1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #include "lldb/Target/ExecutionContext.h" 21 #include "lldb/Target/Target.h" 22 #include "lldb/Utility/Utils.h" 23 // Project includes 24 #include "Utility/StringExtractorGDBRemote.h" 25 #include "ProcessGDBRemote.h" 26 #include "ProcessGDBRemoteLog.h" 27 #include "ThreadGDBRemote.h" 28 #include "Utility/ARM_DWARF_Registers.h" 29 #include "Utility/ARM_ehframe_Registers.h" 30 31 using namespace lldb; 32 using namespace lldb_private; 33 using namespace lldb_private::process_gdb_remote; 34 35 //---------------------------------------------------------------------- 36 // GDBRemoteRegisterContext constructor 37 //---------------------------------------------------------------------- 38 GDBRemoteRegisterContext::GDBRemoteRegisterContext 39 ( 40 ThreadGDBRemote &thread, 41 uint32_t concrete_frame_idx, 42 GDBRemoteDynamicRegisterInfo ®_info, 43 bool read_all_at_once 44 ) : 45 RegisterContext (thread, concrete_frame_idx), 46 m_reg_info (reg_info), 47 m_reg_valid (), 48 m_reg_data (), 49 m_read_all_at_once (read_all_at_once) 50 { 51 // Resize our vector of bools to contain one bool for every register. 52 // We will use these boolean values to know when a register value 53 // is valid in m_reg_data. 54 m_reg_valid.resize (reg_info.GetNumRegisters()); 55 56 // Make a heap based buffer that is big enough to store all registers 57 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 58 m_reg_data.SetData (reg_data_sp); 59 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 60 } 61 62 //---------------------------------------------------------------------- 63 // Destructor 64 //---------------------------------------------------------------------- 65 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 66 { 67 } 68 69 void 70 GDBRemoteRegisterContext::InvalidateAllRegisters () 71 { 72 SetAllRegisterValid (false); 73 } 74 75 void 76 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 77 { 78 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 79 for (pos = m_reg_valid.begin(); pos != end; ++pos) 80 *pos = b; 81 } 82 83 size_t 84 GDBRemoteRegisterContext::GetRegisterCount () 85 { 86 return m_reg_info.GetNumRegisters (); 87 } 88 89 const RegisterInfo * 90 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) 91 { 92 return m_reg_info.GetRegisterInfoAtIndex (reg); 93 } 94 95 size_t 96 GDBRemoteRegisterContext::GetRegisterSetCount () 97 { 98 return m_reg_info.GetNumRegisterSets (); 99 } 100 101 102 103 const RegisterSet * 104 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) 105 { 106 return m_reg_info.GetRegisterSet (reg_set); 107 } 108 109 110 111 bool 112 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 113 { 114 // Read the register 115 if (ReadRegisterBytes (reg_info, m_reg_data)) 116 { 117 const bool partial_data_ok = false; 118 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 119 return error.Success(); 120 } 121 return false; 122 } 123 124 bool 125 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 126 { 127 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 128 if (reg_info == NULL) 129 return false; 130 131 // Invalidate if needed 132 InvalidateIfNeeded(false); 133 134 const uint32_t reg_byte_size = reg_info->byte_size; 135 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 136 bool success = bytes_copied == reg_byte_size; 137 if (success) 138 { 139 SetRegisterIsValid(reg, true); 140 } 141 else if (bytes_copied > 0) 142 { 143 // Only set register is valid to false if we copied some bytes, else 144 // leave it as it was. 145 SetRegisterIsValid(reg, false); 146 } 147 return success; 148 } 149 150 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 151 bool 152 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info, 153 GDBRemoteCommunicationClient &gdb_comm) 154 { 155 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 156 StringExtractorGDBRemote response; 157 if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response)) 158 return PrivateSetRegisterValue (reg, response); 159 return false; 160 } 161 162 bool 163 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 164 { 165 ExecutionContext exe_ctx (CalculateThread()); 166 167 Process *process = exe_ctx.GetProcessPtr(); 168 Thread *thread = exe_ctx.GetThreadPtr(); 169 if (process == NULL || thread == NULL) 170 return false; 171 172 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 173 174 InvalidateIfNeeded(false); 175 176 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 177 178 if (!GetRegisterIsValid(reg)) 179 { 180 if (m_read_all_at_once) 181 { 182 StringExtractorGDBRemote response; 183 if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response)) 184 return false; 185 if (response.IsNormalResponse()) 186 if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())), 187 m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 188 SetAllRegisterValid (true); 189 } 190 else if (reg_info->value_regs) 191 { 192 // Process this composite register request by delegating to the constituent 193 // primordial registers. 194 195 // Index of the primordial register. 196 bool success = true; 197 for (uint32_t idx = 0; success; ++idx) 198 { 199 const uint32_t prim_reg = reg_info->value_regs[idx]; 200 if (prim_reg == LLDB_INVALID_REGNUM) 201 break; 202 // We have a valid primordial register as our constituent. 203 // Grab the corresponding register info. 204 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 205 if (prim_reg_info == NULL) 206 success = false; 207 else 208 { 209 // Read the containing register if it hasn't already been read 210 if (!GetRegisterIsValid(prim_reg)) 211 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 212 } 213 } 214 215 if (success) 216 { 217 // If we reach this point, all primordial register requests have succeeded. 