1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #include "lldb/Target/ExecutionContext.h"
21 #include "lldb/Target/Target.h"
22 #include "lldb/Utility/Utils.h"
23 // Project includes
24 #include "Utility/StringExtractorGDBRemote.h"
25 #include "ProcessGDBRemote.h"
26 #include "ProcessGDBRemoteLog.h"
27 #include "ThreadGDBRemote.h"
28 #include "Utility/ARM_DWARF_Registers.h"
29 #include "Utility/ARM_ehframe_Registers.h"
30 
31 using namespace lldb;
32 using namespace lldb_private;
33 using namespace lldb_private::process_gdb_remote;
34 
35 //----------------------------------------------------------------------
36 // GDBRemoteRegisterContext constructor
37 //----------------------------------------------------------------------
38 GDBRemoteRegisterContext::GDBRemoteRegisterContext
39 (
40     ThreadGDBRemote &thread,
41     uint32_t concrete_frame_idx,
42     GDBRemoteDynamicRegisterInfo &reg_info,
43     bool read_all_at_once
44 ) :
45     RegisterContext (thread, concrete_frame_idx),
46     m_reg_info (reg_info),
47     m_reg_valid (),
48     m_reg_data (),
49     m_read_all_at_once (read_all_at_once)
50 {
51     // Resize our vector of bools to contain one bool for every register.
52     // We will use these boolean values to know when a register value
53     // is valid in m_reg_data.
54     m_reg_valid.resize (reg_info.GetNumRegisters());
55 
56     // Make a heap based buffer that is big enough to store all registers
57     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
58     m_reg_data.SetData (reg_data_sp);
59     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
60 }
61 
62 //----------------------------------------------------------------------
63 // Destructor
64 //----------------------------------------------------------------------
65 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
66 {
67 }
68 
69 void
70 GDBRemoteRegisterContext::InvalidateAllRegisters ()
71 {
72     SetAllRegisterValid (false);
73 }
74 
75 void
76 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
77 {
78     std::vector<bool>::iterator pos, end = m_reg_valid.end();
79     for (pos = m_reg_valid.begin(); pos != end; ++pos)
80         *pos = b;
81 }
82 
83 size_t
84 GDBRemoteRegisterContext::GetRegisterCount ()
85 {
86     return m_reg_info.GetNumRegisters ();
87 }
88 
89 const RegisterInfo *
90 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
91 {
92     return m_reg_info.GetRegisterInfoAtIndex (reg);
93 }
94 
95 size_t
96 GDBRemoteRegisterContext::GetRegisterSetCount ()
97 {
98     return m_reg_info.GetNumRegisterSets ();
99 }
100 
101 
102 
103 const RegisterSet *
104 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
105 {
106     return m_reg_info.GetRegisterSet (reg_set);
107 }
108 
109 
110 
111 bool
112 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
113 {
114     // Read the register
115     if (ReadRegisterBytes (reg_info, m_reg_data))
116     {
117         const bool partial_data_ok = false;
118         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
119         return error.Success();
120     }
121     return false;
122 }
123 
124 bool
125 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
126 {
127     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
128     if (reg_info == NULL)
129         return false;
130 
131     // Invalidate if needed
132     InvalidateIfNeeded(false);
133 
134     const uint32_t reg_byte_size = reg_info->byte_size;
135     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
136     bool success = bytes_copied == reg_byte_size;
137     if (success)
138     {
139         SetRegisterIsValid(reg, true);
140     }
141     else if (bytes_copied > 0)
142     {
143         // Only set register is valid to false if we copied some bytes, else
144         // leave it as it was.
