1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #include "lldb/Target/ExecutionContext.h" 21 #include "lldb/Target/Target.h" 22 #include "lldb/Utility/Utils.h" 23 // Project includes 24 #include "Utility/StringExtractorGDBRemote.h" 25 #include "ProcessGDBRemote.h" 26 #include "ProcessGDBRemoteLog.h" 27 #include "ThreadGDBRemote.h" 28 #include "Utility/ARM_DWARF_Registers.h" 29 #include "Utility/ARM_ehframe_Registers.h" 30 31 using namespace lldb; 32 using namespace lldb_private; 33 using namespace lldb_private::process_gdb_remote; 34 35 //---------------------------------------------------------------------- 36 // GDBRemoteRegisterContext constructor 37 //---------------------------------------------------------------------- 38 GDBRemoteRegisterContext::GDBRemoteRegisterContext 39 ( 40 ThreadGDBRemote &thread, 41 uint32_t concrete_frame_idx, 42 GDBRemoteDynamicRegisterInfo ®_info, 43 bool read_all_at_once 44 ) : 45 RegisterContext (thread, concrete_frame_idx), 46 m_reg_info (reg_info), 47 m_reg_valid (), 48 m_reg_data (), 49 m_read_all_at_once (read_all_at_once) 50 { 51 // Resize our vector of bools to contain one bool for every register. 52 // We will use these boolean values to know when a register value 53 // is valid in m_reg_data. 54 m_reg_valid.resize (reg_info.GetNumRegisters()); 55 56 // Make a heap based buffer that is big enough to store all registers 57 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 58 m_reg_data.SetData (reg_data_sp); 59 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 60 } 61 62 //---------------------------------------------------------------------- 63 // Destructor 64 //---------------------------------------------------------------------- 65 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 66 { 67 } 68 69 void 70 GDBRemoteRegisterContext::InvalidateAllRegisters () 71 { 72 SetAllRegisterValid (false); 73 } 74 75 void 76 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 77 { 78 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 79 for (pos = m_reg_valid.begin(); pos != end; ++pos) 80 *pos = b; 81 } 82 83 size_t 84 GDBRemoteRegisterContext::GetRegisterCount () 85 { 86 return m_reg_info.GetNumRegisters (); 87 } 88 89 const RegisterInfo * 90 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) 91 { 92 return m_reg_info.GetRegisterInfoAtIndex (reg); 93 } 94 95 size_t 96 GDBRemoteRegisterContext::GetRegisterSetCount () 97 { 98 return m_reg_info.GetNumRegisterSets (); 99 } 100 101 102 103 const RegisterSet * 104 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) 105 { 106 return m_reg_info.GetRegisterSet (reg_set); 107 } 108 109 110 111 bool 112 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 113 { 114 // Read the register 115 if (ReadRegisterBytes (reg_info, m_reg_data)) 116 { 117 const bool partial_data_ok = false; 118 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 119 return error.Success(); 120 } 121 return false; 122 } 123 124 bool 125 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 126 { 127 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 128 if (reg_info == NULL) 129 return false; 130 131 // Invalidate if needed 132 InvalidateIfNeeded(false); 133 134 const uint32_t reg_byte_size = reg_info->byte_size; 135 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 136 bool success = bytes_copied == reg_byte_size; 137 if (success) 138 { 139 SetRegisterIsValid(reg, true); 140 } 141 else if (bytes_copied > 0) 142 { 143 // Only set register is valid to false if we copied some bytes, else 144 // leave it as it was. 145 SetRegisterIsValid(reg, false); 146 } 147 return success; 148 } 149 150 bool 151 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, uint64_t new_reg_val) 152 { 153 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 154 if (reg_info == NULL) 155 return false; 156 157 // Early in process startup, we can get a thread that has an invalid byte order 158 // because the process hasn't been completely set up yet (see the ctor where the 159 // byte order is setfrom the process). If that's the case, we can't set the 160 // value here. 161 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) 162 { 163 return false; 164 } 165 166 // Invalidate if needed 167 InvalidateIfNeeded (false); 168 169 DataBufferSP buffer_sp (new DataBufferHeap (&new_reg_val, sizeof (new_reg_val))); 170 DataExtractor data (buffer_sp, endian::InlHostByteOrder(), sizeof (void*)); 171 172 // If our register context and our register info disagree, which should never happen, don't 173 // overwrite past the end of the buffer. 174 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 175 return false; 176 177 // Grab a pointer to where we are going to put this register 178 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 179 180 if (dst == NULL) 181 return false; 182 183 184 if (data.CopyByteOrderedData (0, // src offset 185 reg_info->byte_size, // src length 186 dst, // dst 187 reg_info->byte_size, // dst length 188 m_reg_data.GetByteOrder())) // dst byte order 189 { 190 SetRegisterIsValid (reg, true); 191 return true; 192 } 193 return false; 194 } 195 196 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 197 bool 198 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info, 199 GDBRemoteCommunicationClient &gdb_comm) 200 { 201 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 202 StringExtractorGDBRemote response; 203 if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response)) 204 return PrivateSetRegisterValue (reg, response); 205 return false; 206 } 207 208 bool 209 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 210 { 211 ExecutionContext exe_ctx (CalculateThread()); 212 213 Process *process = exe_ctx.GetProcessPtr(); 214 Thread *thread = exe_ctx.GetThreadPtr(); 215 if (process == NULL || thread == NULL) 216 return false; 217 218 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 219 220 InvalidateIfNeeded(false); 221 222 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 223 224 if (!GetRegisterIsValid(reg)) 225 { 226 if (m_read_all_at_once) 227 { 228 StringExtractorGDBRemote response; 229 if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response)) 230 return false; 231 if (response.IsNormalResponse()) 232 if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())), 233 m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 234 SetAllRegisterValid (true); 235 } 236 else if (reg_info->value_regs) 237 { 238 // Process this composite register request by delegating to the constituent 239 // primordial registers. 