1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #include "lldb/Interpreter/PythonDataObjects.h"
21 #include "lldb/Target/ExecutionContext.h"
22 #include "lldb/Utility/Utils.h"
23 // Project includes
24 #include "Utility/StringExtractorGDBRemote.h"
25 #include "ProcessGDBRemote.h"
26 #include "ProcessGDBRemoteLog.h"
27 #include "ThreadGDBRemote.h"
28 #include "Utility/ARM_GCC_Registers.h"
29 #include "Utility/ARM_DWARF_Registers.h"
30 
31 using namespace lldb;
32 using namespace lldb_private;
33 
34 //----------------------------------------------------------------------
35 // GDBRemoteRegisterContext constructor
36 //----------------------------------------------------------------------
37 GDBRemoteRegisterContext::GDBRemoteRegisterContext
38 (
39     ThreadGDBRemote &thread,
40     uint32_t concrete_frame_idx,
41     GDBRemoteDynamicRegisterInfo &reg_info,
42     bool read_all_at_once
43 ) :
44     RegisterContext (thread, concrete_frame_idx),
45     m_reg_info (reg_info),
46     m_reg_valid (),
47     m_reg_data (),
48     m_read_all_at_once (read_all_at_once)
49 {
50     // Resize our vector of bools to contain one bool for every register.
51     // We will use these boolean values to know when a register value
52     // is valid in m_reg_data.
53     m_reg_valid.resize (reg_info.GetNumRegisters());
54 
55     // Make a heap based buffer that is big enough to store all registers
56     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
57     m_reg_data.SetData (reg_data_sp);
58     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
59 }
60 
61 //----------------------------------------------------------------------
62 // Destructor
63 //----------------------------------------------------------------------
64 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
65 {
66 }
67 
68 void
69 GDBRemoteRegisterContext::InvalidateAllRegisters ()
70 {
71     SetAllRegisterValid (false);
72 }
73 
74 void
75 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
76 {
77     std::vector<bool>::iterator pos, end = m_reg_valid.end();
78     for (pos = m_reg_valid.begin(); pos != end; ++pos)
79         *pos = b;
80 }
81 
82 size_t
83 GDBRemoteRegisterContext::GetRegisterCount ()
84 {
85     return m_reg_info.GetNumRegisters ();
86 }
87 
88 const RegisterInfo *
89 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
90 {
91     return m_reg_info.GetRegisterInfoAtIndex (reg);
92 }
93 
94 size_t
95 GDBRemoteRegisterContext::GetRegisterSetCount ()
96 {
97     return m_reg_info.GetNumRegisterSets ();
98 }
99 
100 
101 
102 const RegisterSet *
103 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
104 {
105     return m_reg_info.GetRegisterSet (reg_set);
106 }
107 
108 
109 
110 bool
111 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
112 {
113     // Read the register
114     if (ReadRegisterBytes (reg_info, m_reg_data))
115     {
116         const bool partial_data_ok = false;
117         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
118         return error.Success();
119     }
120     return false;
121 }
122 
123 bool
124 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
125 {
126     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
127     if (reg_info == NULL)
128         return false;
129 
130     // Invalidate if needed
131     InvalidateIfNeeded(false);
132 
133     const uint32_t reg_byte_size = reg_info->byte_size;
134     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
135     bool success = bytes_copied == reg_byte_size;
136     if (success)
137     {
138         SetRegisterIsValid(reg, true);
139     }
140     else if (bytes_copied > 0)
141     {
142         // Only set register is valid to false if we copied some bytes, else
143         // leave it as it was.
144         SetRegisterIsValid(reg, false);
145     }
146     return success;
147 }
148 
149 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
150 bool
151 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
152                                                 GDBRemoteCommunicationClient &gdb_comm)
153 {
154     char packet[64];
155     StringExtractorGDBRemote response;
156     int packet_len = 0;
157     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
158     if (gdb_comm.GetThreadSuffixSupported())
159         packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID());
160     else
161         packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
162     assert (packet_len < ((int)sizeof(packet) - 1));
163     if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
164         return PrivateSetRegisterValue (reg, response);
165 
166     return false;
167 }
168 bool
169 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
170 {
171     ExecutionContext exe_ctx (CalculateThread());
172 
173     Process *process = exe_ctx.GetProcessPtr();
174     Thread *thread = exe_ctx.GetThreadPtr();
175     if (process == NULL || thread == NULL)
176         return false;
177 
178     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
179 
180     InvalidateIfNeeded(false);
181 
182     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
183 
184     if (!GetRegisterIsValid(reg))
185     {
186         Mutex::Locker locker;
187         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register."))
