1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #ifndef LLDB_DISABLE_PYTHON
21 #include "lldb/Interpreter/PythonDataObjects.h"
22 #endif
23 #include "lldb/Target/ExecutionContext.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Utility/Utils.h"
26 // Project includes
27 #include "Utility/StringExtractorGDBRemote.h"
28 #include "ProcessGDBRemote.h"
29 #include "ProcessGDBRemoteLog.h"
30 #include "ThreadGDBRemote.h"
31 #include "Utility/ARM_GCC_Registers.h"
32 #include "Utility/ARM_DWARF_Registers.h"
33 
34 using namespace lldb;
35 using namespace lldb_private;
36 
37 //----------------------------------------------------------------------
38 // GDBRemoteRegisterContext constructor
39 //----------------------------------------------------------------------
40 GDBRemoteRegisterContext::GDBRemoteRegisterContext
41 (
42     ThreadGDBRemote &thread,
43     uint32_t concrete_frame_idx,
44     GDBRemoteDynamicRegisterInfo &reg_info,
45     bool read_all_at_once
46 ) :
47     RegisterContext (thread, concrete_frame_idx),
48     m_reg_info (reg_info),
49     m_reg_valid (),
50     m_reg_data (),
51     m_read_all_at_once (read_all_at_once)
52 {
53     // Resize our vector of bools to contain one bool for every register.
54     // We will use these boolean values to know when a register value
55     // is valid in m_reg_data.
56     m_reg_valid.resize (reg_info.GetNumRegisters());
57 
58     // Make a heap based buffer that is big enough to store all registers
59     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
60     m_reg_data.SetData (reg_data_sp);
61     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
62 }
63 
64 //----------------------------------------------------------------------
65 // Destructor
66 //----------------------------------------------------------------------
67 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
68 {
69 }
70 
71 void
72 GDBRemoteRegisterContext::InvalidateAllRegisters ()
73 {
74     SetAllRegisterValid (false);
75 }
76 
77 void
78 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
79 {
80     std::vector<bool>::iterator pos, end = m_reg_valid.end();
81     for (pos = m_reg_valid.begin(); pos != end; ++pos)
82         *pos = b;
83 }
84 
85 size_t
86 GDBRemoteRegisterContext::GetRegisterCount ()
87 {
88     return m_reg_info.GetNumRegisters ();
89 }
90 
91 const RegisterInfo *
92 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
93 {
94     return m_reg_info.GetRegisterInfoAtIndex (reg);
95 }
96 
97 size_t
98 GDBRemoteRegisterContext::GetRegisterSetCount ()
99 {
100     return m_reg_info.GetNumRegisterSets ();
101 }
102 
103 
104 
105 const RegisterSet *
106 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
107 {
108     return m_reg_info.GetRegisterSet (reg_set);
109 }
110 
111 
112 
113 bool
114 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
115 {
116     // Read the register
117     if (ReadRegisterBytes (reg_info, m_reg_data))
118     {
119         const bool partial_data_ok = false;
120         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
121         return error.Success();
122     }
123     return false;
124 }
125 
126 bool
127 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
128 {
129     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
130     if (reg_info == NULL)
131         return false;
132 
133     // Invalidate if needed
134     InvalidateIfNeeded(false);
135 
136     const uint32_t reg_byte_size = reg_info->byte_size;
137     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
138     bool success = bytes_copied == reg_byte_size;
139     if (success)
140     {
141         SetRegisterIsValid(reg, true);
142     }
143     else if (bytes_copied > 0)
144     {
145         // Only set register is valid to false if we copied some bytes, else
146         // leave it as it was.
147         SetRegisterIsValid(reg, false);
148     }
149     return success;
150 }
151 
152 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
153 bool
154 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
155                                                 GDBRemoteCommunicationClient &gdb_comm)
156 {
157     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
158     StringExtractorGDBRemote response;
159     if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response))
160         return PrivateSetRegisterValue (reg, response);
161     return false;
162 }
163 
164 bool
165 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
166 {
167     ExecutionContext exe_ctx (CalculateThread());
168 
169     Process *process = exe_ctx.GetProcessPtr();
170     Thread *thread = exe_ctx.GetThreadPtr();
171     if (process == NULL || thread == NULL)
172         return false;
173 
174     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
175 
176     InvalidateIfNeeded(false);
177 
178     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
179 
180     if (!GetRegisterIsValid(reg))
181     {
182         if (m_read_all_at_once)
183         {
184             StringExtractorGDBRemote response;
185             if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
186                 return false;
187             if (response.IsNormalResponse())
188                 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
189                     SetAllRegisterValid (true);
190         }
191         else if (reg_info->value_regs)
192         {
193             // Process this composite register request by delegating to the constituent
194             // primordial registers.