240 241 // Index of the primordial register. 242 bool success = true; 243 for (uint32_t idx = 0; success; ++idx) 244 { 245 const uint32_t prim_reg = reg_info->value_regs[idx]; 246 if (prim_reg == LLDB_INVALID_REGNUM) 247 break; 248 // We have a valid primordial register as our constituent. 249 // Grab the corresponding register info. 250 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 251 if (prim_reg_info == NULL) 252 success = false; 253 else 254 { 255 // Read the containing register if it hasn't already been read 256 if (!GetRegisterIsValid(prim_reg)) 257 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 258 } 259 } 260 261 if (success) 262 { 263 // If we reach this point, all primordial register requests have succeeded. 264 // Validate this composite register. 265 SetRegisterIsValid (reg_info, true); 266 } 267 } 268 else 269 { 270 // Get each register individually 271 GetPrimordialRegister(reg_info, gdb_comm); 272 } 273 274 // Make sure we got a valid register value after reading it 275 if (!GetRegisterIsValid(reg)) 276 return false; 277 } 278 279 if (&data != &m_reg_data) 280 { 281 #if defined (LLDB_CONFIGURATION_DEBUG) 282 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 283 #endif 284 // If our register context and our register info disagree, which should never happen, don't 285 // read past the end of the buffer. 286 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 287 return false; 288 289 // If we aren't extracting into our own buffer (which 290 // only happens when this function is called from 291 // ReadRegisterValue(uint32_t, Scalar&)) then 292 // we transfer bytes from our buffer into the data 293 // buffer that was passed in 294 295 data.SetByteOrder (m_reg_data.GetByteOrder()); 296 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 297 } 298 return true; 299 } 300 301 bool 302 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 303 const RegisterValue &value) 304 { 305 DataExtractor data; 306 if (value.GetData (data)) 307 return WriteRegisterBytes (reg_info, data, 0); 308 return false; 309 } 310 311 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 312 bool 313 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info, 314 GDBRemoteCommunicationClient &gdb_comm) 315 { 316 StreamString packet; 317 StringExtractorGDBRemote response; 318 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 319 packet.Printf ("P%x=", reg); 320 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 321 reg_info->byte_size, 322 endian::InlHostByteOrder(), 323 endian::InlHostByteOrder()); 324 325 if (gdb_comm.GetThreadSuffixSupported()) 326 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 327 328 // Invalidate just this register 329 SetRegisterIsValid(reg, false); 330 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 331 packet.GetString().size(), 332 response, 333 false) == GDBRemoteCommunication::PacketResult::Success) 334 { 335 if (response.IsOKResponse()) 336 return true; 337 } 338 return false; 339 } 340 341 void 342 GDBRemoteRegisterContext::SyncThreadState(Process *process) 343 { 344 // NB. We assume our caller has locked the sequence mutex. 345 346 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); 347 if (!gdb_comm.GetSyncThreadStateSupported()) 348 return; 349 350 StreamString packet; 351 StringExtractorGDBRemote response; 352 packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 353 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 354 packet.GetString().size(), 355 response, 356 false) == GDBRemoteCommunication::PacketResult::Success) 357 { 358 if (response.IsOKResponse()) 359 InvalidateAllRegisters(); 360 } 361 } 362 363 bool 364 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 365 { 366 ExecutionContext exe_ctx (CalculateThread()); 367 368 Process *process = exe_ctx.GetProcessPtr(); 369 Thread *thread = exe_ctx.GetThreadPtr(); 370 if (process == NULL || thread == NULL) 371 return false; 372 373 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 374 // FIXME: This check isn't right because IsRunning checks the Public state, but this 375 // is work you need to do - for instance in ShouldStop & friends - before the public 376 // state has been changed. 377 // if (gdb_comm.IsRunning()) 378 // return false; 379 380 381 #if defined (LLDB_CONFIGURATION_DEBUG) 382 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 383 #endif 384 385 // If our register context and our register info disagree, which should never happen, don't 386 // overwrite past the end of the buffer. 