188         {
189             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
190             ProcessSP process_sp (m_thread.GetProcess());
191             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
192             {
193                 char packet[64];
194                 StringExtractorGDBRemote response;
195                 int packet_len = 0;
196                 if (m_read_all_at_once)
197                 {
198                     // Get all registers in one packet
199                     if (thread_suffix_supported)
200                         packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
201                     else
202                         packet_len = ::snprintf (packet, sizeof(packet), "g");
203                     assert (packet_len < ((int)sizeof(packet) - 1));
204                     if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
205                     {
206                         if (response.IsNormalResponse())
207                             if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
208                                 SetAllRegisterValid (true);
209                     }
210                 }
211                 else if (reg_info->value_regs)
212                 {
213                     // Process this composite register request by delegating to the constituent
214                     // primordial registers.
215 
216                     // Index of the primordial register.
217                     bool success = true;
218                     for (uint32_t idx = 0; success; ++idx)
219                     {
220                         const uint32_t prim_reg = reg_info->value_regs[idx];
221                         if (prim_reg == LLDB_INVALID_REGNUM)
222                             break;
223                         // We have a valid primordial regsiter as our constituent.
224                         // Grab the corresponding register info.
225                         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
226                         if (prim_reg_info == NULL)
227                             success = false;
228                         else
229                         {
230                             // Read the containing register if it hasn't already been read
231                             if (!GetRegisterIsValid(prim_reg))
232                                 success = GetPrimordialRegister(prim_reg_info, gdb_comm);
233                         }
234                     }
235 
236                     if (success)
237                     {
238                         // If we reach this point, all primordial register requests have succeeded.
239                         // Validate this composite register.
240                         SetRegisterIsValid (reg_info, true);
241                     }
242                 }
243                 else
244                 {
245                     // Get each register individually
246                     GetPrimordialRegister(reg_info, gdb_comm);
247                 }
248             }
249         }
250         else
251         {
252 #if LLDB_CONFIGURATION_DEBUG
253             StreamString strm;
254             gdb_comm.DumpHistory(strm);
255             Host::SetCrashDescription (strm.GetData());
256             assert (!"Didn't get sequence mutex for read register.");
257 #else
258             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
259             if (log)
260             {
261                 if (log->GetVerbose())
262                 {
263                     StreamString strm;
264                     gdb_comm.DumpHistory(strm);
265                     log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
266                 }
267                 else
268                 {
269                     log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
270                 }
271             }
272 #endif
273         }
274 
275         // Make sure we got a valid register value after reading it
276         if (!GetRegisterIsValid(reg))
277             return false;
278     }
279 
280     if (&data != &m_reg_data)
281     {
282         // If we aren't extracting into our own buffer (which
283         // only happens when this function is called from
284         // ReadRegisterValue(uint32_t, Scalar&)) then
285         // we transfer bytes from our buffer into the data
286         // buffer that was passed in
287         data.SetByteOrder (m_reg_data.GetByteOrder());
288         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
289     }
290     return true;
291 }
292 
293 bool
294 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
295                                          const RegisterValue &value)
296 {
297     DataExtractor data;
298     if (value.GetData (data))
299         return WriteRegisterBytes (reg_info, data, 0);
300     return false;
301 }
302 
303 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
304 bool
305 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
306                                                 GDBRemoteCommunicationClient &gdb_comm)
307 {
308     StreamString packet;
309     StringExtractorGDBRemote response;
310     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
311     packet.Printf ("P%x=", reg);
312     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
313                               reg_info->byte_size,
314                               lldb::endian::InlHostByteOrder(),
315                               lldb::endian::InlHostByteOrder());
316 
317     if (gdb_comm.GetThreadSuffixSupported())
318         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
319 
320     // Invalidate just this register
321     SetRegisterIsValid(reg, false);
322     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
323                                               packet.GetString().size(),
324                                               response,
325                                               false))
326     {
327         if (response.IsOKResponse())
328             return true;
329     }
330     return false;
331 }
332 
333 void
334 GDBRemoteRegisterContext::SyncThreadState(Process *process)
335 {
336     // NB.  We assume our caller has locked the sequence mutex.