195 
196             // Index of the primordial register.
197             bool success = true;
198             for (uint32_t idx = 0; success; ++idx)
199             {
200                 const uint32_t prim_reg = reg_info->value_regs[idx];
201                 if (prim_reg == LLDB_INVALID_REGNUM)
202                     break;
203                 // We have a valid primordial regsiter as our constituent.
204                 // Grab the corresponding register info.
205                 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
206                 if (prim_reg_info == NULL)
207                     success = false;
208                 else
209                 {
210                     // Read the containing register if it hasn't already been read
211                     if (!GetRegisterIsValid(prim_reg))
212                         success = GetPrimordialRegister(prim_reg_info, gdb_comm);
213                 }
214             }
215 
216             if (success)
217             {
218                 // If we reach this point, all primordial register requests have succeeded.
219                 // Validate this composite register.
220                 SetRegisterIsValid (reg_info, true);
221             }
222         }
223         else
224         {
225             // Get each register individually
226             GetPrimordialRegister(reg_info, gdb_comm);
227         }
228 
229         // Make sure we got a valid register value after reading it
230         if (!GetRegisterIsValid(reg))
231             return false;
232     }
233 
234     if (&data != &m_reg_data)
235     {
236         // If we aren't extracting into our own buffer (which
237         // only happens when this function is called from
238         // ReadRegisterValue(uint32_t, Scalar&)) then
239         // we transfer bytes from our buffer into the data
240         // buffer that was passed in
241         data.SetByteOrder (m_reg_data.GetByteOrder());
242         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
243     }
244     return true;
245 }
246 
247 bool
248 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
249                                          const RegisterValue &value)
250 {
251     DataExtractor data;
252     if (value.GetData (data))
253         return WriteRegisterBytes (reg_info, data, 0);
254     return false;
255 }
256 
257 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
258 bool
259 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
260                                                 GDBRemoteCommunicationClient &gdb_comm)
261 {
262     StreamString packet;
263     StringExtractorGDBRemote response;
264     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
265     packet.Printf ("P%x=", reg);
266     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
267                               reg_info->byte_size,
268                               lldb::endian::InlHostByteOrder(),
269                               lldb::endian::InlHostByteOrder());
270 
271     if (gdb_comm.GetThreadSuffixSupported())
272         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
273 
274     // Invalidate just this register
275     SetRegisterIsValid(reg, false);
276     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
277                                               packet.GetString().size(),
278                                               response,
279                                               false) == GDBRemoteCommunication::PacketResult::Success)
280     {
281         if (response.IsOKResponse())
282             return true;
283     }
284     return false;
285 }
286 
287 void
288 GDBRemoteRegisterContext::SyncThreadState(Process *process)
289 {
290     // NB.  We assume our caller has locked the sequence mutex.
291 
292     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
293     if (!gdb_comm.GetSyncThreadStateSupported())
294         return;
295 
296     StreamString packet;
297     StringExtractorGDBRemote response;
298     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
299     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
300                                               packet.GetString().size(),
301                                               response,
302                                               false) == GDBRemoteCommunication::PacketResult::Success)
303     {
304         if (response.IsOKResponse())
305             InvalidateAllRegisters();
306     }
307 }
308 
309 bool
310 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
311 {
312     ExecutionContext exe_ctx (CalculateThread());
313 
314     Process *process = exe_ctx.GetProcessPtr();
315     Thread *thread = exe_ctx.GetThreadPtr();
316     if (process == NULL || thread == NULL)
317         return false;
318 
319     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
320 // FIXME: This check isn't right because IsRunning checks the Public state, but this
321 // is work you need to do - for instance in ShouldStop & friends - before the public
322 // state has been changed.