145         SetRegisterIsValid(reg, false);
146     }
147     return success;
148 }
149 
150 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
151 bool
152 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info,
153                                                 GDBRemoteCommunicationClient &gdb_comm)
154 {
155     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
156     StringExtractorGDBRemote response;
157     if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response))
158         return PrivateSetRegisterValue (reg, response);
159     return false;
160 }
161 
162 bool
163 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
164 {
165     ExecutionContext exe_ctx (CalculateThread());
166 
167     Process *process = exe_ctx.GetProcessPtr();
168     Thread *thread = exe_ctx.GetThreadPtr();
169     if (process == NULL || thread == NULL)
170         return false;
171 
172     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
173 
174     InvalidateIfNeeded(false);
175 
176     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
177 
178     if (!GetRegisterIsValid(reg))
179     {
180         if (m_read_all_at_once)
181         {
182             StringExtractorGDBRemote response;
183             if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
184                 return false;
185             if (response.IsNormalResponse())
186                 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
187                     SetAllRegisterValid (true);
188         }
189         else if (reg_info->value_regs)
190         {
191             // Process this composite register request by delegating to the constituent
192             // primordial registers.
193 
194             // Index of the primordial register.
195             bool success = true;
196             for (uint32_t idx = 0; success; ++idx)
197             {
198                 const uint32_t prim_reg = reg_info->value_regs[idx];
199                 if (prim_reg == LLDB_INVALID_REGNUM)
200                     break;
201                 // We have a valid primordial register as our constituent.
202                 // Grab the corresponding register info.
203                 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
204                 if (prim_reg_info == NULL)
205                     success = false;
206                 else
207                 {
208                     // Read the containing register if it hasn't already been read
209                     if (!GetRegisterIsValid(prim_reg))
210                         success = GetPrimordialRegister(prim_reg_info, gdb_comm);
211                 }
212             }
213 
214             if (success)
215             {
216                 // If we reach this point, all primordial register requests have succeeded.
217                 // Validate this composite register.
218                 SetRegisterIsValid (reg_info, true);
219             }
220         }
221         else
222         {
223             // Get each register individually
224             GetPrimordialRegister(reg_info, gdb_comm);
225         }
226 
227         // Make sure we got a valid register value after reading it
228         if (!GetRegisterIsValid(reg))
229             return false;
230     }
231 
232     if (&data != &m_reg_data)
233     {
234 #if defined (LLDB_CONFIGURATION_DEBUG)
235         assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
236 #endif
237         // If our register context and our register info disagree, which should never happen, don't
238         // read past the end of the buffer.
239         if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
240             return false;
241 
242         // If we aren't extracting into our own buffer (which
243         // only happens when this function is called from
244         // ReadRegisterValue(uint32_t, Scalar&)) then
245         // we transfer bytes from our buffer into the data
246         // buffer that was passed in
247 
248         data.SetByteOrder (m_reg_data.GetByteOrder());
249         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
250     }
251     return true;
252 }
253 
254 bool
255 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
256                                          const RegisterValue &value)
257 {
258     DataExtractor data;
259     if (value.GetData (data))
260         return WriteRegisterBytes (reg_info, data, 0);
261     return false;
262 }
263 
264 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
265 bool
266 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info,
267                                                 GDBRemoteCommunicationClient &gdb_comm)
268 {
269     StreamString packet;
270     StringExtractorGDBRemote response;
271     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
272     packet.Printf ("P%x=", reg);
273     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
274                               reg_info->byte_size,
275                               lldb::endian::InlHostByteOrder(),
276                               lldb::endian::InlHostByteOrder());
277 
278     if (gdb_comm.GetThreadSuffixSupported())
279         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
280 
281     // Invalidate just this register
282     SetRegisterIsValid(reg, false);
283     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
284                                               packet.GetString().size(),
285                                               response,
286                                               false) == GDBRemoteCommunication::PacketResult::Success)
287     {
288         if (response.IsOKResponse())
289             return true;
290     }
291     return false;
292 }
293 
294 void
295 GDBRemoteRegisterContext::SyncThreadState(Process *process)
296 {
297     // NB.  We assume our caller has locked the sequence mutex.
298 
299     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
300     if (!gdb_comm.GetSyncThreadStateSupported())
301         return;
302 
303     StreamString packet;
304     StringExtractorGDBRemote response;
305     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
306     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
307                                               packet.GetString().size(),
308                                               response,
309                                               false) == GDBRemoteCommunication::PacketResult::Success)
310     {
311         if (response.IsOKResponse())
312             InvalidateAllRegisters();
313     }
314 }
315 
316 bool
317 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
318 {
319     ExecutionContext exe_ctx (CalculateThread());
320 
321     Process *process = exe_ctx.GetProcessPtr();
322     Thread *thread = exe_ctx.GetThreadPtr();
323     if (process == NULL || thread == NULL)
324         return false;
325 
326     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
327 // FIXME: This check isn't right because IsRunning checks the Public state, but this
328 // is work you need to do - for instance in ShouldStop & friends - before the public
329 // state has been changed.