218 // Validate this composite register. 219 SetRegisterIsValid (reg_info, true); 220 } 221 } 222 else 223 { 224 // Get each register individually 225 GetPrimordialRegister(reg_info, gdb_comm); 226 } 227 228 // Make sure we got a valid register value after reading it 229 if (!GetRegisterIsValid(reg)) 230 return false; 231 } 232 233 if (&data != &m_reg_data) 234 { 235 #if defined (LLDB_CONFIGURATION_DEBUG) 236 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 237 #endif 238 // If our register context and our register info disagree, which should never happen, don't 239 // read past the end of the buffer. 240 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 241 return false; 242 243 // If we aren't extracting into our own buffer (which 244 // only happens when this function is called from 245 // ReadRegisterValue(uint32_t, Scalar&)) then 246 // we transfer bytes from our buffer into the data 247 // buffer that was passed in 248 249 data.SetByteOrder (m_reg_data.GetByteOrder()); 250 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 251 } 252 return true; 253 } 254 255 bool 256 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 257 const RegisterValue &value) 258 { 259 DataExtractor data; 260 if (value.GetData (data)) 261 return WriteRegisterBytes (reg_info, data, 0); 262 return false; 263 } 264 265 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 266 bool 267 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info, 268 GDBRemoteCommunicationClient &gdb_comm) 269 { 270 StreamString packet; 271 StringExtractorGDBRemote response; 272 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 273 packet.Printf ("P%x=", reg); 274 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 275 reg_info->byte_size, 276 endian::InlHostByteOrder(), 277 endian::InlHostByteOrder()); 278 279 if (gdb_comm.GetThreadSuffixSupported()) 280 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 281 282 // Invalidate just this register 283 SetRegisterIsValid(reg, false); 284 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 285 packet.GetString().size(), 286 response, 287 false) == GDBRemoteCommunication::PacketResult::Success) 288 { 289 if (response.IsOKResponse()) 290 return true; 291 } 292 return false; 293 } 294 295 void 296 GDBRemoteRegisterContext::SyncThreadState(Process *process) 297 { 298 // NB. We assume our caller has locked the sequence mutex. 299 300 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); 301 if (!gdb_comm.GetSyncThreadStateSupported()) 302 return; 303 304 StreamString packet; 305 StringExtractorGDBRemote response; 306 packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 307 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 308 packet.GetString().size(), 309 response, 310 false) == GDBRemoteCommunication::PacketResult::Success) 311 { 312 if (response.IsOKResponse()) 313 InvalidateAllRegisters(); 314 } 315 } 316 317 bool 318 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 319 { 320 ExecutionContext exe_ctx (CalculateThread()); 321 322 Process *process = exe_ctx.GetProcessPtr(); 323 Thread *thread = exe_ctx.GetThreadPtr(); 324 if (process == NULL || thread == NULL) 325 return false; 326 327 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 328 // FIXME: This check isn't right because IsRunning checks the Public state, but this 329 // is work you need to do - for instance in ShouldStop & friends - before the public 330 // state has been changed. 331 // if (gdb_comm.IsRunning()) 332 // return false; 333 334 335 #if defined (LLDB_CONFIGURATION_DEBUG) 336 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 337 #endif 338 339 // If our register context and our register info disagree, which should never happen, don't 340 // overwrite past the end of the buffer. 341 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 342 return false; 343 344 // Grab a pointer to where we are going to put this register 345 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 346 347 if (dst == NULL) 348 return false; 349 350 351 if (data.CopyByteOrderedData (data_offset, // src offset 352 reg_info->byte_size, // src length 353 dst, // dst 354 reg_info->byte_size, // dst length 355 m_reg_data.GetByteOrder())) // dst byte order 356 { 357 Mutex::Locker locker; 358 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) 359 { 360 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 361 ProcessSP process_sp (m_thread.GetProcess()); 362 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 363 { 364 StreamString packet; 365 StringExtractorGDBRemote response; 366 367 if (m_read_all_at_once) 368 { 369 // Set all registers in one packet 370 packet.PutChar ('G'); 371 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 372 m_reg_data.GetByteSize(), 373 endian::InlHostByteOrder(), 374 endian::InlHostByteOrder()); 375 376 if (thread_suffix_supported) 377 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 378 379 // Invalidate all register values 380 InvalidateIfNeeded (true); 381 382 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 383 packet.GetString().size(), 384 response, 385 false) == GDBRemoteCommunication::PacketResult::Success) 386 { 387 SetAllRegisterValid (false); 388 if (response.IsOKResponse()) 389 { 390 return true; 391 } 392 } 393 } 394 else 395 { 396 bool success = true; 397 398 if (reg_info->value_regs) 399 { 400 // This register is part of another register. In this case we read the actual 401 // register data for any "value_regs", and once all that data is read, we will 402 // have enough data in our register context bytes for the value of this register 403 404 // Invalidate this composite register first. 