323 //    if (gdb_comm.IsRunning())
324 //        return false;
325 
326     // Grab a pointer to where we are going to put this register
327     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
328 
329     if (dst == NULL)
330         return false;
331 
332 
333     if (data.CopyByteOrderedData (data_offset,                  // src offset
334                                   reg_info->byte_size,          // src length
335                                   dst,                          // dst
336                                   reg_info->byte_size,          // dst length
337                                   m_reg_data.GetByteOrder()))   // dst byte order
338     {
339         Mutex::Locker locker;
340         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
341         {
342             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
343             ProcessSP process_sp (m_thread.GetProcess());
344             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
345             {
346                 StreamString packet;
347                 StringExtractorGDBRemote response;
348 
349                 if (m_read_all_at_once)
350                 {
351                     // Set all registers in one packet
352                     packet.PutChar ('G');
353                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
354                                               m_reg_data.GetByteSize(),
355                                               lldb::endian::InlHostByteOrder(),
356                                               lldb::endian::InlHostByteOrder());
357 
358                     if (thread_suffix_supported)
359                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
360 
361                     // Invalidate all register values
362                     InvalidateIfNeeded (true);
363 
364                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
365                                                               packet.GetString().size(),
366                                                               response,
367                                                               false) == GDBRemoteCommunication::PacketResult::Success)
368                     {
369                         SetAllRegisterValid (false);
370                         if (response.IsOKResponse())
371                         {
372                             return true;
373                         }
374                     }
375                 }
376                 else
377                 {
378                     bool success = true;
379 
380                     if (reg_info->value_regs)
381                     {
382                         // This register is part of another register. In this case we read the actual
383                         // register data for any "value_regs", and once all that data is read, we will
384                         // have enough data in our register context bytes for the value of this register
385 
386                         // Invalidate this composite register first.
387 
388                         for (uint32_t idx = 0; success; ++idx)
389                         {
390                             const uint32_t reg = reg_info->value_regs[idx];
391                             if (reg == LLDB_INVALID_REGNUM)
392                                 break;
393                             // We have a valid primordial regsiter as our constituent.
394                             // Grab the corresponding register info.
395                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
396                             if (value_reg_info == NULL)
397                                 success = false;
398                             else
399                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
400                         }
401                     }
402                     else
403                     {
404                         // This is an actual register, write it
405                         success = SetPrimordialRegister(reg_info, gdb_comm);
406                     }
407 
408                     // Check if writing this register will invalidate any other register values?
409                     // If so, invalidate them
410                     if (reg_info->invalidate_regs)
411                     {
412                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
413                              reg != LLDB_INVALID_REGNUM;
414                              reg = reg_info->invalidate_regs[++idx])
415                         {
416                             SetRegisterIsValid(reg, false);
417                         }
418                     }
419 
420                     return success;
421                 }
422             }
423         }
424         else
425         {
426             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
427             if (log)
428             {
429                 if (log->GetVerbose())
430                 {
431                     StreamString strm;
432                     gdb_comm.DumpHistory(strm);
433                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
434                 }
435                 else
436                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
437             }
438         }
439     }
440     return false;
441 }
442 
443 bool
444 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb_private::RegisterCheckpoint &reg_checkpoint)
445 {
446     ExecutionContext exe_ctx (CalculateThread());
447 
448     Process *process = exe_ctx.GetProcessPtr();
449     Thread *thread = exe_ctx.GetThreadPtr();
450     if (process == NULL || thread == NULL)
451         return false;
452 
453     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
454 
455     uint32_t save_id = 0;
456     if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
457     {
458         reg_checkpoint.SetID(save_id);
459         reg_checkpoint.GetData().reset();
460         return true;
461     }
462     else
463     {
464         reg_checkpoint.SetID(0); // Invalid save ID is zero
465         return ReadAllRegisterValues(reg_checkpoint.GetData());
466     }
467 }
468 
469 bool
470 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb_private::RegisterCheckpoint &reg_checkpoint)
471 {
472     uint32_t save_id = reg_checkpoint.GetID();
473     if (save_id != 0)
474     {
475         ExecutionContext exe_ctx (CalculateThread());
476 
477         Process *process = exe_ctx.GetProcessPtr();
478         Thread *thread = exe_ctx.GetThreadPtr();
479         if (process == NULL || thread == NULL)
480             return false;
481 
482         GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
483 
484         return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
485     }
486     else
487     {
488         return WriteAllRegisterValues(reg_checkpoint.GetData());
489     }
490 }
491 
492 bool
493 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
494 {
495     ExecutionContext exe_ctx (CalculateThread());
