315 }
316 
317 bool
318 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
319 {
320     ExecutionContext exe_ctx (CalculateThread());
321 
322     Process *process = exe_ctx.GetProcessPtr();
323     Thread *thread = exe_ctx.GetThreadPtr();
324     if (process == NULL || thread == NULL)
325         return false;
326 
327     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
328 // FIXME: This check isn't right because IsRunning checks the Public state, but this
329 // is work you need to do - for instance in ShouldStop & friends - before the public
330 // state has been changed.
331 //    if (gdb_comm.IsRunning())
332 //        return false;
333 
334 
335 #if defined (LLDB_CONFIGURATION_DEBUG)
336     assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
337 #endif
338 
339     // If our register context and our register info disagree, which should never happen, don't
340     // overwrite past the end of the buffer.
341     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
342         return false;
343 
344     // Grab a pointer to where we are going to put this register
345     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
346 
347     if (dst == NULL)
348         return false;
349 
350 
351     if (data.CopyByteOrderedData (data_offset,                  // src offset
352                                   reg_info->byte_size,          // src length
353                                   dst,                          // dst
354                                   reg_info->byte_size,          // dst length
355                                   m_reg_data.GetByteOrder()))   // dst byte order
356     {
357         Mutex::Locker locker;
358         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
359         {
360             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
361             ProcessSP process_sp (m_thread.GetProcess());
362             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
363             {
364                 StreamString packet;
365                 StringExtractorGDBRemote response;
366 
367                 if (m_read_all_at_once)
368                 {
369                     // Set all registers in one packet
370                     packet.PutChar ('G');
371                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
372                                               m_reg_data.GetByteSize(),
373                                               endian::InlHostByteOrder(),
374                                               endian::InlHostByteOrder());
375 
376                     if (thread_suffix_supported)
377                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
378 
379                     // Invalidate all register values
380                     InvalidateIfNeeded (true);
381 
382                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
383                                                               packet.GetString().size(),
384                                                               response,
385                                                               false) == GDBRemoteCommunication::PacketResult::Success)
386                     {
387                         SetAllRegisterValid (false);
388                         if (response.IsOKResponse())
389                         {
390                             return true;
391                         }
392                     }
393                 }
394                 else
395                 {
396                     bool success = true;
397 
398                     if (reg_info->value_regs)
399                     {
400                         // This register is part of another register. In this case we read the actual
401                         // register data for any "value_regs", and once all that data is read, we will
402                         // have enough data in our register context bytes for the value of this register
403 
404                         // Invalidate this composite register first.
405 
406                         for (uint32_t idx = 0; success; ++idx)
407                         {
408                             const uint32_t reg = reg_info->value_regs[idx];
409                             if (reg == LLDB_INVALID_REGNUM)
410                                 break;
411                             // We have a valid primordial register as our constituent.
412                             // Grab the corresponding register info.
413                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
414                             if (value_reg_info == NULL)
415                                 success = false;
416                             else
417                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
418                         }
419                     }
420                     else
421                     {
422                         // This is an actual register, write it
423                         success = SetPrimordialRegister(reg_info, gdb_comm);
424                     }
425 
426                     // Check if writing this register will invalidate any other register values?