330 //    if (gdb_comm.IsRunning())
331 //        return false;
332 
333 
334 #if defined (LLDB_CONFIGURATION_DEBUG)
335     assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
336 #endif
337 
338     // If our register context and our register info disagree, which should never happen, don't
339     // overwrite past the end of the buffer.
340     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
341         return false;
342 
343     // Grab a pointer to where we are going to put this register
344     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
345 
346     if (dst == NULL)
347         return false;
348 
349 
350     if (data.CopyByteOrderedData (data_offset,                  // src offset
351                                   reg_info->byte_size,          // src length
352                                   dst,                          // dst
353                                   reg_info->byte_size,          // dst length
354                                   m_reg_data.GetByteOrder()))   // dst byte order
355     {
356         Mutex::Locker locker;
357         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
358         {
359             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
360             ProcessSP process_sp (m_thread.GetProcess());
361             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
362             {
363                 StreamString packet;
364                 StringExtractorGDBRemote response;
365 
366                 if (m_read_all_at_once)
367                 {
368                     // Set all registers in one packet
369                     packet.PutChar ('G');
370                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
371                                               m_reg_data.GetByteSize(),
372                                               lldb::endian::InlHostByteOrder(),
373                                               lldb::endian::InlHostByteOrder());
374 
375                     if (thread_suffix_supported)
376                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
377 
378                     // Invalidate all register values
379                     InvalidateIfNeeded (true);
380 
381                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
382                                                               packet.GetString().size(),
383                                                               response,
384                                                               false) == GDBRemoteCommunication::PacketResult::Success)
385                     {
386                         SetAllRegisterValid (false);
387                         if (response.IsOKResponse())
388                         {
389                             return true;
390                         }
391                     }
392                 }
393                 else
394                 {
395                     bool success = true;
396 
397                     if (reg_info->value_regs)
398                     {
399                         // This register is part of another register. In this case we read the actual
400                         // register data for any "value_regs", and once all that data is read, we will
401                         // have enough data in our register context bytes for the value of this register
402 
403                         // Invalidate this composite register first.
404 
405                         for (uint32_t idx = 0; success; ++idx)
406                         {
407                             const uint32_t reg = reg_info->value_regs[idx];
408                             if (reg == LLDB_INVALID_REGNUM)
409                                 break;
410                             // We have a valid primordial register as our constituent.
411                             // Grab the corresponding register info.
412                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
413                             if (value_reg_info == NULL)
414                                 success = false;
415                             else
416                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
417                         }
418                     }
419                     else
420                     {
421                         // This is an actual register, write it
422                         success = SetPrimordialRegister(reg_info, gdb_comm);
423                     }
424 
425                     // Check if writing this register will invalidate any other register values?