387 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 388 return false; 389 390 // Grab a pointer to where we are going to put this register 391 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 392 393 if (dst == NULL) 394 return false; 395 396 397 if (data.CopyByteOrderedData (data_offset, // src offset 398 reg_info->byte_size, // src length 399 dst, // dst 400 reg_info->byte_size, // dst length 401 m_reg_data.GetByteOrder())) // dst byte order 402 { 403 Mutex::Locker locker; 404 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) 405 { 406 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 407 ProcessSP process_sp (m_thread.GetProcess()); 408 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 409 { 410 StreamString packet; 411 StringExtractorGDBRemote response; 412 413 if (m_read_all_at_once) 414 { 415 // Set all registers in one packet 416 packet.PutChar ('G'); 417 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 418 m_reg_data.GetByteSize(), 419 endian::InlHostByteOrder(), 420 endian::InlHostByteOrder()); 421 422 if (thread_suffix_supported) 423 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 424 425 // Invalidate all register values 426 InvalidateIfNeeded (true); 427 428 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 429 packet.GetString().size(), 430 response, 431 false) == GDBRemoteCommunication::PacketResult::Success) 432 { 433 SetAllRegisterValid (false); 434 if (response.IsOKResponse()) 435 { 436 return true; 437 } 438 } 439 } 440 else 441 { 442 bool success = true; 443 444 if (reg_info->value_regs) 445 { 446 // This register is part of another register. In this case we read the actual 447 // register data for any "value_regs", and once all that data is read, we will 448 // have enough data in our register context bytes for the value of this register 449 450 // Invalidate this composite register first. 451 452 for (uint32_t idx = 0; success; ++idx) 453 { 454 const uint32_t reg = reg_info->value_regs[idx]; 455 if (reg == LLDB_INVALID_REGNUM) 456 break; 457 // We have a valid primordial register as our constituent. 458 // Grab the corresponding register info. 459 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 460 if (value_reg_info == NULL) 461 success = false; 462 else 463 success = SetPrimordialRegister(value_reg_info, gdb_comm); 464 } 465 } 466 else 467 { 468 // This is an actual register, write it 469 success = SetPrimordialRegister(reg_info, gdb_comm); 470 } 471 472 // Check if writing this register will invalidate any other register values? 473 // If so, invalidate them 474 if (reg_info->invalidate_regs) 475 { 476 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 477 reg != LLDB_INVALID_REGNUM; 478 reg = reg_info->invalidate_regs[++idx]) 479 { 480 SetRegisterIsValid(reg, false); 481 } 482 } 483 484 return success; 485 } 486 } 487 } 488 else 489 { 490 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 491 if (log) 492 { 493 if (log->GetVerbose()) 494 { 495 StreamString strm; 496 gdb_comm.DumpHistory(strm); 497 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 498 } 499 else 500 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 501 } 502 } 503 } 504 return false; 505 } 506 507 bool 508 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint ®_checkpoint) 509 { 510 ExecutionContext exe_ctx (CalculateThread()); 511 512 Process *process = exe_ctx.GetProcessPtr(); 513 Thread *thread = exe_ctx.GetThreadPtr(); 514 if (process == NULL || thread == NULL) 515 return false; 516 517 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 518 519 uint32_t save_id = 0; 520 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) 521 { 522 reg_checkpoint.SetID(save_id); 523 reg_checkpoint.GetData().reset(); 524 return true; 525 } 526 else 527 { 528 reg_checkpoint.SetID(0); // Invalid save ID is zero 529 return ReadAllRegisterValues(reg_checkpoint.GetData()); 530 } 531 } 532 533 bool 534 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint ®_checkpoint) 535 { 536 uint32_t save_id = reg_checkpoint.GetID(); 537 if (save_id != 0) 538 { 539 ExecutionContext exe_ctx (CalculateThread()); 540 541 Process *process = exe_ctx.GetProcessPtr(); 542 Thread *thread = exe_ctx.GetThreadPtr(); 543 if (process == NULL || thread == NULL) 544 return false; 545 546 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 547 548 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 549 } 550 else 551 { 552 return WriteAllRegisterValues(reg_checkpoint.GetData()); 553 } 554 } 555 556 bool 557 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 558 { 559 ExecutionContext exe_ctx (CalculateThread()); 560 561 Process *process = exe_ctx.GetProcessPtr(); 562 Thread *thread = exe_ctx.GetThreadPtr(); 563 if (process == NULL || thread == NULL) 564 return false; 565 566 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 567 568 StringExtractorGDBRemote response; 569 570 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 571 572 Mutex::Locker locker; 573 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) 574 { 575 SyncThreadState(process); 576 577 char packet[32]; 578 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 579 ProcessSP process_sp (m_thread.GetProcess()); 580 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 581 { 582 int packet_len = 0; 583 if (thread_suffix_supported) 584 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 585 else 586 packet_len = ::snprintf (packet, sizeof(packet), "g"); 587 assert (packet_len < ((int)sizeof(packet) - 1)); 588 589 if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 590 { 591 int packet_len = 0; 592 if (thread_suffix_supported) 593 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 594 else 595 packet_len = ::snprintf (packet, sizeof(packet), "g"); 596 assert (packet_len < ((int)sizeof(packet) - 1)); 597 598 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 599 { 600 if (response.IsErrorResponse()) 601 return false; 602 603 std::string &response_str = response.GetStringRef(); 604 if (isxdigit(response_str[0])) 605 { 606 response_str.insert(0, 1, 'G'); 607 if (thread_suffix_supported) 608 { 609 char thread_id_cstr[64]; 610 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 611 response_str.append (thread_id_cstr); 612 } 613 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 614 return true; 615 } 616 } 617 } 618 else 619 { 620 // For the use_g_packet == false case, we're going to read each register 621 // individually and store them as binary data in a buffer instead of as ascii 622 // characters. 