405 406 for (uint32_t idx = 0; success; ++idx) 407 { 408 const uint32_t reg = reg_info->value_regs[idx]; 409 if (reg == LLDB_INVALID_REGNUM) 410 break; 411 // We have a valid primordial register as our constituent. 412 // Grab the corresponding register info. 413 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 414 if (value_reg_info == NULL) 415 success = false; 416 else 417 success = SetPrimordialRegister(value_reg_info, gdb_comm); 418 } 419 } 420 else 421 { 422 // This is an actual register, write it 423 success = SetPrimordialRegister(reg_info, gdb_comm); 424 } 425 426 // Check if writing this register will invalidate any other register values? 427 // If so, invalidate them 428 if (reg_info->invalidate_regs) 429 { 430 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 431 reg != LLDB_INVALID_REGNUM; 432 reg = reg_info->invalidate_regs[++idx]) 433 { 434 SetRegisterIsValid(reg, false); 435 } 436 } 437 438 return success; 439 } 440 } 441 } 442 else 443 { 444 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 445 if (log) 446 { 447 if (log->GetVerbose()) 448 { 449 StreamString strm; 450 gdb_comm.DumpHistory(strm); 451 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 452 } 453 else 454 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 455 } 456 } 457 } 458 return false; 459 } 460 461 bool 462 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint ®_checkpoint) 463 { 464 ExecutionContext exe_ctx (CalculateThread()); 465 466 Process *process = exe_ctx.GetProcessPtr(); 467 Thread *thread = exe_ctx.GetThreadPtr(); 468 if (process == NULL || thread == NULL) 469 return false; 470 471 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 472 473 uint32_t save_id = 0; 474 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) 475 { 476 reg_checkpoint.SetID(save_id); 477 reg_checkpoint.GetData().reset(); 478 return true; 479 } 480 else 481 { 482 reg_checkpoint.SetID(0); // Invalid save ID is zero 483 return ReadAllRegisterValues(reg_checkpoint.GetData()); 484 } 485 } 486 487 bool 488 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint ®_checkpoint) 489 { 490 uint32_t save_id = reg_checkpoint.GetID(); 491 if (save_id != 0) 492 { 493 ExecutionContext exe_ctx (CalculateThread()); 494 495 Process *process = exe_ctx.GetProcessPtr(); 496 Thread *thread = exe_ctx.GetThreadPtr(); 497 if (process == NULL || thread == NULL) 498 return false; 499 500 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 501 502 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 503 } 504 else 505 { 506 return WriteAllRegisterValues(reg_checkpoint.GetData()); 507 } 508 } 509 510 bool 511 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 512 { 513 ExecutionContext exe_ctx (CalculateThread()); 514 515 Process *process = exe_ctx.GetProcessPtr(); 516 Thread *thread = exe_ctx.GetThreadPtr(); 517 if (process == NULL || thread == NULL) 518 return false; 519 520 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 521 522 StringExtractorGDBRemote response; 523 524 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 525 526 Mutex::Locker locker; 527 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) 528 { 529 SyncThreadState(process); 530 531 char packet[32]; 532 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 533 ProcessSP process_sp (m_thread.GetProcess()); 534 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 535 { 536 int packet_len = 0; 537 if (thread_suffix_supported) 538 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 539 else 540 packet_len = ::snprintf (packet, sizeof(packet), "g"); 541 assert (packet_len < ((int)sizeof(packet) - 1)); 542 543 if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 544 { 545 int packet_len = 0; 546 if (thread_suffix_supported) 547 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 548 else 549 packet_len = ::snprintf (packet, sizeof(packet), "g"); 550 assert (packet_len < ((int)sizeof(packet) - 1)); 551 552 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 553 { 554 if (response.IsErrorResponse()) 555 return false; 556 557 std::string &response_str = response.GetStringRef(); 558 if (isxdigit(response_str[0])) 559 { 560 response_str.insert(0, 1, 'G'); 561 if (thread_suffix_supported) 562 { 563 char thread_id_cstr[64]; 564 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 565 response_str.append (thread_id_cstr); 566 } 567 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 568 return true; 569 } 570 } 571 } 572 else 573 { 574 // For the use_g_packet == false case, we're going to read each register 575 // individually and store them as binary data in a buffer instead of as ascii 576 // characters. 