426                     // If so, invalidate them
427                     if (reg_info->invalidate_regs)
428                     {
429                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
430                              reg != LLDB_INVALID_REGNUM;
431                              reg = reg_info->invalidate_regs[++idx])
432                         {
433                             SetRegisterIsValid(reg, false);
434                         }
435                     }
436 
437                     return success;
438                 }
439             }
440         }
441         else
442         {
443             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
444             if (log)
445             {
446                 if (log->GetVerbose())
447                 {
448                     StreamString strm;
449                     gdb_comm.DumpHistory(strm);
450                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
451                 }
452                 else
453                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
454             }
455         }
456     }
457     return false;
458 }
459 
460 bool
461 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint &reg_checkpoint)
462 {
463     ExecutionContext exe_ctx (CalculateThread());
464 
465     Process *process = exe_ctx.GetProcessPtr();
466     Thread *thread = exe_ctx.GetThreadPtr();
467     if (process == NULL || thread == NULL)
468         return false;
469 
470     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
471 
472     uint32_t save_id = 0;
473     if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
474     {
475         reg_checkpoint.SetID(save_id);
476         reg_checkpoint.GetData().reset();
477         return true;
478     }
479     else
480     {
481         reg_checkpoint.SetID(0); // Invalid save ID is zero
482         return ReadAllRegisterValues(reg_checkpoint.GetData());
483     }
484 }
485 
486 bool
487 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint &reg_checkpoint)
488 {
489     uint32_t save_id = reg_checkpoint.GetID();
490     if (save_id != 0)
491     {
492         ExecutionContext exe_ctx (CalculateThread());
493 
494         Process *process = exe_ctx.GetProcessPtr();
495         Thread *thread = exe_ctx.GetThreadPtr();
496         if (process == NULL || thread == NULL)
497             return false;
498 
499         GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
500 
501         return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
502     }
503     else
504     {
505         return WriteAllRegisterValues(reg_checkpoint.GetData());
506     }
507 }
508 
509 bool
510 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
511 {
512     ExecutionContext exe_ctx (CalculateThread());
513 
514     Process *process = exe_ctx.GetProcessPtr();
515     Thread *thread = exe_ctx.GetThreadPtr();
516     if (process == NULL || thread == NULL)
517         return false;
518 
519     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
520 
521     StringExtractorGDBRemote response;
522 
523     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
524 
525     Mutex::Locker locker;
526     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
527     {
528         SyncThreadState(process);
529 
530         char packet[32];
531         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
532         ProcessSP process_sp (m_thread.GetProcess());
533         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
534         {
535             int packet_len = 0;
536             if (thread_suffix_supported)
537                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
538             else
539                 packet_len = ::snprintf (packet, sizeof(packet), "g");
540             assert (packet_len < ((int)sizeof(packet) - 1));
541 
542             if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
543             {
544                 int packet_len = 0;
545                 if (thread_suffix_supported)
546                     packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
547                 else
548                     packet_len = ::snprintf (packet, sizeof(packet), "g");
549                 assert (packet_len < ((int)sizeof(packet) - 1));
550 
551                 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
552                 {
553                     if (response.IsErrorResponse())
554                         return false;
555 
556                     std::string &response_str = response.GetStringRef();
557                     if (isxdigit(response_str[0]))
558                     {
559                         response_str.insert(0, 1, 'G');
560                         if (thread_suffix_supported)
561                         {
562                             char thread_id_cstr[64];
563                             ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
564                             response_str.append (thread_id_cstr);
565                         }
566                         data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
567                         return true;
568                     }
569                 }
570             }
571             else
572             {
573                 // For the use_g_packet == false case, we're going to read each register
574                 // individually and store them as binary data in a buffer instead of as ascii
575                 // characters.
576                 const RegisterInfo *reg_info;
577 
578                 // data_sp will take ownership of this DataBufferHeap pointer soon.
579                 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));
580 
581                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
582                 {
583                     if (reg_info->value_regs) // skip registers that are slices of real registers
584                         continue;
585                     ReadRegisterBytes (reg_info, m_reg_data);
586                     // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
587                 }
588                 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
589 
590                 data_sp = reg_ctx;
591                 return true;
592             }
593         }
594     }
595     else
596     {
597 
598         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
599         if (log)
600         {
601             if (log->GetVerbose())
602             {
603                 StreamString strm;
604                 gdb_comm.DumpHistory(strm);
605                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
606             }
607             else
608                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
609         }
610     }
611 
612     data_sp.reset();
613     return false;
614 }
615 
616 bool
617 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
618 {
619     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
620         return false;
621 
622     ExecutionContext exe_ctx (CalculateThread());
623 
624     Process *process = exe_ctx.GetProcessPtr();
625     Thread *thread = exe_ctx.GetThreadPtr();
626     if (process == NULL || thread == NULL)
627         return false;
628 
629     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
630 
631     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
632 
633     StringExtractorGDBRemote response;
634     Mutex::Locker locker;
635     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
636     {
637         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
638         ProcessSP process_sp (m_thread.GetProcess());
639         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
640         {
641             // The data_sp contains the entire G response packet including the
642             // G, and if the thread suffix is supported, it has the thread suffix
643             // as well.