496 
497     Process *process = exe_ctx.GetProcessPtr();
498     Thread *thread = exe_ctx.GetThreadPtr();
499     if (process == NULL || thread == NULL)
500         return false;
501 
502     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
503 
504     StringExtractorGDBRemote response;
505 
506     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
507 
508     Mutex::Locker locker;
509     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
510     {
511         SyncThreadState(process);
512 
513         char packet[32];
514         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
515         ProcessSP process_sp (m_thread.GetProcess());
516         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
517         {
518             int packet_len = 0;
519             if (thread_suffix_supported)
520                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
521             else
522                 packet_len = ::snprintf (packet, sizeof(packet), "g");
523             assert (packet_len < ((int)sizeof(packet) - 1));
524 
525             if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
526             {
527                 int packet_len = 0;
528                 if (thread_suffix_supported)
529                     packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
530                 else
531                     packet_len = ::snprintf (packet, sizeof(packet), "g");
532                 assert (packet_len < ((int)sizeof(packet) - 1));
533 
534                 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
535                 {
536                     if (response.IsErrorResponse())
537                         return false;
538 
539                     std::string &response_str = response.GetStringRef();
540                     if (isxdigit(response_str[0]))
541                     {
542                         response_str.insert(0, 1, 'G');
543                         if (thread_suffix_supported)
544                         {
545                             char thread_id_cstr[64];
546                             ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
547                             response_str.append (thread_id_cstr);
548                         }
549                         data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
550                         return true;
551                     }
552                 }
553             }
554             else
555             {
556                 // For the use_g_packet == false case, we're going to read each register
557                 // individually and store them as binary data in a buffer instead of as ascii
558                 // characters.
559                 const RegisterInfo *reg_info;
560 
561                 // data_sp will take ownership of this DataBufferHeap pointer soon.
562                 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));
563 
564                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
565                 {
566                     if (reg_info->value_regs) // skip registers that are slices of real registers
567                         continue;
568                     ReadRegisterBytes (reg_info, m_reg_data);
569                     // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
570                 }
571                 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
572 
573                 data_sp = reg_ctx;
574                 return true;
575             }
576         }
577     }
578     else
579     {
580 
581         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
582         if (log)
583         {
584             if (log->GetVerbose())
585             {
586                 StreamString strm;
587                 gdb_comm.DumpHistory(strm);
588                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
589             }
590             else
591                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
592         }
593     }
594 
595     data_sp.reset();
596     return false;
597 }
598 
599 bool
600 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
601 {
602     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
603         return false;
604 
605     ExecutionContext exe_ctx (CalculateThread());
606 
607     Process *process = exe_ctx.GetProcessPtr();
608     Thread *thread = exe_ctx.GetThreadPtr();
609     if (process == NULL || thread == NULL)
610         return false;
611 
612     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
613 
614     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
615 
616     StringExtractorGDBRemote response;
617     Mutex::Locker locker;
618     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
619     {
620         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
621         ProcessSP process_sp (m_thread.GetProcess());
622         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
623         {
624             // The data_sp contains the entire G response packet including the
625             // G, and if the thread suffix is supported, it has the thread suffix
626             // as well.
627             const char *G_packet = (const char *)data_sp->GetBytes();
628             size_t G_packet_len = data_sp->GetByteSize();
629             if (use_g_packet
630                 && gdb_comm.SendPacketAndWaitForResponse (G_packet,
631                                                           G_packet_len,
632                                                           response,
633                                                           false) == GDBRemoteCommunication::PacketResult::Success)
634             {
635                 // The data_sp contains the entire G response packet including the
636                 // G, and if the thread suffix is supported, it has the thread suffix
637                 // as well.
638                 const char *G_packet = (const char *)data_sp->GetBytes();
639                 size_t G_packet_len = data_sp->GetByteSize();
640                 if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
641                                                            G_packet_len,
642                                                            response,
643                                                            false) == GDBRemoteCommunication::PacketResult::Success)
644                 {
645                     if (response.IsOKResponse())
646                         return true;
647                     else if (response.IsErrorResponse())
648                     {
649                         uint32_t num_restored = 0;
650                         // We need to manually go through all of the registers and
651                         // restore them manually
652 
653                         response.GetStringRef().assign (G_packet, G_packet_len);
654                         response.SetFilePos(1); // Skip the leading 'G'
655 
656                         // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix therad specifier.