577 const RegisterInfo *reg_info; 578 579 // data_sp will take ownership of this DataBufferHeap pointer soon. 580 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0)); 581 582 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 583 { 584 if (reg_info->value_regs) // skip registers that are slices of real registers 585 continue; 586 ReadRegisterBytes (reg_info, m_reg_data); 587 // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer 588 } 589 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 590 591 data_sp = reg_ctx; 592 return true; 593 } 594 } 595 } 596 else 597 { 598 599 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 600 if (log) 601 { 602 if (log->GetVerbose()) 603 { 604 StreamString strm; 605 gdb_comm.DumpHistory(strm); 606 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 607 } 608 else 609 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 610 } 611 } 612 613 data_sp.reset(); 614 return false; 615 } 616 617 bool 618 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 619 { 620 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 621 return false; 622 623 ExecutionContext exe_ctx (CalculateThread()); 624 625 Process *process = exe_ctx.GetProcessPtr(); 626 Thread *thread = exe_ctx.GetThreadPtr(); 627 if (process == NULL || thread == NULL) 628 return false; 629 630 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 631 632 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 633 634 StringExtractorGDBRemote response; 635 Mutex::Locker locker; 636 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) 637 { 638 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 639 ProcessSP process_sp (m_thread.GetProcess()); 640 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 641 { 642 // The data_sp contains the entire G response packet including the 643 // G, and if the thread suffix is supported, it has the thread suffix 644 // as well. 645 const char *G_packet = (const char *)data_sp->GetBytes(); 646 size_t G_packet_len = data_sp->GetByteSize(); 647 if (use_g_packet 648 && gdb_comm.SendPacketAndWaitForResponse (G_packet, 649 G_packet_len, 650 response, 651 false) == GDBRemoteCommunication::PacketResult::Success) 652 { 653 // The data_sp contains the entire G response packet including the 654 // G, and if the thread suffix is supported, it has the thread suffix 655 // as well. 656 const char *G_packet = (const char *)data_sp->GetBytes(); 657 size_t G_packet_len = data_sp->GetByteSize(); 658 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 659 G_packet_len, 660 response, 661 false) == GDBRemoteCommunication::PacketResult::Success) 662 { 663 if (response.IsOKResponse()) 664 return true; 665 else if (response.IsErrorResponse()) 666 { 667 uint32_t num_restored = 0; 668 // We need to manually go through all of the registers and 669 // restore them manually 670 671 response.GetStringRef().assign (G_packet, G_packet_len); 672 response.SetFilePos(1); // Skip the leading 'G' 673 674 // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier. 675 // This means buffer will be a little more than 2x larger than necessary but we resize 676 // it down once we've extracted all hex ascii chars from the packet. 677 DataBufferHeap buffer (G_packet_len, 0); 678 679 const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(), 680 buffer.GetByteSize(), 681 '\xcc'); 682 683 DataExtractor restore_data (buffer.GetBytes(), 684 buffer.GetByteSize(), 685 m_reg_data.GetByteOrder(), 686 m_reg_data.GetAddressByteSize()); 687 688 if (bytes_extracted < restore_data.GetByteSize()) 689 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 690 691 const RegisterInfo *reg_info; 692 693 // The g packet contents may either include the slice registers (registers defined in 694 // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers 695 // should NOT be in the g packet, but some implementations may incorrectly include them. 696 // 697 // If the slice registers are included in the packet, we must step over the slice registers 698 // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect. 699 // If the slice registers are not included, then using the byte_offset values into the 700 // data buffer is the best way to find individual register values. 701 702 uint64_t size_including_slice_registers = 0; 703 uint64_t size_not_including_slice_registers = 0; 704 uint64_t size_by_highest_offset = 0; 705 706 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx) 707 { 708 size_including_slice_registers += reg_info->byte_size; 709 if (reg_info->value_regs == NULL) 710 size_not_including_slice_registers += reg_info->byte_size; 711 if (reg_info->byte_offset >= size_by_highest_offset) 712 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 713 } 714 715 bool use_byte_offset_into_buffer; 716 if (size_by_highest_offset == restore_data.GetByteSize()) 717 { 718 // The size of the packet agrees with the highest offset: + size in the register file 719 use_byte_offset_into_buffer = true; 720 } 721 else if (size_not_including_slice_registers == restore_data.GetByteSize()) 722 { 723 // The size of the packet is the same as concatenating all of the registers sequentially, 724 // skipping the slice registers 725 use_byte_offset_into_buffer = true; 726 } 727 else if (size_including_slice_registers == restore_data.GetByteSize()) 728 { 729 // The slice registers are present in the packet (when they shouldn't be). 730 // Don't try to use the RegisterInfo byte_offset into the restore_data, it will 731 // point to the wrong place. 732 use_byte_offset_into_buffer = false; 733 } 734 else { 735 // None of our expected sizes match the actual g packet data we're looking at. 736 // The most conservative approach here is to use the running total byte offset. 737 use_byte_offset_into_buffer = false; 738 } 739 740 // In case our register definitions don't include the correct offsets, 741 // keep track of the size of each reg & compute offset based on that. 742 uint32_t running_byte_offset = 0; 743 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size) 744 { 745 // Skip composite aka slice registers (e.g. eax is a slice of rax). 