1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #include "lldb/Target/ExecutionContext.h"
21 // Project includes
22 #include "Utility/StringExtractorGDBRemote.h"
23 #include "ProcessGDBRemote.h"
24 #include "ThreadGDBRemote.h"
25 #include "Utility/ARM_GCC_Registers.h"
26 #include "Utility/ARM_DWARF_Registers.h"
27 
28 using namespace lldb;
29 using namespace lldb_private;
30 
31 //----------------------------------------------------------------------
32 // GDBRemoteRegisterContext constructor
33 //----------------------------------------------------------------------
34 GDBRemoteRegisterContext::GDBRemoteRegisterContext
35 (
36     ThreadGDBRemote &thread,
37     uint32_t concrete_frame_idx,
38     GDBRemoteDynamicRegisterInfo &reg_info,
39     bool read_all_at_once
40 ) :
41     RegisterContext (thread, concrete_frame_idx),
42     m_reg_info (reg_info),
43     m_reg_valid (),
44     m_reg_data (),
45     m_read_all_at_once (read_all_at_once)
46 {
47     // Resize our vector of bools to contain one bool for every register.
48     // We will use these boolean values to know when a register value
49     // is valid in m_reg_data.
50     m_reg_valid.resize (reg_info.GetNumRegisters());
51 
52     // Make a heap based buffer that is big enough to store all registers
53     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
54     m_reg_data.SetData (reg_data_sp);
55 
56 }
57 
58 //----------------------------------------------------------------------
59 // Destructor
60 //----------------------------------------------------------------------
61 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
62 {
63 }
64 
65 void
66 GDBRemoteRegisterContext::InvalidateAllRegisters ()
67 {
68     SetAllRegisterValid (false);
69 }
70 
71 void
72 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
73 {
74     std::vector<bool>::iterator pos, end = m_reg_valid.end();
75     for (pos = m_reg_valid.begin(); pos != end; ++pos)
76         *pos = b;
77 }
78 
79 size_t
80 GDBRemoteRegisterContext::GetRegisterCount ()
81 {
82     return m_reg_info.GetNumRegisters ();
83 }
84 
85 const RegisterInfo *
86 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg)
87 {
88     return m_reg_info.GetRegisterInfoAtIndex (reg);
89 }
90 
91 size_t
92 GDBRemoteRegisterContext::GetRegisterSetCount ()
93 {
94     return m_reg_info.GetNumRegisterSets ();
95 }
96 
97 
98 
99 const RegisterSet *
100 GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set)
101 {
102     return m_reg_info.GetRegisterSet (reg_set);
103 }
104 
105 
106 
107 bool
108 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
109 {
110     // Read the register
111     if (ReadRegisterBytes (reg_info, m_reg_data))
112     {
113         const bool partial_data_ok = false;
114         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
115         return error.Success();
116     }
117     return false;
118 }
119 
120 bool
121 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
122 {
123     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
124     if (reg_info == NULL)
125         return false;
126 
127     // Invalidate if needed
128     InvalidateIfNeeded(false);
129 
130     const uint32_t reg_byte_size = reg_info->byte_size;
131     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
132     bool success = bytes_copied == reg_byte_size;
133     if (success)
134     {
135         m_reg_valid[reg] = true;
136     }
137     else if (bytes_copied > 0)
138     {
139         // Only set register is valid to false if we copied some bytes, else
140         // leave it as it was.