657                         // This means buffer will be a little more than 2x larger than necessary but we resize
658                         // it down once we've extracted all hex ascii chars from the packet.
659                         DataBufferHeap buffer (G_packet_len, 0);
660                         DataExtractor restore_data (buffer.GetBytes(),
661                                                     buffer.GetByteSize(),
662                                                     m_reg_data.GetByteOrder(),
663                                                     m_reg_data.GetAddressByteSize());
664 
665                         const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
666                                                                                restore_data.GetByteSize(),
667                                                                                '\xcc');
668 
669                         if (bytes_extracted < restore_data.GetByteSize())
670                             restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
671 
672                         const RegisterInfo *reg_info;
673 
674                         // The g packet contents may either include the slice registers (registers defined in
675                         // terms of other registers, e.g. eax is a subset of rax) or not.  The slice registers
676                         // should NOT be in the g packet, but some implementations may incorrectly include them.
677                         //
678                         // If the slice registers are included in the packet, we must step over the slice registers
679                         // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
680                         // If the slice registers are not included, then using the byte_offset values into the
681                         // data buffer is the best way to find individual register values.
682 
683                         int size_including_slice_registers = 0;
684                         int size_not_including_slice_registers = 0;
685                         int size_by_highest_offset = 0;
686 
687                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
688                         {
689                             size_including_slice_registers += reg_info->byte_size;
690                             if (reg_info->value_regs == NULL)
691                                 size_not_including_slice_registers += reg_info->byte_size;
692                             if (static_cast<off_t>(reg_info->byte_offset) >= size_by_highest_offset)
693                                 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
694                         }
695 
696                         bool use_byte_offset_into_buffer;
697                         if (static_cast<size_t>(size_by_highest_offset) == restore_data.GetByteSize())
698                         {
699                             // The size of the packet agrees with the highest offset: + size in the register file
700                             use_byte_offset_into_buffer = true;
701                         }
702                         else if (static_cast<size_t>(size_not_including_slice_registers) == restore_data.GetByteSize())
703                         {
704                             // The size of the packet is the same as concenating all of the registers sequentially,
705                             // skipping the slice registers
706                             use_byte_offset_into_buffer = true;
707                         }
708                         else if (static_cast<size_t>(size_including_slice_registers) == restore_data.GetByteSize())
709                         {
710                             // The slice registers are present in the packet (when they shouldn't be).
711                             // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
712                             // point to the wrong place.
713                             use_byte_offset_into_buffer = false;
714                         }
715                         else {
716                             // None of our expected sizes match the actual g packet data we're looking at.
717                             // The most conservative approach here is to use the running total byte offset.
718                             use_byte_offset_into_buffer = false;
719                         }
720 
721                         // In case our register definitions don't include the correct offsets,
722                         // keep track of the size of each reg & compute offset based on that.
723                         uint32_t running_byte_offset = 0;
724                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
725                         {
726                             // Skip composite aka slice registers (e.g. eax is a slice of rax).
727                             if (reg_info->value_regs)
728                                 continue;
729 
730                             const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
731 
732                             uint32_t register_offset;
733                             if (use_byte_offset_into_buffer)
734                             {
735                                 register_offset = reg_info->byte_offset;
736                             }
737                             else
738                             {
739                                 register_offset = running_byte_offset;
740                             }
741 
742                             // Only write down the registers that need to be written
743                             // if we are going to be doing registers individually.