644             const char *G_packet = (const char *)data_sp->GetBytes();
645             size_t G_packet_len = data_sp->GetByteSize();
646             if (use_g_packet
647                 && gdb_comm.SendPacketAndWaitForResponse (G_packet,
648                                                           G_packet_len,
649                                                           response,
650                                                           false) == GDBRemoteCommunication::PacketResult::Success)
651             {
652                 // The data_sp contains the entire G response packet including the
653                 // G, and if the thread suffix is supported, it has the thread suffix
654                 // as well.
655                 const char *G_packet = (const char *)data_sp->GetBytes();
656                 size_t G_packet_len = data_sp->GetByteSize();
657                 if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
658                                                            G_packet_len,
659                                                            response,
660                                                            false) == GDBRemoteCommunication::PacketResult::Success)
661                 {
662                     if (response.IsOKResponse())
663                         return true;
664                     else if (response.IsErrorResponse())
665                     {
666                         uint32_t num_restored = 0;
667                         // We need to manually go through all of the registers and
668                         // restore them manually
669 
670                         response.GetStringRef().assign (G_packet, G_packet_len);
671                         response.SetFilePos(1); // Skip the leading 'G'
672 
673                         // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier.
674                         // This means buffer will be a little more than 2x larger than necessary but we resize
675                         // it down once we've extracted all hex ascii chars from the packet.
676                         DataBufferHeap buffer (G_packet_len, 0);
677 
678                         const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(),
679                                                                                buffer.GetByteSize(),
680                                                                                '\xcc');
681 
682                         DataExtractor restore_data (buffer.GetBytes(),
683                                                     buffer.GetByteSize(),
684                                                     m_reg_data.GetByteOrder(),
685                                                     m_reg_data.GetAddressByteSize());
686 
687                         if (bytes_extracted < restore_data.GetByteSize())
688                             restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
689 
690                         const RegisterInfo *reg_info;
691 
692                         // The g packet contents may either include the slice registers (registers defined in
693                         // terms of other registers, e.g. eax is a subset of rax) or not.  The slice registers
694                         // should NOT be in the g packet, but some implementations may incorrectly include them.
695                         //
696                         // If the slice registers are included in the packet, we must step over the slice registers
697                         // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
698                         // If the slice registers are not included, then using the byte_offset values into the
699                         // data buffer is the best way to find individual register values.
700 
701                         uint64_t size_including_slice_registers = 0;
702                         uint64_t size_not_including_slice_registers = 0;
703                         uint64_t size_by_highest_offset = 0;
704 
705                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
706                         {
707                             size_including_slice_registers += reg_info->byte_size;
708                             if (reg_info->value_regs == NULL)
709                                 size_not_including_slice_registers += reg_info->byte_size;
710                             if (reg_info->byte_offset >= size_by_highest_offset)
711                                 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
712                         }
713 
714                         bool use_byte_offset_into_buffer;
715                         if (size_by_highest_offset == restore_data.GetByteSize())
716                         {
717                             // The size of the packet agrees with the highest offset: + size in the register file
718                             use_byte_offset_into_buffer = true;
719                         }
720                         else if (size_not_including_slice_registers == restore_data.GetByteSize())
721                         {
722                             // The size of the packet is the same as concatenating all of the registers sequentially,
723                             // skipping the slice registers
724                             use_byte_offset_into_buffer = true;
725                         }
726                         else if (size_including_slice_registers == restore_data.GetByteSize())
727                         {
728                             // The slice registers are present in the packet (when they shouldn't be).
729                             // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
730                             // point to the wrong place.
731                             use_byte_offset_into_buffer = false;
732                         }
733                         else {
734                             // None of our expected sizes match the actual g packet data we're looking at.
735                             // The most conservative approach here is to use the running total byte offset.
736                             use_byte_offset_into_buffer = false;
737                         }
738 
739                         // In case our register definitions don't include the correct offsets,
740                         // keep track of the size of each reg & compute offset based on that.