427                     // If so, invalidate them
428                     if (reg_info->invalidate_regs)
429                     {
430                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
431                              reg != LLDB_INVALID_REGNUM;
432                              reg = reg_info->invalidate_regs[++idx])
433                         {
434                             SetRegisterIsValid(reg, false);
435                         }
436                     }
437 
438                     return success;
439                 }
440             }
441         }
442         else
443         {
444             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
445             if (log)
446             {
447                 if (log->GetVerbose())
448                 {
449                     StreamString strm;
450                     gdb_comm.DumpHistory(strm);
451                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
452                 }
453                 else
454                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
455             }
456         }
457     }
458     return false;
459 }
460 
461 bool
462 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint &reg_checkpoint)
463 {
464     ExecutionContext exe_ctx (CalculateThread());
465 
466     Process *process = exe_ctx.GetProcessPtr();
467     Thread *thread = exe_ctx.GetThreadPtr();
468     if (process == NULL || thread == NULL)
469         return false;
470 
471     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
472 
473     uint32_t save_id = 0;
474     if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
475     {
476         reg_checkpoint.SetID(save_id);
477         reg_checkpoint.GetData().reset();
478         return true;
479     }
480     else
481     {
482         reg_checkpoint.SetID(0); // Invalid save ID is zero
483         return ReadAllRegisterValues(reg_checkpoint.GetData());
484     }
485 }
486 
487 bool
488 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint &reg_checkpoint)
489 {
490     uint32_t save_id = reg_checkpoint.GetID();
491     if (save_id != 0)
492     {
493         ExecutionContext exe_ctx (CalculateThread());
494 
495         Process *process = exe_ctx.GetProcessPtr();
496         Thread *thread = exe_ctx.GetThreadPtr();
497         if (process == NULL || thread == NULL)
498             return false;
499 
500         GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
501 
502         return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
503     }
504     else
505     {
506         return WriteAllRegisterValues(reg_checkpoint.GetData());
507     }
508 }
509 
510 bool
511 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
512 {
513     ExecutionContext exe_ctx (CalculateThread());
514 
515     Process *process = exe_ctx.GetProcessPtr();
516     Thread *thread = exe_ctx.GetThreadPtr();
517     if (process == NULL || thread == NULL)
518         return false;
519 
520     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
521 
522     StringExtractorGDBRemote response;
523 
524     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
525 
526     Mutex::Locker locker;
527     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
528     {
529         SyncThreadState(process);
530 
531         char packet[32];
532         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
533         ProcessSP process_sp (m_thread.GetProcess());
534         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
535         {
536             int packet_len = 0;
537             if (thread_suffix_supported)
538                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
539             else
540                 packet_len = ::snprintf (packet, sizeof(packet), "g");
541             assert (packet_len < ((int)sizeof(packet) - 1));
542 
543             if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
544             {
545                 int packet_len = 0;
546                 if (thread_suffix_supported)
547                     packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
548                 else
549                     packet_len = ::snprintf (packet, sizeof(packet), "g");
550                 assert (packet_len < ((int)sizeof(packet) - 1));
551 
552                 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
553                 {
554                     if (response.IsErrorResponse())
555                         return false;
556 
557                     std::string &response_str = response.GetStringRef();
558                     if (isxdigit(response_str[0]))
559                     {
560                         response_str.insert(0, 1, 'G');
561                         if (thread_suffix_supported)
562                         {
563                             char thread_id_cstr[64];
564                             ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
565                             response_str.append (thread_id_cstr);
566                         }
567                         data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
568                         return true;
569                     }
570                 }
571             }
572             else
573             {
574                 // For the use_g_packet == false case, we're going to read each register
575                 // individually and store them as binary data in a buffer instead of as ascii
576                 // characters.
577                 const RegisterInfo *reg_info;
578 
579                 // data_sp will take ownership of this DataBufferHeap pointer soon.
580                 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));
581 
582                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
583                 {
584                     if (reg_info->value_regs) // skip registers that are slices of real registers
585                         continue;
586                     ReadRegisterBytes (reg_info, m_reg_data);
587                     // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
588                 }
589                 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
590 
591                 data_sp = reg_ctx;
592                 return true;
593             }
594         }
595     }
596     else
597     {
598 
599         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
600         if (log)
601         {
602             if (log->GetVerbose())
603             {
604                 StreamString strm;
605                 gdb_comm.DumpHistory(strm);
606                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
607             }
608             else
609                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
610         }
611     }
612 
613     data_sp.reset();
614     return false;
615 }
616 
617 bool
618 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
619 {
620     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
621         return false;
622 
623     ExecutionContext exe_ctx (CalculateThread());
624 
625     Process *process = exe_ctx.GetProcessPtr();
626     Thread *thread = exe_ctx.GetThreadPtr();
627     if (process == NULL || thread == NULL)
628         return false;
629 
630     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
631 
632     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
633 
634     StringExtractorGDBRemote response;
635     Mutex::Locker locker;
636     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
637     {
638         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
639         ProcessSP process_sp (m_thread.GetProcess());
640         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
641         {
642             // The data_sp contains the entire G response packet including the
643             // G, and if the thread suffix is supported, it has the thread suffix
644             // as well.