746 if (reg_info->value_regs) 747 continue; 748 749 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 750 751 uint32_t register_offset; 752 if (use_byte_offset_into_buffer) 753 { 754 register_offset = reg_info->byte_offset; 755 } 756 else 757 { 758 register_offset = running_byte_offset; 759 } 760 761 // Only write down the registers that need to be written 762 // if we are going to be doing registers individually. 763 bool write_reg = true; 764 const uint32_t reg_byte_size = reg_info->byte_size; 765 766 const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size); 767 if (restore_src) 768 { 769 StreamString packet; 770 packet.Printf ("P%x=", reg); 771 packet.PutBytesAsRawHex8 (restore_src, 772 reg_byte_size, 773 endian::InlHostByteOrder(), 774 endian::InlHostByteOrder()); 775 776 if (thread_suffix_supported) 777 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 778 779 SetRegisterIsValid(reg, false); 780 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 781 packet.GetString().size(), 782 response, 783 false) == GDBRemoteCommunication::PacketResult::Success) 784 { 785 const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size); 786 if (current_src) 787 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 788 } 789 790 if (write_reg) 791 { 792 StreamString packet; 793 packet.Printf ("P%x=", reg); 794 packet.PutBytesAsRawHex8 (restore_src, 795 reg_byte_size, 796 endian::InlHostByteOrder(), 797 endian::InlHostByteOrder()); 798 799 if (thread_suffix_supported) 800 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 801 802 SetRegisterIsValid(reg, false); 803 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 804 packet.GetString().size(), 805 response, 806 false) == GDBRemoteCommunication::PacketResult::Success) 807 { 808 if (response.IsOKResponse()) 809 ++num_restored; 810 } 811 } 812 } 813 } 814 return num_restored > 0; 815 } 816 } 817 } 818 else 819 { 820 // For the use_g_packet == false case, we're going to write each register 821 // individually. The data buffer is binary data in this case, instead of 822 // ascii characters. 823 824 bool arm64_debugserver = false; 825 if (m_thread.GetProcess().get()) 826 { 827 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 828 if (arch.IsValid() 829 && arch.GetMachine() == llvm::Triple::aarch64 830 && arch.GetTriple().getVendor() == llvm::Triple::Apple 831 && arch.GetTriple().getOS() == llvm::Triple::IOS) 832 { 833 arm64_debugserver = true; 834 } 835 } 836 uint32_t num_restored = 0; 837 const RegisterInfo *reg_info; 838 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 839 { 840 if (reg_info->value_regs) // skip registers that are slices of real registers 841 continue; 842 // Skip the fpsr and fpcr floating point status/control register writing to 843 // work around a bug in an older version of debugserver that would lead to 844 // register context corruption when writing fpsr/fpcr. 845 if (arm64_debugserver && 846 (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0)) 847 { 848 continue; 849 } 850 StreamString packet; 851 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]); 852 packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); 853 if (thread_suffix_supported) 854 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 855 856 SetRegisterIsValid(reg_info, false); 857 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 858 packet.GetString().size(), 859 response, 860 false) == GDBRemoteCommunication::PacketResult::Success) 861 { 862 if (response.IsOKResponse()) 863 ++num_restored; 864 } 865 } 866 return num_restored > 0; 867 } 868 } 869 } 870 else 871 { 872 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 873 if (log) 874 { 875 if (log->GetVerbose()) 876 { 877 StreamString strm; 878 gdb_comm.DumpHistory(strm); 879 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 880 } 881 else 882 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 883 } 884 } 885 return false; 886 } 887 888 889 uint32_t 890 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) 891 { 892 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 893 } 894 895 896 void 897 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) 898 { 899 // For Advanced SIMD and VFP register mapping. 900 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 901 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 902 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 903 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 904 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 905 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 906 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 907 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 908 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 909 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 910 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 911 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 912 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 913 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 914 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 915 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 916 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 917 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 918 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 919 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 920 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 921 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 922 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 923 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 924 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 925 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 926 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 927 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 928 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 929 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 930 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 931 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 932 933 // This is our array of composite registers, with each element coming from the above register mappings. 