141         m_reg_valid[reg] = false;
142     }
143     return success;
144 }
145 
146 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
147 bool
148 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
149                                                 GDBRemoteCommunicationClient &gdb_comm)
150 {
151     char packet[64];
152     StringExtractorGDBRemote response;
153     int packet_len = 0;
154     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
155     if (gdb_comm.GetThreadSuffixSupported())
156         packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4llx;", reg, m_thread.GetID());
157     else
158         packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
159     assert (packet_len < (sizeof(packet) - 1));
160     if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
161         return PrivateSetRegisterValue (reg, response);
162 
163     return false;
164 }
165 bool
166 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
167 {
168     ExecutionContext exe_ctx (CalculateThread());
169 
170     Process *process = exe_ctx.GetProcessPtr();
171     Thread *thread = exe_ctx.GetThreadPtr();
172     if (process == NULL || thread == NULL)
173         return false;
174 
175     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
176 
177     InvalidateIfNeeded(false);
178 
179     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
180 
181     if (!m_reg_valid[reg])
182     {
183         Mutex::Locker locker;
184         if (gdb_comm.GetSequenceMutex (locker))
185         {
186             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
187             ProcessSP process_sp (m_thread.GetProcess());
188             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
189             {
190                 char packet[64];
191                 StringExtractorGDBRemote response;
192                 int packet_len = 0;
193                 if (m_read_all_at_once)
194                 {
195                     // Get all registers in one packet
196                     if (thread_suffix_supported)
197                         packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx;", m_thread.GetID());
198                     else
199                         packet_len = ::snprintf (packet, sizeof(packet), "g");
200                     assert (packet_len < (sizeof(packet) - 1));
201                     if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
202                     {
203                         if (response.IsNormalResponse())
204                             if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
205                                 SetAllRegisterValid (true);
206                     }
207                 }
208                 else if (!reg_info->value_regs)
209                 {
210                     // Get each register individually
211                     GetPrimordialRegister(reg_info, gdb_comm);
212                 }
213                 else
214                 {
215                     // Process this composite register request by delegating to the constituent
216                     // primordial registers.
217 
218                     // Index of the primordial register.
219                     uint32_t prim_reg_idx;
220                     bool success = true;
221                     for (uint32_t idx = 0;
222                          (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
223                          ++idx)
224                     {
225                         // We have a valid primordial regsiter as our constituent.
226                         // Grab the corresponding register info.
227                         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
228                         if (!GetPrimordialRegister(prim_reg_info, gdb_comm))
229                         {
230                             success = false;
231                             // Some failure occurred.  Let's break out of the for loop.
232                             break;
233                         }
234                     }
235                     if (success)
236                     {
237                         // If we reach this point, all primordial register requests have succeeded.
238                         // Validate this composite register.
239                         m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = true;
240                     }
241                 }
242             }
243         }
244 
245         // Make sure we got a valid register value after reading it
246         if (!m_reg_valid[reg])
247             return false;
248     }
249 
250     if (&data != &m_reg_data)
251     {
252         // If we aren't extracting into our own buffer (which
253         // only happens when this function is called from
254         // ReadRegisterValue(uint32_t, Scalar&)) then
255         // we transfer bytes from our buffer into the data
256         // buffer that was passed in
257         data.SetByteOrder (m_reg_data.GetByteOrder());
258         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
259     }
260     return true;
261 }
262 
263 
264 bool
265 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
266                                          const RegisterValue &value)
267 {
268     DataExtractor data;
269     if (value.GetData (data))
270         return WriteRegisterBytes (reg_info, data, 0);
271     return false;
272 }
273 
274 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
275 bool
276 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
277                                                 GDBRemoteCommunicationClient &gdb_comm)
278 {
279     StreamString packet;
280     StringExtractorGDBRemote response;
281     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
282     packet.Printf ("P%x=", reg);
283     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
284                               reg_info->byte_size,
285                               lldb::endian::InlHostByteOrder(),
286                               lldb::endian::InlHostByteOrder());
287 
288     if (gdb_comm.GetThreadSuffixSupported())
289         packet.Printf (";thread:%4.4llx;", m_thread.GetID());
290 
291     // Invalidate just this register
292     m_reg_valid[reg] = false;
293     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
294                                               packet.GetString().size(),
295                                               response,
296                                               false))
297     {
298         if (response.IsOKResponse())
299             return true;
300     }
301     return false;
302 }
303 bool
304 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
305 {
306     ExecutionContext exe_ctx (CalculateThread());
307 
308     Process *process = exe_ctx.GetProcessPtr();
309     Thread *thread = exe_ctx.GetThreadPtr();
310     if (process == NULL || thread == NULL)
311         return false;
312 
313     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
314 // FIXME: This check isn't right because IsRunning checks the Public state, but this
315 // is work you need to do - for instance in ShouldStop & friends - before the public
316 // state has been changed.