741                         uint32_t running_byte_offset = 0;
742                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
743                         {
744                             // Skip composite aka slice registers (e.g. eax is a slice of rax).
745                             if (reg_info->value_regs)
746                                 continue;
747 
748                             const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
749 
750                             uint32_t register_offset;
751                             if (use_byte_offset_into_buffer)
752                             {
753                                 register_offset = reg_info->byte_offset;
754                             }
755                             else
756                             {
757                                 register_offset = running_byte_offset;
758                             }
759 
760                             // Only write down the registers that need to be written
761                             // if we are going to be doing registers individually.
762                             bool write_reg = true;
763                             const uint32_t reg_byte_size = reg_info->byte_size;
764 
765                             const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
766                             if (restore_src)
767                             {
768                                 StreamString packet;
769                                 packet.Printf ("P%x=", reg);
770                                 packet.PutBytesAsRawHex8 (restore_src,
771                                                           reg_byte_size,
772                                                           lldb::endian::InlHostByteOrder(),
773                                                           lldb::endian::InlHostByteOrder());
774 
775                                 if (thread_suffix_supported)
776                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
777 
778                                 SetRegisterIsValid(reg, false);
779                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
780                                                                           packet.GetString().size(),
781                                                                           response,
782                                                                           false) == GDBRemoteCommunication::PacketResult::Success)
783                                 {
784                                     const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
785                                     if (current_src)
786                                         write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
787                                 }
788 
789                                 if (write_reg)
790                                 {
791                                     StreamString packet;
792                                     packet.Printf ("P%x=", reg);
793                                     packet.PutBytesAsRawHex8 (restore_src,
794                                                               reg_byte_size,
795                                                               lldb::endian::InlHostByteOrder(),
796                                                               lldb::endian::InlHostByteOrder());
797 
798                                     if (thread_suffix_supported)
799                                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
800 
801                                     SetRegisterIsValid(reg, false);
802                                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
803                                                                               packet.GetString().size(),
804                                                                               response,
805                                                                               false) == GDBRemoteCommunication::PacketResult::Success)
806                                     {
807                                         if (response.IsOKResponse())
808                                             ++num_restored;
809                                     }
810                                 }
811                             }
812                         }
813                         return num_restored > 0;
814                     }
815                 }
816             }
817             else
818             {
819                 // For the use_g_packet == false case, we're going to write each register
820                 // individually.  The data buffer is binary data in this case, instead of
821                 // ascii characters.
822 
823                 bool arm64_debugserver = false;
824                 if (m_thread.GetProcess().get())
825                 {
826                     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
827                     if (arch.IsValid()
828                         && arch.GetMachine() == llvm::Triple::aarch64
829                         && arch.GetTriple().getVendor() == llvm::Triple::Apple
830                         && arch.GetTriple().getOS() == llvm::Triple::IOS)
831                     {
832                         arm64_debugserver = true;
833                     }
834                 }
835                 uint32_t num_restored = 0;
836                 const RegisterInfo *reg_info;
837                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
838                 {
839                     if (reg_info->value_regs) // skip registers that are slices of real registers
840                         continue;
841                     // Skip the fpsr and fpcr floating point status/control register writing to
842                     // work around a bug in an older version of debugserver that would lead to
843                     // register context corruption when writing fpsr/fpcr.
844                     if (arm64_debugserver &&
845                         (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
846                     {
847                         continue;
848                     }
849                     StreamString packet;
850                     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]);
851                     packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder());
852                     if (thread_suffix_supported)
853                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
854 
855                     SetRegisterIsValid(reg_info, false);
856                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
857                                                               packet.GetString().size(),
858                                                               response,
859                                                               false) == GDBRemoteCommunication::PacketResult::Success)
860                     {
861                         if (response.IsOKResponse())
862                             ++num_restored;
863                     }
864                 }
865                 return num_restored > 0;
866             }
867         }
868     }
869     else
870     {
871         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
872         if (log)
873         {
874             if (log->GetVerbose())
875             {
876                 StreamString strm;
877                 gdb_comm.DumpHistory(strm);
878                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
879             }
880             else
881                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
882         }
883     }
884     return false;
885 }
886 
887 
888 uint32_t
889 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
890 {
891     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
892 }
893 
894 
895 void
896 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
897 {
898     // For Advanced SIMD and VFP register mapping.