645             const char *G_packet = (const char *)data_sp->GetBytes();
646             size_t G_packet_len = data_sp->GetByteSize();
647             if (use_g_packet
648                 && gdb_comm.SendPacketAndWaitForResponse (G_packet,
649                                                           G_packet_len,
650                                                           response,
651                                                           false) == GDBRemoteCommunication::PacketResult::Success)
652             {
653                 // The data_sp contains the entire G response packet including the
654                 // G, and if the thread suffix is supported, it has the thread suffix
655                 // as well.
656                 const char *G_packet = (const char *)data_sp->GetBytes();
657                 size_t G_packet_len = data_sp->GetByteSize();
658                 if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
659                                                            G_packet_len,
660                                                            response,
661                                                            false) == GDBRemoteCommunication::PacketResult::Success)
662                 {
663                     if (response.IsOKResponse())
664                         return true;
665                     else if (response.IsErrorResponse())
666                     {
667                         uint32_t num_restored = 0;
668                         // We need to manually go through all of the registers and
669                         // restore them manually
670 
671                         response.GetStringRef().assign (G_packet, G_packet_len);
672                         response.SetFilePos(1); // Skip the leading 'G'
673 
674                         // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier.
675                         // This means buffer will be a little more than 2x larger than necessary but we resize
676                         // it down once we've extracted all hex ascii chars from the packet.
677                         DataBufferHeap buffer (G_packet_len, 0);
678 
679                         const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(),
680                                                                                buffer.GetByteSize(),
681                                                                                '\xcc');
682 
683                         DataExtractor restore_data (buffer.GetBytes(),
684                                                     buffer.GetByteSize(),
685                                                     m_reg_data.GetByteOrder(),
686                                                     m_reg_data.GetAddressByteSize());
687 
688                         if (bytes_extracted < restore_data.GetByteSize())
689                             restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
690 
691                         const RegisterInfo *reg_info;
692 
693                         // The g packet contents may either include the slice registers (registers defined in
694                         // terms of other registers, e.g. eax is a subset of rax) or not.  The slice registers
695                         // should NOT be in the g packet, but some implementations may incorrectly include them.
696                         //
697                         // If the slice registers are included in the packet, we must step over the slice registers
698                         // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
699                         // If the slice registers are not included, then using the byte_offset values into the
700                         // data buffer is the best way to find individual register values.
701 
702                         uint64_t size_including_slice_registers = 0;
703                         uint64_t size_not_including_slice_registers = 0;
704                         uint64_t size_by_highest_offset = 0;
705 
706                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
707                         {
708                             size_including_slice_registers += reg_info->byte_size;
709                             if (reg_info->value_regs == NULL)
710                                 size_not_including_slice_registers += reg_info->byte_size;
711                             if (reg_info->byte_offset >= size_by_highest_offset)
712                                 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
713                         }
714 
715                         bool use_byte_offset_into_buffer;
716                         if (size_by_highest_offset == restore_data.GetByteSize())
717                         {
718                             // The size of the packet agrees with the highest offset: + size in the register file
719                             use_byte_offset_into_buffer = true;
720                         }
721                         else if (size_not_including_slice_registers == restore_data.GetByteSize())
722                         {
723                             // The size of the packet is the same as concatenating all of the registers sequentially,
724                             // skipping the slice registers
725                             use_byte_offset_into_buffer = true;
726                         }
727                         else if (size_including_slice_registers == restore_data.GetByteSize())
728                         {
729                             // The slice registers are present in the packet (when they shouldn't be).
730                             // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
731                             // point to the wrong place.
732                             use_byte_offset_into_buffer = false;
733                         }
734                         else {
735                             // None of our expected sizes match the actual g packet data we're looking at.
736                             // The most conservative approach here is to use the running total byte offset.
737                             use_byte_offset_into_buffer = false;
738                         }
739 
740                         // In case our register definitions don't include the correct offsets,
741                         // keep track of the size of each reg & compute offset based on that.