317 //    if (gdb_comm.IsRunning())
318 //        return false;
319 
320     // Grab a pointer to where we are going to put this register
321     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
322 
323     if (dst == NULL)
324         return false;
325 
326 
327     if (data.CopyByteOrderedData (data_offset,                  // src offset
328                                   reg_info->byte_size,          // src length
329                                   dst,                          // dst
330                                   reg_info->byte_size,          // dst length
331                                   m_reg_data.GetByteOrder()))   // dst byte order
332     {
333         Mutex::Locker locker;
334         if (gdb_comm.GetSequenceMutex (locker))
335         {
336             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
337             ProcessSP process_sp (m_thread.GetProcess());
338             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
339             {
340                 uint32_t offset, end_offset;
341                 StreamString packet;
342                 StringExtractorGDBRemote response;
343                 if (m_read_all_at_once)
344                 {
345                     // Set all registers in one packet
346                     packet.PutChar ('G');
347                     offset = 0;
348                     end_offset = m_reg_data.GetByteSize();
349 
350                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
351                                               m_reg_data.GetByteSize(),
352                                               lldb::endian::InlHostByteOrder(),
353                                               lldb::endian::InlHostByteOrder());
354 
355                     if (thread_suffix_supported)
356                         packet.Printf (";thread:%4.4llx;", m_thread.GetID());
357 
358                     // Invalidate all register values
359                     InvalidateIfNeeded (true);
360 
361                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
362                                                               packet.GetString().size(),
363                                                               response,
364                                                               false))
365                     {
366                         SetAllRegisterValid (false);
367                         if (response.IsOKResponse())
368                         {
369                             return true;
370                         }
371                     }
372                 }
373                 else if (!reg_info->value_regs)
374                 {
375                     // Set each register individually
376                     return SetPrimordialRegister(reg_info, gdb_comm);
377                 }
378                 else
379                 {
380                     // Process this composite register request by delegating to the constituent
381                     // primordial registers.
382 
383                     // Invalidate this composite register first.
384                     m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = false;
385 
386                     // Index of the primordial register.
387                     uint32_t prim_reg_idx;
388                     // For loop index.
389                     uint32_t idx;
390 
391                     // Invalidate the invalidate_regs, if present.
392                     if (reg_info->invalidate_regs)
393                     {
394                         for (idx = 0;
395                              (prim_reg_idx = reg_info->invalidate_regs[idx]) != LLDB_INVALID_REGNUM;
396                              ++idx)
397                         {
398                             // Grab the invalidate register info.
399                             const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
400                             m_reg_valid[prim_reg_info->kinds[eRegisterKindLLDB]] = false;
401                         }
402                     }
403 
404                     bool success = true;
405                     for (idx = 0;
406                          (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
407                          ++idx)
408                     {
409                         // We have a valid primordial regsiter as our constituent.
410                         // Grab the corresponding register info.
411                         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
412                         if (!SetPrimordialRegister(prim_reg_info, gdb_comm))
413                         {
414                             success = false;
415                             // Some failure occurred.  Let's break out of the for loop.