899     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
900     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
901     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
902     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
903     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
904     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
905     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
906     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
907     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
908     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
909     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
910     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
911     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
912     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
913     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
914     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
915     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
916     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
917     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
918     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
919     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
920     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
921     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
922     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
923     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
924     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
925     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
926     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
927     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
928     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
929     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
930     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
931 
932     // This is our array of composite registers, with each element coming from the above register mappings.
933     static uint32_t *g_composites[] = {
934         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
935         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
936         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
937         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
938     };
939 
940     static RegisterInfo g_register_infos[] = {
941 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB      VALUE REGS    INVALIDATE REGS
942 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  =============   ====      ==========    ===============
943     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },        NULL,              NULL},
944     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },        NULL,              NULL},
945     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },        NULL,              NULL},
946     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },        NULL,              NULL},
947     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },        NULL,              NULL},
948     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },        NULL,              NULL},
949     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },        NULL,              NULL},
950     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },        NULL,              NULL},
951     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },        NULL,              NULL},
952     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },        NULL,              NULL},
953     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },        NULL,              NULL},
954     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },        NULL,              NULL},
955     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },        NULL,              NULL},
956     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },        NULL,              NULL},
957     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },        NULL,              NULL},
958     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },        NULL,              NULL},
959     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },        NULL,              NULL},
960     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },        NULL,              NULL},
961     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },        NULL,              NULL},
962     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },        NULL,              NULL},
963     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },        NULL,              NULL},
964     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },        NULL,              NULL},
965     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },        NULL,              NULL},
966     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },        NULL,              NULL},
967     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },        NULL,              NULL},
968     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },        NULL,              NULL},
969     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },        NULL,              NULL},
970     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },        NULL,              NULL},
971     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },        NULL,              NULL},
972     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },        NULL,              NULL},
973     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },        NULL,              NULL},
974     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },        NULL,              NULL},
975     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },        NULL,              NULL},
976     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },        NULL,              NULL},
977     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },        NULL,              NULL},
978     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },        NULL,              NULL},
979     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },        NULL,              NULL},
980     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },        NULL,              NULL},
981     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },        NULL,              NULL},
982     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },        NULL,              NULL},
983     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },        NULL,              NULL},
984     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },        NULL,              NULL},
985     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },        NULL,              NULL},
986     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },        NULL,              NULL},
987     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },        NULL,              NULL},
988     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },        NULL,              NULL},
989     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },        NULL,              NULL},
990     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },        NULL,              NULL},
991     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },        NULL,              NULL},
992     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },        NULL,              NULL},
993     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },        NULL,              NULL},
994     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },        NULL,              NULL},
995     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },        NULL,              NULL},
996     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },        NULL,              NULL},
997     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },        NULL,              NULL},
998     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },        NULL,              NULL},
999     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },        NULL,              NULL},
1000     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },        NULL,              NULL},
1001     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },        NULL,              NULL},
1002     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },        NULL,              NULL},
1003     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },        NULL,              NULL},
1004     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },        NULL,              NULL},
1005     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },        NULL,              NULL},
1006     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },        NULL,              NULL},
1007     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },        NULL,              NULL},
1008     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },        NULL,              NULL},
1009     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },        NULL,              NULL},
1010     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },        NULL,              NULL},
1011     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },        NULL,              NULL},
1012     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },        NULL,              NULL},
1013     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },        NULL,              NULL},
1014     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },        NULL,              NULL},
1015     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },        NULL,              NULL},
1016     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },        NULL,              NULL},
1017     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },        NULL,              NULL},
1018     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,              NULL},
1019     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,              NULL},
1020     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,              NULL},
1021     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,              NULL},
1022     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,              NULL},
1023     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,              NULL},
1024     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,              NULL},
1025     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,              NULL},
1026     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,              NULL},
1027     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,              NULL},
1028     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,              NULL},
1029     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,              NULL},
1030     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,              NULL},
1031     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,              NULL},
1032     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,              NULL},
1033     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,              NULL},
1034     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,              NULL},
1035     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,              NULL},
1036     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,              NULL},
1037     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,              NULL},
1038     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,              NULL},
1039     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,              NULL},
1040     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,              NULL},
1041     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,              NULL},
1042     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,              NULL},
1043     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,              NULL},
1044     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,              NULL},
1045     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,              NULL},
1046     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,              NULL},
1047     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,              NULL},
1048     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,              NULL},
1049     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,              NULL}
1050     };
1051 
1052     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
1053     static ConstString gpr_reg_set ("General Purpose Registers");
1054     static ConstString sfp_reg_set ("Software Floating Point Registers");
1055     static ConstString vfp_reg_set ("Floating Point Registers");
1056     size_t i;
1057     if (from_scratch)
1058     {
1059         // Calculate the offsets of the registers
1060         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
1061         // "primordial" registers is important.  This enables us to calculate the offset of the composite
1062         // register by using the offset of its first primordial register.  For example, to calculate the
1063         // offset of q0, use s0's offset.