337 
338     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
339     if (!gdb_comm.GetSyncThreadStateSupported())
340         return;
341 
342     StreamString packet;
343     StringExtractorGDBRemote response;
344     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
345     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
346                                               packet.GetString().size(),
347                                               response,
348                                               false))
349     {
350         if (response.IsOKResponse())
351             InvalidateAllRegisters();
352     }
353 }
354 
355 bool
356 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
357 {
358     ExecutionContext exe_ctx (CalculateThread());
359 
360     Process *process = exe_ctx.GetProcessPtr();
361     Thread *thread = exe_ctx.GetThreadPtr();
362     if (process == NULL || thread == NULL)
363         return false;
364 
365     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
366 // FIXME: This check isn't right because IsRunning checks the Public state, but this
367 // is work you need to do - for instance in ShouldStop & friends - before the public
368 // state has been changed.
369 //    if (gdb_comm.IsRunning())
370 //        return false;
371 
372     // Grab a pointer to where we are going to put this register
373     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
374 
375     if (dst == NULL)
376         return false;
377 
378 
379     if (data.CopyByteOrderedData (data_offset,                  // src offset
380                                   reg_info->byte_size,          // src length
381                                   dst,                          // dst
382                                   reg_info->byte_size,          // dst length
383                                   m_reg_data.GetByteOrder()))   // dst byte order
384     {
385         Mutex::Locker locker;
386         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
387         {
388             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
389             ProcessSP process_sp (m_thread.GetProcess());
390             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
391             {
392                 StreamString packet;
393                 StringExtractorGDBRemote response;
394 
395                 if (m_read_all_at_once)
396                 {
397                     // Set all registers in one packet
398                     packet.PutChar ('G');
399                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
400                                               m_reg_data.GetByteSize(),
401                                               lldb::endian::InlHostByteOrder(),
402                                               lldb::endian::InlHostByteOrder());
403 
404                     if (thread_suffix_supported)
405                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
406 
407                     // Invalidate all register values
408                     InvalidateIfNeeded (true);
409 
410                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
411                                                               packet.GetString().size(),
412                                                               response,
413                                                               false))
414                     {
415                         SetAllRegisterValid (false);
416                         if (response.IsOKResponse())
417                         {
418                             return true;
419                         }
420                     }
421                 }
422                 else
423                 {
424                     bool success = true;
425 
426                     if (reg_info->value_regs)
427                     {
428                         // This register is part of another register. In this case we read the actual
429                         // register data for any "value_regs", and once all that data is read, we will
430                         // have enough data in our register context bytes for the value of this register
431 
432                         // Invalidate this composite register first.
433 
434                         for (uint32_t idx = 0; success; ++idx)
435                         {
436                             const uint32_t reg = reg_info->value_regs[idx];
437                             if (reg == LLDB_INVALID_REGNUM)
438                                 break;
439                             // We have a valid primordial regsiter as our constituent.
440                             // Grab the corresponding register info.
441                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
442                             if (value_reg_info == NULL)
443                                 success = false;
444                             else
445                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
446                         }
447                     }
448                     else
449                     {
450                         // This is an actual register, write it
451                         success = SetPrimordialRegister(reg_info, gdb_comm);
452                     }
453 
454                     // Check if writing this register will invalidate any other register values?