742                         uint32_t running_byte_offset = 0;
743                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
744                         {
745                             // Skip composite aka slice registers (e.g. eax is a slice of rax).
746                             if (reg_info->value_regs)
747                                 continue;
748 
749                             const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
750 
751                             uint32_t register_offset;
752                             if (use_byte_offset_into_buffer)
753                             {
754                                 register_offset = reg_info->byte_offset;
755                             }
756                             else
757                             {
758                                 register_offset = running_byte_offset;
759                             }
760 
761                             // Only write down the registers that need to be written
762                             // if we are going to be doing registers individually.
763                             bool write_reg = true;
764                             const uint32_t reg_byte_size = reg_info->byte_size;
765 
766                             const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
767                             if (restore_src)
768                             {
769                                 StreamString packet;
770                                 packet.Printf ("P%x=", reg);
771                                 packet.PutBytesAsRawHex8 (restore_src,
772                                                           reg_byte_size,
773                                                           endian::InlHostByteOrder(),
774                                                           endian::InlHostByteOrder());
775 
776                                 if (thread_suffix_supported)
777                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
778 
779                                 SetRegisterIsValid(reg, false);
780                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
781                                                                           packet.GetString().size(),
782                                                                           response,
783                                                                           false) == GDBRemoteCommunication::PacketResult::Success)
784                                 {
785                                     const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
786                                     if (current_src)
787                                         write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
788                                 }
789 
790                                 if (write_reg)
791                                 {
792                                     StreamString packet;
793                                     packet.Printf ("P%x=", reg);
794                                     packet.PutBytesAsRawHex8 (restore_src,
795                                                               reg_byte_size,
796                                                               endian::InlHostByteOrder(),
797                                                               endian::InlHostByteOrder());
798 
799                                     if (thread_suffix_supported)
800                                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
801 
802                                     SetRegisterIsValid(reg, false);
803                                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
804                                                                               packet.GetString().size(),
805                                                                               response,
806                                                                               false) == GDBRemoteCommunication::PacketResult::Success)
807                                     {
808                                         if (response.IsOKResponse())
809                                             ++num_restored;
810                                     }
811                                 }
812                             }
813                         }
814                         return num_restored > 0;
815                     }
816                 }
817             }
818             else
819             {
820                 // For the use_g_packet == false case, we're going to write each register
821                 // individually.  The data buffer is binary data in this case, instead of
822                 // ascii characters.
823 
824                 bool arm64_debugserver = false;
825                 if (m_thread.GetProcess().get())
826                 {
827                     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
828                     if (arch.IsValid()
829                         && arch.GetMachine() == llvm::Triple::aarch64
830                         && arch.GetTriple().getVendor() == llvm::Triple::Apple
831                         && arch.GetTriple().getOS() == llvm::Triple::IOS)
832                     {
833                         arm64_debugserver = true;
834                     }
835                 }
836                 uint32_t num_restored = 0;
837                 const RegisterInfo *reg_info;
838                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
839                 {
840                     if (reg_info->value_regs) // skip registers that are slices of real registers
841                         continue;
842                     // Skip the fpsr and fpcr floating point status/control register writing to
843                     // work around a bug in an older version of debugserver that would lead to
844                     // register context corruption when writing fpsr/fpcr.
845                     if (arm64_debugserver &&
846                         (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
847                     {
848                         continue;
849                     }
850                     StreamString packet;
851                     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]);
852                     packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder());
853                     if (thread_suffix_supported)
854                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
855 
856                     SetRegisterIsValid(reg_info, false);
857                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
858                                                               packet.GetString().size(),
859                                                               response,
860                                                               false) == GDBRemoteCommunication::PacketResult::Success)
861                     {
862                         if (response.IsOKResponse())
863                             ++num_restored;
864                     }
865                 }
866                 return num_restored > 0;
867             }
868         }
869     }
870     else
871     {
872         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
873         if (log)
874         {
875             if (log->GetVerbose())
876             {
877                 StreamString strm;
878                 gdb_comm.DumpHistory(strm);
879                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
880             }
881             else
882                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
883         }
884     }
885     return false;
886 }
887 
888 
889 uint32_t
890 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
891 {
892     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
893 }
894 
895 
896 void
897 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
898 {
899     // For Advanced SIMD and VFP register mapping.