623 const RegisterInfo *reg_info; 624 625 // data_sp will take ownership of this DataBufferHeap pointer soon. 626 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0)); 627 628 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 629 { 630 if (reg_info->value_regs) // skip registers that are slices of real registers 631 continue; 632 ReadRegisterBytes (reg_info, m_reg_data); 633 // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer 634 } 635 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 636 637 data_sp = reg_ctx; 638 return true; 639 } 640 } 641 } 642 else 643 { 644 645 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 646 if (log) 647 { 648 if (log->GetVerbose()) 649 { 650 StreamString strm; 651 gdb_comm.DumpHistory(strm); 652 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 653 } 654 else 655 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 656 } 657 } 658 659 data_sp.reset(); 660 return false; 661 } 662 663 bool 664 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 665 { 666 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 667 return false; 668 669 ExecutionContext exe_ctx (CalculateThread()); 670 671 Process *process = exe_ctx.GetProcessPtr(); 672 Thread *thread = exe_ctx.GetThreadPtr(); 673 if (process == NULL || thread == NULL) 674 return false; 675 676 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 677 678 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 679 680 StringExtractorGDBRemote response; 681 Mutex::Locker locker; 682 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) 683 { 684 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 685 ProcessSP process_sp (m_thread.GetProcess()); 686 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 687 { 688 // The data_sp contains the entire G response packet including the 689 // G, and if the thread suffix is supported, it has the thread suffix 690 // as well. 691 const char *G_packet = (const char *)data_sp->GetBytes(); 692 size_t G_packet_len = data_sp->GetByteSize(); 693 if (use_g_packet 694 && gdb_comm.SendPacketAndWaitForResponse (G_packet, 695 G_packet_len, 696 response, 697 false) == GDBRemoteCommunication::PacketResult::Success) 698 { 699 // The data_sp contains the entire G response packet including the 700 // G, and if the thread suffix is supported, it has the thread suffix 701 // as well. 702 const char *G_packet = (const char *)data_sp->GetBytes(); 703 size_t G_packet_len = data_sp->GetByteSize(); 704 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 705 G_packet_len, 706 response, 707 false) == GDBRemoteCommunication::PacketResult::Success) 708 { 709 if (response.IsOKResponse()) 710 return true; 711 else if (response.IsErrorResponse()) 712 { 713 uint32_t num_restored = 0; 714 // We need to manually go through all of the registers and 715 // restore them manually 716 717 response.GetStringRef().assign (G_packet, G_packet_len); 718 response.SetFilePos(1); // Skip the leading 'G' 719 720 // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier. 721 // This means buffer will be a little more than 2x larger than necessary but we resize 722 // it down once we've extracted all hex ascii chars from the packet. 723 DataBufferHeap buffer (G_packet_len, 0); 724 725 const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(), 726 buffer.GetByteSize(), 727 '\xcc'); 728 729 DataExtractor restore_data (buffer.GetBytes(), 730 buffer.GetByteSize(), 731 m_reg_data.GetByteOrder(), 732 m_reg_data.GetAddressByteSize()); 733 734 if (bytes_extracted < restore_data.GetByteSize()) 735 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 736 737 const RegisterInfo *reg_info; 738 739 // The g packet contents may either include the slice registers (registers defined in 740 // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers 741 // should NOT be in the g packet, but some implementations may incorrectly include them. 742 // 743 // If the slice registers are included in the packet, we must step over the slice registers 744 // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect. 745 // If the slice registers are not included, then using the byte_offset values into the 746 // data buffer is the best way to find individual register values. 747 748 uint64_t size_including_slice_registers = 0; 749 uint64_t size_not_including_slice_registers = 0; 750 uint64_t size_by_highest_offset = 0; 751 752 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx) 753 { 754 size_including_slice_registers += reg_info->byte_size; 755 if (reg_info->value_regs == NULL) 756 size_not_including_slice_registers += reg_info->byte_size; 757 if (reg_info->byte_offset >= size_by_highest_offset) 758 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 759 } 760 761 bool use_byte_offset_into_buffer; 762 if (size_by_highest_offset == restore_data.GetByteSize()) 763 { 764 // The size of the packet agrees with the highest offset: + size in the register file 765 use_byte_offset_into_buffer = true; 766 } 767 else if (size_not_including_slice_registers == restore_data.GetByteSize()) 768 { 769 // The size of the packet is the same as concatenating all of the registers sequentially, 770 // skipping the slice registers 771 use_byte_offset_into_buffer = true; 772 } 773 else if (size_including_slice_registers == restore_data.GetByteSize()) 774 { 775 // The slice registers are present in the packet (when they shouldn't be). 776 // Don't try to use the RegisterInfo byte_offset into the restore_data, it will 777 // point to the wrong place. 778 use_byte_offset_into_buffer = false; 779 } 780 else { 781 // None of our expected sizes match the actual g packet data we're looking at. 782 // The most conservative approach here is to use the running total byte offset. 