455                     // If so, invalidate them
456                     if (reg_info->invalidate_regs)
457                     {
458                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
459                              reg != LLDB_INVALID_REGNUM;
460                              reg = reg_info->invalidate_regs[++idx])
461                         {
462                             SetRegisterIsValid(reg, false);
463                         }
464                     }
465 
466                     return success;
467                 }
468             }
469         }
470         else
471         {
472             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
473             if (log)
474             {
475                 if (log->GetVerbose())
476                 {
477                     StreamString strm;
478                     gdb_comm.DumpHistory(strm);
479                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
480                 }
481                 else
482                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
483             }
484         }
485     }
486     return false;
487 }
488 
489 
490 bool
491 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
492 {
493     ExecutionContext exe_ctx (CalculateThread());
494 
495     Process *process = exe_ctx.GetProcessPtr();
496     Thread *thread = exe_ctx.GetThreadPtr();
497     if (process == NULL || thread == NULL)
498         return false;
499 
500     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
501 
502     StringExtractorGDBRemote response;
503 
504     Mutex::Locker locker;
505     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
506     {
507         SyncThreadState(process);
508 
509         char packet[32];
510         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
511         ProcessSP process_sp (m_thread.GetProcess());
512         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
513         {
514             int packet_len = 0;
515             if (thread_suffix_supported)
516                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
517             else
518                 packet_len = ::snprintf (packet, sizeof(packet), "g");
519             assert (packet_len < ((int)sizeof(packet) - 1));
520 
521             if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
522             {
523                 if (response.IsErrorResponse())
524                     return false;
525 
526                 std::string &response_str = response.GetStringRef();
527                 if (isxdigit(response_str[0]))
528                 {
529                     response_str.insert(0, 1, 'G');
530                     if (thread_suffix_supported)
531                     {
532                         char thread_id_cstr[64];
533                         ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
534                         response_str.append (thread_id_cstr);
535                     }
536                     data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
537                     return true;
538                 }
539             }
540         }
541     }
542     else
543     {
544         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
545         if (log)
546         {
547             if (log->GetVerbose())
548             {
549                 StreamString strm;
550                 gdb_comm.DumpHistory(strm);
551                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
552             }
553             else
554                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
555         }
556     }
557 
558     data_sp.reset();
559     return false;
560 }
561 
562 bool
563 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
564 {
565     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
566         return false;
567 
568     ExecutionContext exe_ctx (CalculateThread());
569 
570     Process *process = exe_ctx.GetProcessPtr();
571     Thread *thread = exe_ctx.GetThreadPtr();
572     if (process == NULL || thread == NULL)
573         return false;
574 
575     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
576 
577     StringExtractorGDBRemote response;
578     Mutex::Locker locker;
579     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
580     {
581         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
582         ProcessSP process_sp (m_thread.GetProcess());
583         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
584         {
585             // The data_sp contains the entire G response packet including the
586             // G, and if the thread suffix is supported, it has the thread suffix
587             // as well.
588             const char *G_packet = (const char *)data_sp->GetBytes();
589             size_t G_packet_len = data_sp->GetByteSize();
590             if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
591                                                        G_packet_len,
592                                                        response,
593                                                        false))
594             {
595                 if (response.IsOKResponse())
596                     return true;
597                 else if (response.IsErrorResponse())
598                 {
599                     uint32_t num_restored = 0;
600                     // We need to manually go through all of the registers and
601                     // restore them manually
602 
603                     response.GetStringRef().assign (G_packet, G_packet_len);
604                     response.SetFilePos(1); // Skip the leading 'G'
605                     DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
606                     DataExtractor restore_data (buffer.GetBytes(),
607                                                 buffer.GetByteSize(),
608                                                 m_reg_data.GetByteOrder(),
609                                                 m_reg_data.GetAddressByteSize());
610 
611                     const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
612                                                                            restore_data.GetByteSize(),
613                                                                            '\xcc');
614 
615                     if (bytes_extracted < restore_data.GetByteSize())
616                         restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
617 
618                     //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
619                     const RegisterInfo *reg_info;
620                     // We have to march the offset of each register along in the
621                     // buffer to make sure we get the right offset.
622                     uint32_t reg_byte_offset = 0;
623                     for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
624                     {
625                         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
626 
627                         // Skip composite registers.
628                         if (reg_info->value_regs)
629                             continue;
630 
631                         // Only write down the registers that need to be written
632                         // if we are going to be doing registers individually.