744                             bool write_reg = true;
745                             const uint32_t reg_byte_size = reg_info->byte_size;
746 
747                             const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
748                             if (restore_src)
749                             {
750                                 StreamString packet;
751                                 packet.Printf ("P%x=", reg);
752                                 packet.PutBytesAsRawHex8 (restore_src,
753                                                           reg_byte_size,
754                                                           lldb::endian::InlHostByteOrder(),
755                                                           lldb::endian::InlHostByteOrder());
756 
757                                 if (thread_suffix_supported)
758                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
759 
760                                 SetRegisterIsValid(reg, false);
761                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
762                                                                           packet.GetString().size(),
763                                                                           response,
764                                                                           false) == GDBRemoteCommunication::PacketResult::Success)
765                                 {
766                                     const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
767                                     if (current_src)
768                                         write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
769                                 }
770 
771                                 if (write_reg)
772                                 {
773                                     StreamString packet;
774                                     packet.Printf ("P%x=", reg);
775                                     packet.PutBytesAsRawHex8 (restore_src,
776                                                               reg_byte_size,
777                                                               lldb::endian::InlHostByteOrder(),
778                                                               lldb::endian::InlHostByteOrder());
779 
780                                     if (thread_suffix_supported)
781                                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
782 
783                                     SetRegisterIsValid(reg, false);
784                                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
785                                                                               packet.GetString().size(),
786                                                                               response,
787                                                                               false) == GDBRemoteCommunication::PacketResult::Success)
788                                     {
789                                         if (response.IsOKResponse())
790                                             ++num_restored;
791                                     }
792                                 }
793                             }
794                         }
795                         return num_restored > 0;
796                     }
797                 }
798             }
799             else
800             {
801                 // For the use_g_packet == false case, we're going to write each register
802                 // individually.  The data buffer is binary data in this case, instead of
803                 // ascii characters.
804 
805                 bool arm64_debugserver = false;
806                 if (m_thread.GetProcess().get())
807                 {
808                     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
809                     if (arch.IsValid()
810                         && arch.GetMachine() == llvm::Triple::arm64
811                         && arch.GetTriple().getVendor() == llvm::Triple::Apple
812                         && arch.GetTriple().getOS() == llvm::Triple::IOS)
813                     {
814                         arm64_debugserver = true;
815                     }
816                 }
817                 uint32_t num_restored = 0;
818                 const RegisterInfo *reg_info;
819                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
820                 {
821                     if (reg_info->value_regs) // skip registers that are slices of real registers
822                         continue;
823                     // Skip the fpsr and fpcr floating point status/control register writing to
824                     // work around a bug in an older version of debugserver that would lead to
825                     // register context corruption when writing fpsr/fpcr.
826                     if (arm64_debugserver &&
827                         (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
828                     {
829                         continue;
830                     }
831                     StreamString packet;
832                     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]);
833                     packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder());
834                     if (thread_suffix_supported)
835                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
836 
837                     SetRegisterIsValid(reg_info, false);
838                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
839                                                               packet.GetString().size(),
840                                                               response,
841                                                               false) == GDBRemoteCommunication::PacketResult::Success)
842                     {
843                         if (response.IsOKResponse())
844                             ++num_restored;
845                     }
846                 }
847                 return num_restored > 0;
848             }
849         }
850     }
851     else
852     {
853         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
854         if (log)
855         {
856             if (log->GetVerbose())
857             {
858                 StreamString strm;
859                 gdb_comm.DumpHistory(strm);
860                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
861             }
862             else
863                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
864         }
865     }
866     return false;
867 }
868 
869 
870 uint32_t
871 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
872 {
873     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
874 }
875 
876 
877 void
878 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
879 {
880     // For Advanced SIMD and VFP register mapping.
881     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
882     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
883     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
884     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
885     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
886     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
887     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
888     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
889     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
890     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
891     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
892     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
893     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
894     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
895     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
896     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
897     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
898     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
899     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
900     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
901     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
902     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
903     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
904     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
905     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
906     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
907     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
908     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
909     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
910     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
911     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
912     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
913 
914     // This is our array of composite registers, with each element coming from the above register mappings.