783 use_byte_offset_into_buffer = false; 784 } 785 786 // In case our register definitions don't include the correct offsets, 787 // keep track of the size of each reg & compute offset based on that. 788 uint32_t running_byte_offset = 0; 789 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size) 790 { 791 // Skip composite aka slice registers (e.g. eax is a slice of rax). 792 if (reg_info->value_regs) 793 continue; 794 795 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 796 797 uint32_t register_offset; 798 if (use_byte_offset_into_buffer) 799 { 800 register_offset = reg_info->byte_offset; 801 } 802 else 803 { 804 register_offset = running_byte_offset; 805 } 806 807 // Only write down the registers that need to be written 808 // if we are going to be doing registers individually. 809 bool write_reg = true; 810 const uint32_t reg_byte_size = reg_info->byte_size; 811 812 const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size); 813 if (restore_src) 814 { 815 StreamString packet; 816 packet.Printf ("P%x=", reg); 817 packet.PutBytesAsRawHex8 (restore_src, 818 reg_byte_size, 819 endian::InlHostByteOrder(), 820 endian::InlHostByteOrder()); 821 822 if (thread_suffix_supported) 823 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 824 825 SetRegisterIsValid(reg, false); 826 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 827 packet.GetString().size(), 828 response, 829 false) == GDBRemoteCommunication::PacketResult::Success) 830 { 831 const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size); 832 if (current_src) 833 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 834 } 835 836 if (write_reg) 837 { 838 StreamString packet; 839 packet.Printf ("P%x=", reg); 840 packet.PutBytesAsRawHex8 (restore_src, 841 reg_byte_size, 842 endian::InlHostByteOrder(), 843 endian::InlHostByteOrder()); 844 845 if (thread_suffix_supported) 846 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 847 848 SetRegisterIsValid(reg, false); 849 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 850 packet.GetString().size(), 851 response, 852 false) == GDBRemoteCommunication::PacketResult::Success) 853 { 854 if (response.IsOKResponse()) 855 ++num_restored; 856 } 857 } 858 } 859 } 860 return num_restored > 0; 861 } 862 } 863 } 864 else 865 { 866 // For the use_g_packet == false case, we're going to write each register 867 // individually. The data buffer is binary data in this case, instead of 868 // ascii characters. 869 870 bool arm64_debugserver = false; 871 if (m_thread.GetProcess().get()) 872 { 873 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 874 if (arch.IsValid() 875 && arch.GetMachine() == llvm::Triple::aarch64 876 && arch.GetTriple().getVendor() == llvm::Triple::Apple 877 && arch.GetTriple().getOS() == llvm::Triple::IOS) 878 { 879 arm64_debugserver = true; 880 } 881 } 882 uint32_t num_restored = 0; 883 const RegisterInfo *reg_info; 884 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 885 { 886 if (reg_info->value_regs) // skip registers that are slices of real registers 887 continue; 888 // Skip the fpsr and fpcr floating point status/control register writing to 889 // work around a bug in an older version of debugserver that would lead to 890 // register context corruption when writing fpsr/fpcr. 891 if (arm64_debugserver && 892 (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0)) 893 { 894 continue; 895 } 896 StreamString packet; 897 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]); 898 packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); 899 if (thread_suffix_supported) 900 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 901 902 SetRegisterIsValid(reg_info, false); 903 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 904 packet.GetString().size(), 905 response, 906 false) == GDBRemoteCommunication::PacketResult::Success) 907 { 908 if (response.IsOKResponse()) 909 ++num_restored; 910 } 911 } 912 return num_restored > 0; 913 } 914 } 915 } 916 else 917 { 918 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 919 if (log) 920 { 921 if (log->GetVerbose()) 922 { 923 StreamString strm; 924 gdb_comm.DumpHistory(strm); 925 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 926 } 927 else 928 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 929 } 930 } 931 return false; 932 } 933 934 935 uint32_t 936 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) 937 { 938 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 939 } 940 941 942 void 943 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) 944 { 945 // For Advanced SIMD and VFP register mapping. 946 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 947 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 948 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 949 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 950 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 951 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 952 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 953 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 954 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 955 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 956 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 957 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 958 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 959 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 960 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 961 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 962 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 963 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 964 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 965 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 966 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 967 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 968 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 969 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 970 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 971 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 972 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 973 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 974 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 975 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 976 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 977 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 978 979 // This is our array of composite registers, with each element coming from the above register mappings. 