900     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
901     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
902     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
903     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
904     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
905     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
906     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
907     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
908     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
909     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
910     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
911     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
912     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
913     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
914     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
915     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
916     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
917     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
918     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
919     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
920     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
921     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
922     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
923     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
924     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
925     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
926     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
927     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
928     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
929     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
930     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
931     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
932 
933     // This is our array of composite registers, with each element coming from the above register mappings.
934     static uint32_t *g_composites[] = {
935         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
936         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
937         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
938         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
939     };
940 
941     static RegisterInfo g_register_infos[] = {
942 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB      VALUE REGS    INVALIDATE REGS
943 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  =============   ====      ==========    ===============
944     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },        NULL,              NULL},
945     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },        NULL,              NULL},
946     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },        NULL,              NULL},
947     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },        NULL,              NULL},
948     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },        NULL,              NULL},
949     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },        NULL,              NULL},
950     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },        NULL,              NULL},
951     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },        NULL,              NULL},
952     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },        NULL,              NULL},
953     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },        NULL,              NULL},
954     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },        NULL,              NULL},
955     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },        NULL,              NULL},
956     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },        NULL,              NULL},
957     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },        NULL,              NULL},
958     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },        NULL,              NULL},
959     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },        NULL,              NULL},
960     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },        NULL,              NULL},
961     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },        NULL,              NULL},
962     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },        NULL,              NULL},
963     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },        NULL,              NULL},
964     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },        NULL,              NULL},
965     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },        NULL,              NULL},
966     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },        NULL,              NULL},
967     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },        NULL,              NULL},
968     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },        NULL,              NULL},
969     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },        NULL,              NULL},
970     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },        NULL,              NULL},
971     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },        NULL,              NULL},
972     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },        NULL,              NULL},
973     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },        NULL,              NULL},
974     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },        NULL,              NULL},
975     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },        NULL,              NULL},
976     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },        NULL,              NULL},
977     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },        NULL,              NULL},
978     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },        NULL,              NULL},
979     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },        NULL,              NULL},
980     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },        NULL,              NULL},
981     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },        NULL,              NULL},
982     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },        NULL,              NULL},
983     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },        NULL,              NULL},
984     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },        NULL,              NULL},
985     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },        NULL,              NULL},
986     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },        NULL,              NULL},
987     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },        NULL,              NULL},
988     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },        NULL,              NULL},
989     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },        NULL,              NULL},
990     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },        NULL,              NULL},
991     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },        NULL,              NULL},
992     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },        NULL,              NULL},
993     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },        NULL,              NULL},
994     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },        NULL,              NULL},
995     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },        NULL,              NULL},
996     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },        NULL,              NULL},
997     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },        NULL,              NULL},
998     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },        NULL,              NULL},
999     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },        NULL,              NULL},
1000     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },        NULL,              NULL},
1001     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },        NULL,              NULL},
1002     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },        NULL,              NULL},
1003     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },        NULL,              NULL},
1004     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },        NULL,              NULL},
1005     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },        NULL,              NULL},
1006     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },        NULL,              NULL},
1007     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },        NULL,              NULL},
1008     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },        NULL,              NULL},
1009     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },        NULL,              NULL},
1010     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },        NULL,              NULL},
1011     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },        NULL,              NULL},
1012     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },        NULL,              NULL},
1013     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },        NULL,              NULL},
1014     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },        NULL,              NULL},
1015     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },        NULL,              NULL},
1016     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },        NULL,              NULL},
1017     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },        NULL,              NULL},
1018     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },        NULL,              NULL},
1019     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,              NULL},
1020     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,              NULL},
1021     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,              NULL},
1022     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,              NULL},
1023     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,              NULL},
1024     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,              NULL},
1025     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,              NULL},
1026     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,              NULL},
1027     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,              NULL},
1028     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,              NULL},
1029     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,              NULL},
1030     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,              NULL},
1031     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,              NULL},
1032     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,              NULL},
1033     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,              NULL},
1034     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,              NULL},
1035     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,              NULL},
1036     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,              NULL},
1037     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,              NULL},
1038     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,              NULL},
1039     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,              NULL},
1040     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,              NULL},
1041     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,              NULL},
1042     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,              NULL},
1043     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,              NULL},
1044     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,              NULL},
1045     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,              NULL},
1046     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,              NULL},
1047     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,              NULL},
1048     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,              NULL},
1049     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,              NULL},
1050     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,              NULL}
1051     };
1052 
1053     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
1054     static ConstString gpr_reg_set ("General Purpose Registers");
1055     static ConstString sfp_reg_set ("Software Floating Point Registers");
1056     static ConstString vfp_reg_set ("Floating Point Registers");
1057     size_t i;
1058     if (from_scratch)
1059     {
1060         // Calculate the offsets of the registers
1061         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
1062         // "primordial" registers is important.  This enables us to calculate the offset of the composite
1063         // register by using the offset of its first primordial register.  For example, to calculate the
1064         // offset of q0, use s0's offset.