416                             break;
417                         }
418                     }
419                     return success;
420                 }
421             }
422         }
423     }
424     return false;
425 }
426 
427 
428 bool
429 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
430 {
431     ExecutionContext exe_ctx (CalculateThread());
432 
433     Process *process = exe_ctx.GetProcessPtr();
434     Thread *thread = exe_ctx.GetThreadPtr();
435     if (process == NULL || thread == NULL)
436         return false;
437 
438     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
439 
440     StringExtractorGDBRemote response;
441 
442     Mutex::Locker locker;
443     if (gdb_comm.GetSequenceMutex (locker))
444     {
445         char packet[32];
446         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
447         ProcessSP process_sp (m_thread.GetProcess());
448         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
449         {
450             int packet_len = 0;
451             if (thread_suffix_supported)
452                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx", m_thread.GetID());
453             else
454                 packet_len = ::snprintf (packet, sizeof(packet), "g");
455             assert (packet_len < (sizeof(packet) - 1));
456 
457             if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
458             {
459                 if (response.IsErrorResponse())
460                     return false;
461 
462                 std::string &response_str = response.GetStringRef();
463                 if (isxdigit(response_str[0]))
464                 {
465                     response_str.insert(0, 1, 'G');
466                     if (thread_suffix_supported)
467                     {
468                         char thread_id_cstr[64];
469                         ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4llx;", m_thread.GetID());
470                         response_str.append (thread_id_cstr);
471                     }
472                     data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
473                     return true;
474                 }
475             }
476         }
477     }
478     data_sp.reset();
479     return false;
480 }
481 
482 bool
483 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
484 {
485     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
486         return false;
487 
488     ExecutionContext exe_ctx (CalculateThread());
489 
490     Process *process = exe_ctx.GetProcessPtr();
491     Thread *thread = exe_ctx.GetThreadPtr();
492     if (process == NULL || thread == NULL)
493         return false;
494 
495     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
496 
497     StringExtractorGDBRemote response;
498     Mutex::Locker locker;
499     if (gdb_comm.GetSequenceMutex (locker))
500     {
501         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
502         ProcessSP process_sp (m_thread.GetProcess());
503         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
504         {
505             // The data_sp contains the entire G response packet including the
506             // G, and if the thread suffix is supported, it has the thread suffix
507             // as well.
508             const char *G_packet = (const char *)data_sp->GetBytes();
509             size_t G_packet_len = data_sp->GetByteSize();
510             if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
511                                                        G_packet_len,
512                                                        response,
513                                                        false))
514             {
515                 if (response.IsOKResponse())
516                     return true;
517                 else if (response.IsErrorResponse())
518                 {
519                     uint32_t num_restored = 0;
520                     // We need to manually go through all of the registers and
521                     // restore them manually
522 
523                     response.GetStringRef().assign (G_packet, G_packet_len);
524                     response.SetFilePos(1); // Skip the leading 'G'
525                     DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
526                     DataExtractor restore_data (buffer.GetBytes(),
527                                                 buffer.GetByteSize(),
528                                                 m_reg_data.GetByteOrder(),
529                                                 m_reg_data.GetAddressByteSize());
530 
531                     const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
532                                                                            restore_data.GetByteSize(),
533                                                                            '\xcc');
534 
535                     if (bytes_extracted < restore_data.GetByteSize())
536                         restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
537 
538                     //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
539                     const RegisterInfo *reg_info;
540                     // We have to march the offset of each register along in the
541                     // buffer to make sure we get the right offset.
542                     uint32_t reg_byte_offset = 0;
543                     for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
544                     {
545                         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
546 
547                         // Skip composite registers.
548                         if (reg_info->value_regs)
549                             continue;
550 
551                         // Only write down the registers that need to be written
552                         // if we are going to be doing registers individually.