915     static uint32_t *g_composites[] = {
916         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
917         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
918         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
919         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
920     };
921 
922     static RegisterInfo g_register_infos[] = {
923 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
924 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
925     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
926     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
927     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
928     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
929     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
930     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
931     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
932     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
933     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
934     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
935     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
936     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
937     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
938     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
939     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
940     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
941     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
942     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
943     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
944     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
945     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
946     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
947     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
948     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
949     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
950     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
951     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
952     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
953     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
954     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
955     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
956     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
957     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
958     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
959     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
960     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
961     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
962     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
963     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
964     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
965     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
966     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
967     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
968     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
969     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
970     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
971     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
972     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
973     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
974     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
975     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
976     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
977     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
978     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
979     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
980     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
981     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
982     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
983     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
984     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
985     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
986     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
987     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
988     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
989     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
990     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
991     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
992     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
993     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
994     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
995     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
996     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
997     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
998     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
999     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
1000     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
1001     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
1002     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
1003     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
1004     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
1005     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
1006     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
1007     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
1008     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
1009     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
1010     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
1011     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
1012     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
1013     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
1014     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
1015     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
1016     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
1017     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
1018     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
1019     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
1020     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
1021     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
1022     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
1023     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
1024     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
1025     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
1026     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
1027     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
1028     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
1029     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
1030     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
1031     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
1032     };
1033 
1034     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
1035     static ConstString gpr_reg_set ("General Purpose Registers");
1036     static ConstString sfp_reg_set ("Software Floating Point Registers");
1037     static ConstString vfp_reg_set ("Floating Point Registers");
1038     size_t i;
1039     if (from_scratch)
1040     {
1041         // Calculate the offsets of the registers
1042         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
1043         // "primordial" registers is important.  This enables us to calculate the offset of the composite
1044         // register by using the offset of its first primordial register.  For example, to calculate the
1045         // offset of q0, use s0's offset.
1046         if (g_register_infos[2].byte_offset == 0)
1047         {
1048             uint32_t byte_offset = 0;
1049             for (i=0; i<num_registers; ++i)
1050             {
1051                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
1052                 // byte_offset for the next register.  Otherwise, we have a composite register whose
1053                 // offset can be calculated by consulting the offset of its first primordial register.
1054                 if (!g_register_infos[i].value_regs)
1055                 {
1056                     g_register_infos[i].byte_offset = byte_offset;
1057                     byte_offset += g_register_infos[i].byte_size;
1058                 }
1059                 else
1060                 {
1061                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
1062                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
1063                 }
1064             }
1065         }
1066         for (i=0; i<num_registers; ++i)
1067         {
1068             ConstString name;
1069             ConstString alt_name;
1070             if (g_register_infos[i].name && g_register_infos[i].name[0])
1071                 name.SetCString(g_register_infos[i].name);
1072             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1073                 alt_name.SetCString(g_register_infos[i].alt_name);
1074 
1075             if (i <= 15 || i == 25)
1076                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
1077             else if (i <= 24)
1078                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
1079             else
1080                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
1081         }
1082     }
1083     else
1084     {
1085         // Add composite registers to our primordial registers, then.
1086         const size_t num_composites = llvm::array_lengthof(g_composites);
1087         const size_t num_dynamic_regs = GetNumRegisters();
1088         const size_t num_common_regs = num_registers - num_composites;
1089         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1090 
1091         // First we need to validate that all registers that we already have match the non composite regs.
1092         // If so, then we can add the registers, else we need to bail
1093         bool match = true;
1094         if (num_dynamic_regs == num_common_regs)
1095         {
1096             for (i=0; match && i<num_dynamic_regs; ++i)
1097             {
1098                 // Make sure all register names match
1099                 if (m_regs[i].name && g_register_infos[i].name)
1100                 {
1101                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
1102                     {
1103                         match = false;
1104                         break;
1105                     }
1106                 }
1107 
1108                 // Make sure all register byte sizes match
1109                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
1110                 {
1111                     match = false;
1112                     break;
1113                 }
1114             }
1115         }
1116         else
1117         {
1118             // Wrong number of registers.
1119             match = false;
1120         }
1121         // If "match" is true, then we can add extra registers.
1122         if (match)
1123         {
1124             for (i=0; i<num_composites; ++i)
1125             {
1126                 ConstString name;
1127                 ConstString alt_name;
1128                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
1129                 const char *reg_name = g_register_infos[first_primordial_reg].name;
1130                 if (reg_name && reg_name[0])
1131                 {
1132                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
1133                     {
1134                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1135                         // Find a matching primordial register info entry.
1136                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
1137                         {
1138                             // The name matches the existing primordial entry.
1139                             // Find and assign the offset, and then add this composite register entry.
1140                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1141                             name.SetCString(g_comp_register_infos[i].name);
1142                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
1143                         }
1144                     }
1145                 }
1146             }
1147         }
1148     }
1149 }
1150