980 static uint32_t *g_composites[] = { 981 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, 982 g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, 983 g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 984 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs 985 }; 986 987 static RegisterInfo g_register_infos[] = { 988 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS 989 // ====== ====== === === ============= ============ =================== =================== ====================== ============= ==== ========== =============== 990 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 991 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 992 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 993 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 994 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 995 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 996 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 997 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 998 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 999 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 1000 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 1001 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 1002 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 1003 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 1004 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 1005 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 1006 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 1007 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 1008 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 1009 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 1010 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 1011 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 1012 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 1013 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 1014 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 1015 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 1016 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 1017 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 1018 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 1019 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 1020 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 1021 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 1022 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 1023 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 1024 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 1025 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 1026 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 1027 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 1028 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 1029 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 1030 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 1031 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 1032 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 1033 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 1034 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 1035 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 1036 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 1037 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 1038 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 1039 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 1040 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 1041 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 1042 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 1043 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 1044 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 1045 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 1046 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 1047 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 1048 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 1049 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 1050 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 1051 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 1052 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 1053 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 1054 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 1055 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 1056 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 1057 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 1058 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 1059 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 1060 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 1061 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 1062 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 1063 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 1064 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 1065 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 1066 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 1067 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 1068 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 1069 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 1070 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 1071 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 1072 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 1073 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 1074 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 1075 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 1076 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 1077 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 1078 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 1079 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 1080 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 1081 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 1082 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 1083 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 1084 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 1085 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 1086 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 1087 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 1088 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 1089 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 1090 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 1091 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 1092 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 1093 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 1094 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 1095 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 1096 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 1097 }; 1098 1099 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 1100 static ConstString gpr_reg_set ("General Purpose Registers"); 1101 static ConstString sfp_reg_set ("Software Floating Point Registers"); 1102 static ConstString vfp_reg_set ("Floating Point Registers"); 1103 size_t i; 1104 if (from_scratch) 1105 { 1106 // Calculate the offsets of the registers 1107 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 1108 // "primordial" registers is important. This enables us to calculate the offset of the composite 1109 // register by using the offset of its first primordial register. For example, to calculate the 1110 // offset of q0, use s0's offset. 1111 if (g_register_infos[2].byte_offset == 0) 1112 { 1113 uint32_t byte_offset = 0; 1114 for (i=0; i<num_registers; ++i) 1115 { 1116 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 1117 // byte_offset for the next register. Otherwise, we have a composite register whose 1118 // offset can be calculated by consulting the offset of its first primordial register. 1119 if (!g_register_infos[i].value_regs) 1120 { 1121 g_register_infos[i].byte_offset = byte_offset; 1122 byte_offset += g_register_infos[i].byte_size; 1123 } 1124 else 1125 { 1126 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 1127 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 1128 } 1129 } 1130 } 1131 for (i=0; i<num_registers; ++i) 1132 { 1133 ConstString name; 1134 ConstString alt_name; 1135 if (g_register_infos[i].name && g_register_infos[i].name[0]) 1136 name.SetCString(g_register_infos[i].name); 1137 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 1138 alt_name.SetCString(g_register_infos[i].alt_name); 1139 1140 if (i <= 15 || i == 25) 1141 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 1142 else if (i <= 24) 1143 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 1144 else 1145 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 1146 } 1147 } 1148 else 1149 { 1150 // Add composite registers to our primordial registers, then. 1151 const size_t num_composites = llvm::array_lengthof(g_composites); 1152 const size_t num_dynamic_regs = GetNumRegisters(); 1153 const size_t num_common_regs = num_registers - num_composites; 1154 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 1155 1156 // First we need to validate that all registers that we already have match the non composite regs. 1157 // If so, then we can add the registers, else we need to bail 1158 bool match = true; 1159 if (num_dynamic_regs == num_common_regs) 1160 { 1161 for (i=0; match && i<num_dynamic_regs; ++i) 1162 { 1163 // Make sure all register names match 1164 if (m_regs[i].name && g_register_infos[i].name) 1165 { 1166 if (strcmp(m_regs[i].name, g_register_infos[i].name)) 1167 { 1168 match = false; 1169 break; 1170 } 1171 } 1172 1173 // Make sure all register byte sizes match 1174 if (m_regs[i].byte_size != g_register_infos[i].byte_size) 1175 { 1176 match = false; 1177 break; 1178 } 1179 } 1180 } 1181 else 1182 { 1183 // Wrong number of registers. 1184 match = false; 1185 } 1186 // If "match" is true, then we can add extra registers. 1187 if (match) 1188 { 1189 for (i=0; i<num_composites; ++i) 1190 { 1191 ConstString name; 1192 ConstString alt_name; 1193 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; 1194 const char *reg_name = g_register_infos[first_primordial_reg].name; 1195 if (reg_name && reg_name[0]) 1196 { 1197 for (uint32_t j = 0; j < num_dynamic_regs; ++j) 1198 { 1199 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 1200 // Find a matching primordial register info entry. 1201 if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) 1202 { 1203 // The name matches the existing primordial entry. 1204 // Find and assign the offset, and then add this composite register entry. 1205 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 1206 name.SetCString(g_comp_register_infos[i].name); 1207 AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); 1208 } 1209 } 1210 } 1211 } 1212 } 1213 } 1214 } 1215