553                         bool write_reg = true;
554                         const uint32_t reg_byte_size = reg_info->byte_size;
555 
556                         const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
557                         if (restore_src)
558                         {
559                             if (m_reg_valid[reg])
560                             {
561                                 const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
562                                 if (current_src)
563                                     write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
564                             }
565 
566                             if (write_reg)
567                             {
568                                 StreamString packet;
569                                 packet.Printf ("P%x=", reg);
570                                 packet.PutBytesAsRawHex8 (restore_src,
571                                                           reg_byte_size,
572                                                           lldb::endian::InlHostByteOrder(),
573                                                           lldb::endian::InlHostByteOrder());
574 
575                                 if (thread_suffix_supported)
576                                     packet.Printf (";thread:%4.4llx;", m_thread.GetID());
577 
578                                 m_reg_valid[reg] = false;
579                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
580                                                                           packet.GetString().size(),
581                                                                           response,
582                                                                           false))
583                                 {
584                                     if (response.IsOKResponse())
585                                         ++num_restored;
586                                 }
587                             }
588                         }
589                     }
590                     return num_restored > 0;
591                 }
592             }
593         }
594     }
595     return false;
596 }
597 
598 
599 uint32_t
600 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
601 {
602     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
603 }
604 
605 void
606 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters()
607 {
608     // For Advanced SIMD and VFP register mapping.
609     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
610     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
611     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
612     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
613     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
614     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
615     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
616     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
617     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
618     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
619     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
620     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
621     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
622     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
623     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
624     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
625     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
626     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
627     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
628     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
629     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
630     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
631     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
632     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
633     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
634     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
635     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
636     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
637     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
638     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
639     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
640     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
641 
642     static RegisterInfo g_register_infos[] = {
643 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
644 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
645     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
646     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
647     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
648     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
649     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
650     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
651     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
652     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
653     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
654     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
655     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
656     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
657     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
658     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
659     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
660     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
661     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
662     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
663     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
664     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
665     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
666     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
667     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
668     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
669     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
670     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
671     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
672     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
673     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
674     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
675     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
676     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
677     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
678     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
679     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
680     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
681     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
682     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
683     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
684     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
685     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
686     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
687     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
688     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
689     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
690     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
691     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
692     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
693     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
694     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
695     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
696     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
697     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
698     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
699     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
700     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
701     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
702     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
703     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
704     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
705     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
706     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
707     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
708     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
709     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
710     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
711     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
712     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
713     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
714     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
715     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
716     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
717     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
718     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
719     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
720     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
721     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
722     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
723     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
724     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
725     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
726     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
727     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
728     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
729     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
730     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
731     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
732     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
733     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
734     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
735     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
736     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
737     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
738     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
739     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
740     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
741     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
742     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
743     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
744     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
745     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
746     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
747     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
748     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
749     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
750     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
751     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
752     };
753 
754     static const uint32_t num_registers = sizeof (g_register_infos)/sizeof (RegisterInfo);
755     static ConstString gpr_reg_set ("General Purpose Registers");
756     static ConstString sfp_reg_set ("Software Floating Point Registers");
757     static ConstString vfp_reg_set ("Floating Point Registers");
758     uint32_t i;
759     // Calculate the offsets of the registers
760     // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
761     // "primordial" registers is important.  This enables us to calculate the offset of the composite
762     // register by using the offset of its first primordial register.  For example, to calculate the
763     // offset of q0, use s0's offset.
764     if (g_register_infos[2].byte_offset == 0)
765     {
766         uint32_t byte_offset = 0;
767         for (i=0; i<num_registers; ++i)
768         {
769             // For primordial registers, increment the byte_offset by the byte_size to arrive at the
770             // byte_offset for the next register.  Otherwise, we have a composite register whose
771             // offset can be calculated by consulting the offset of its first primordial register.
772             if (!g_register_infos[i].value_regs)
773             {
774                 g_register_infos[i].byte_offset = byte_offset;
775                 byte_offset += g_register_infos[i].byte_size;
776             }
777             else
778             {
779                 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
780                 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
781             }
782         }
783     }
784     for (i=0; i<num_registers; ++i)
785     {
786         ConstString name;
787         ConstString alt_name;
788         if (g_register_infos[i].name && g_register_infos[i].name[0])
789             name.SetCString(g_register_infos[i].name);
790         if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
791             alt_name.SetCString(g_register_infos[i].alt_name);
792 
793         if (i <= 15 || i == 25)
794             AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
795         else if (i <= 24)
796             AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
797         else
798             AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
799     }
800 }
801 
802