1065         if (g_register_infos[2].byte_offset == 0)
1066         {
1067             uint32_t byte_offset = 0;
1068             for (i=0; i<num_registers; ++i)
1069             {
1070                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
1071                 // byte_offset for the next register.  Otherwise, we have a composite register whose
1072                 // offset can be calculated by consulting the offset of its first primordial register.
1073                 if (!g_register_infos[i].value_regs)
1074                 {
1075                     g_register_infos[i].byte_offset = byte_offset;
1076                     byte_offset += g_register_infos[i].byte_size;
1077                 }
1078                 else
1079                 {
1080                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
1081                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
1082                 }
1083             }
1084         }
1085         for (i=0; i<num_registers; ++i)
1086         {
1087             ConstString name;
1088             ConstString alt_name;
1089             if (g_register_infos[i].name && g_register_infos[i].name[0])
1090                 name.SetCString(g_register_infos[i].name);
1091             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1092                 alt_name.SetCString(g_register_infos[i].alt_name);
1093 
1094             if (i <= 15 || i == 25)
1095                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
1096             else if (i <= 24)
1097                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
1098             else
1099                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
1100         }
1101     }
1102     else
1103     {
1104         // Add composite registers to our primordial registers, then.
1105         const size_t num_composites = llvm::array_lengthof(g_composites);
1106         const size_t num_dynamic_regs = GetNumRegisters();
1107         const size_t num_common_regs = num_registers - num_composites;
1108         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1109 
1110         // First we need to validate that all registers that we already have match the non composite regs.
1111         // If so, then we can add the registers, else we need to bail
1112         bool match = true;
1113         if (num_dynamic_regs == num_common_regs)
1114         {
1115             for (i=0; match && i<num_dynamic_regs; ++i)
1116             {
1117                 // Make sure all register names match
1118                 if (m_regs[i].name && g_register_infos[i].name)
1119                 {
1120                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
1121                     {
1122                         match = false;
1123                         break;
1124                     }
1125                 }
1126 
1127                 // Make sure all register byte sizes match
1128                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
1129                 {
1130                     match = false;
1131                     break;
1132                 }
1133             }
1134         }
1135         else
1136         {
1137             // Wrong number of registers.
1138             match = false;
1139         }
1140         // If "match" is true, then we can add extra registers.
1141         if (match)
1142         {
1143             for (i=0; i<num_composites; ++i)
1144             {
1145                 ConstString name;
1146                 ConstString alt_name;
1147                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
1148                 const char *reg_name = g_register_infos[first_primordial_reg].name;
1149                 if (reg_name && reg_name[0])
1150                 {
1151                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
1152                     {
1153                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1154                         // Find a matching primordial register info entry.
1155                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
1156                         {
1157                             // The name matches the existing primordial entry.
1158                             // Find and assign the offset, and then add this composite register entry.
1159                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1160                             name.SetCString(g_comp_register_infos[i].name);
1161                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
1162                         }
1163                     }
1164                 }
1165             }
1166         }
1167     }
1168 }
1169