934 static uint32_t *g_composites[] = { 935 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, 936 g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, 937 g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 938 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs 939 }; 940 941 static RegisterInfo g_register_infos[] = { 942 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS 943 // ====== ====== === === ============= ============ =================== =================== ====================== ============= ==== ========== =============== 944 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 945 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 946 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 947 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 948 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 949 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 950 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 951 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 952 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 953 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 954 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 955 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 956 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 957 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 958 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 959 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 960 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 961 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 962 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 963 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 964 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 965 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 966 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 967 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 968 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 969 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 970 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 971 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 972 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 973 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 974 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 975 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 976 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 977 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 978 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 979 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 980 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 981 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 982 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 983 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 984 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 985 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 986 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 987 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 988 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 989 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 990 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 991 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 992 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 993 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 994 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 995 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 996 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 997 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 998 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 999 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 1000 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 1001 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 1002 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 1003 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 1004 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 1005 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 1006 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 1007 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 1008 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 1009 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 1010 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 1011 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 1012 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 1013 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 1014 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 1015 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 1016 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 1017 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 1018 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 1019 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 1020 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 1021 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 1022 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 1023 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 1024 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 1025 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 1026 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 1027 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 1028 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 1029 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 1030 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 1031 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 1032 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 1033 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 1034 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 1035 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 1036 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 1037 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 1038 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 1039 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 1040 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 1041 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 1042 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 1043 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 1044 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 1045 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 1046 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 1047 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 1048 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 1049 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 1050 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 1051 }; 1052 1053 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 1054 static ConstString gpr_reg_set ("General Purpose Registers"); 1055 static ConstString sfp_reg_set ("Software Floating Point Registers"); 1056 static ConstString vfp_reg_set ("Floating Point Registers"); 1057 size_t i; 1058 if (from_scratch) 1059 { 1060 // Calculate the offsets of the registers 1061 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 1062 // "primordial" registers is important. This enables us to calculate the offset of the composite 1063 // register by using the offset of its first primordial register. For example, to calculate the 1064 // offset of q0, use s0's offset. 1065 if (g_register_infos[2].byte_offset == 0) 1066 { 1067 uint32_t byte_offset = 0; 1068 for (i=0; i<num_registers; ++i) 1069 { 1070 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 1071 // byte_offset for the next register. Otherwise, we have a composite register whose 1072 // offset can be calculated by consulting the offset of its first primordial register. 1073 if (!g_register_infos[i].value_regs) 1074 { 1075 g_register_infos[i].byte_offset = byte_offset; 1076 byte_offset += g_register_infos[i].byte_size; 1077 } 1078 else 1079 { 1080 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 1081 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 1082 } 1083 } 1084 } 1085 for (i=0; i<num_registers; ++i) 1086 { 1087 ConstString name; 1088 ConstString alt_name; 1089 if (g_register_infos[i].name && g_register_infos[i].name[0]) 1090 name.SetCString(g_register_infos[i].name); 1091 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 1092 alt_name.SetCString(g_register_infos[i].alt_name); 1093 1094 if (i <= 15 || i == 25) 1095 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 1096 else if (i <= 24) 1097 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 1098 else 1099 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 1100 } 1101 } 1102 else 1103 { 1104 // Add composite registers to our primordial registers, then. 1105 const size_t num_composites = llvm::array_lengthof(g_composites); 1106 const size_t num_dynamic_regs = GetNumRegisters(); 1107 const size_t num_common_regs = num_registers - num_composites; 1108 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 1109 1110 // First we need to validate that all registers that we already have match the non composite regs. 1111 // If so, then we can add the registers, else we need to bail 1112 bool match = true; 1113 if (num_dynamic_regs == num_common_regs) 1114 { 1115 for (i=0; match && i<num_dynamic_regs; ++i) 1116 { 1117 // Make sure all register names match 1118 if (m_regs[i].name && g_register_infos[i].name) 1119 { 1120 if (strcmp(m_regs[i].name, g_register_infos[i].name)) 1121 { 1122 match = false; 1123 break; 1124 } 1125 } 1126 1127 // Make sure all register byte sizes match 1128 if (m_regs[i].byte_size != g_register_infos[i].byte_size) 1129 { 1130 match = false; 1131 break; 1132 } 1133 } 1134 } 1135 else 1136 { 1137 // Wrong number of registers. 1138 match = false; 1139 } 1140 // If "match" is true, then we can add extra registers. 1141 if (match) 1142 { 1143 for (i=0; i<num_composites; ++i) 1144 { 1145 ConstString name; 1146 ConstString alt_name; 1147 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; 1148 const char *reg_name = g_register_infos[first_primordial_reg].name; 1149 if (reg_name && reg_name[0]) 1150 { 1151 for (uint32_t j = 0; j < num_dynamic_regs; ++j) 1152 { 1153 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 1154 // Find a matching primordial register info entry. 1155 if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) 1156 { 1157 // The name matches the existing primordial entry. 1158 // Find and assign the offset, and then add this composite register entry. 1159 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 1160 name.SetCString(g_comp_register_infos[i].name); 1161 AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); 1162 } 1163 } 1164 } 1165 } 1166 } 1167 } 1168 } 1169