1064         if (g_register_infos[2].byte_offset == 0)
1065         {
1066             uint32_t byte_offset = 0;
1067             for (i=0; i<num_registers; ++i)
1068             {
1069                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
1070                 // byte_offset for the next register.  Otherwise, we have a composite register whose
1071                 // offset can be calculated by consulting the offset of its first primordial register.
1072                 if (!g_register_infos[i].value_regs)
1073                 {
1074                     g_register_infos[i].byte_offset = byte_offset;
1075                     byte_offset += g_register_infos[i].byte_size;
1076                 }
1077                 else
1078                 {
1079                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
1080                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
1081                 }
1082             }
1083         }
1084         for (i=0; i<num_registers; ++i)
1085         {
1086             ConstString name;
1087             ConstString alt_name;
1088             if (g_register_infos[i].name && g_register_infos[i].name[0])
1089                 name.SetCString(g_register_infos[i].name);
1090             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1091                 alt_name.SetCString(g_register_infos[i].alt_name);
1092 
1093             if (i <= 15 || i == 25)
1094                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
1095             else if (i <= 24)
1096                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
1097             else
1098                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
1099         }
1100     }
1101     else
1102     {
1103         // Add composite registers to our primordial registers, then.
1104         const size_t num_composites = llvm::array_lengthof(g_composites);
1105         const size_t num_dynamic_regs = GetNumRegisters();
1106         const size_t num_common_regs = num_registers - num_composites;
1107         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1108 
1109         // First we need to validate that all registers that we already have match the non composite regs.
1110         // If so, then we can add the registers, else we need to bail
1111         bool match = true;
1112         if (num_dynamic_regs == num_common_regs)
1113         {
1114             for (i=0; match && i<num_dynamic_regs; ++i)
1115             {
1116                 // Make sure all register names match
1117                 if (m_regs[i].name && g_register_infos[i].name)
1118                 {
1119                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
1120                     {
1121                         match = false;
1122                         break;
1123                     }
1124                 }
1125 
1126                 // Make sure all register byte sizes match
1127                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
1128                 {
1129                     match = false;
1130                     break;
1131                 }
1132             }
1133         }
1134         else
1135         {
1136             // Wrong number of registers.
1137             match = false;
1138         }
1139         // If "match" is true, then we can add extra registers.
1140         if (match)
1141         {
1142             for (i=0; i<num_composites; ++i)
1143             {
1144                 ConstString name;
1145                 ConstString alt_name;
1146                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
1147                 const char *reg_name = g_register_infos[first_primordial_reg].name;
1148                 if (reg_name && reg_name[0])
1149                 {
1150                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
1151                     {
1152                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1153                         // Find a matching primordial register info entry.
1154                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
1155                         {
1156                             // The name matches the existing primordial entry.
1157                             // Find and assign the offset, and then add this composite register entry.
1158                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1159                             name.SetCString(g_comp_register_infos[i].name);
1160                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
1161                         }
1162                     }
1163                 }
1164             }
1165         }
1166     }
1167 }
1168