633                         bool write_reg = true;
634                         const uint32_t reg_byte_size = reg_info->byte_size;
635 
636                         const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
637                         if (restore_src)
638                         {
639                             if (GetRegisterIsValid(reg))
640                             {
641                                 const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
642                                 if (current_src)
643                                     write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
644                             }
645 
646                             if (write_reg)
647                             {
648                                 StreamString packet;
649                                 packet.Printf ("P%x=", reg);
650                                 packet.PutBytesAsRawHex8 (restore_src,
651                                                           reg_byte_size,
652                                                           lldb::endian::InlHostByteOrder(),
653                                                           lldb::endian::InlHostByteOrder());
654 
655                                 if (thread_suffix_supported)
656                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
657 
658                                 SetRegisterIsValid(reg, false);
659                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
660                                                                           packet.GetString().size(),
661                                                                           response,
662                                                                           false))
663                                 {
664                                     if (response.IsOKResponse())
665                                         ++num_restored;
666                                 }
667                             }
668                         }
669                     }
670                     return num_restored > 0;
671                 }
672             }
673         }
674     }
675     else
676     {
677         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
678         if (log)
679         {
680             if (log->GetVerbose())
681             {
682                 StreamString strm;
683                 gdb_comm.DumpHistory(strm);
684                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
685             }
686             else
687                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
688         }
689     }
690     return false;
691 }
692 
693 
694 uint32_t
695 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
696 {
697     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
698 }
699 
700 size_t
701 GDBRemoteDynamicRegisterInfo::SetRegisterInfo (const lldb_private::PythonDictionary &dict)
702 {
703 #ifndef LLDB_DISABLE_PYTHON
704     PythonList sets (dict.GetItemForKey("sets"));
705     if (sets)
706     {
707         const uint32_t num_sets = sets.GetSize();
708         for (uint32_t i=0; i<num_sets; ++i)
709         {
710             PythonString py_set_name(sets.GetItemAtIndex(i));
711             ConstString set_name;
712             if (py_set_name)
713                 set_name.SetCString(py_set_name.GetString());
714             if (set_name)
715             {
716                 RegisterSet new_set = { set_name.AsCString(), NULL, 0, NULL };
717                 m_sets.push_back (new_set);
718             }
719             else
720             {
721                 Clear();
722                 return 0;
723             }
724         }
725         m_set_reg_nums.resize(m_sets.size());
726     }
727     PythonList regs (dict.GetItemForKey("registers"));
728     if (regs)
729     {
730         const uint32_t num_regs = regs.GetSize();
731         PythonString name_pystr("name");
732         PythonString altname_pystr("alt-name");
733         PythonString bitsize_pystr("bitsize");
734         PythonString offset_pystr("offset");
735         PythonString encoding_pystr("encoding");
736         PythonString format_pystr("format");
737         PythonString set_pystr("set");
738         PythonString gcc_pystr("gcc");
739         PythonString gdb_pystr("gdb");
740         PythonString dwarf_pystr("dwarf");
741         PythonString generic_pystr("generic");
742         for (uint32_t i=0; i<num_regs; ++i)
743         {
744             PythonDictionary reg_info_dict(regs.GetItemAtIndex(i));
745             if (reg_info_dict)
746             {
747                 // { 'name':'rcx'       , 'bitsize' :  64, 'offset' :  16, 'encoding':'uint'  , 'format':'hex'         , 'set': 0, 'gcc' : 2, 'dwarf' : 2, 'generic':'arg4', 'alt-name':'arg4', },
748                 RegisterInfo reg_info;
749                 bzero (&reg_info, sizeof(reg_info));
750 
751                 reg_info.name = ConstString (reg_info_dict.GetItemForKeyAsString(name_pystr)).GetCString();
752                 if (reg_info.name == NULL)
753                 {
754                     Clear();
755                     return 0;
756                 }
757 
758                 reg_info.alt_name = ConstString (reg_info_dict.GetItemForKeyAsString(altname_pystr)).GetCString();
759 
760                 reg_info.byte_offset = reg_info_dict.GetItemForKeyAsInteger(offset_pystr, UINT32_MAX);
761 
762                 if (reg_info.byte_offset == UINT32_MAX)
763                 {
764                     Clear();
765                     return 0;
766                 }
767                 reg_info.byte_size = reg_info_dict.GetItemForKeyAsInteger(bitsize_pystr, 0) / 8;
768 
769                 if (reg_info.byte_size == 0)
770                 {
771                     Clear();
772                     return 0;
773                 }
774 
775                 const char *format_cstr = reg_info_dict.GetItemForKeyAsString(format_pystr);
776                 if (format_cstr)
777                 {
778                     if (Args::StringToFormat(format_cstr, reg_info.format, NULL).Fail())
779                     {
780                         Clear();
781                         return 0;
782                     }
783                 }
784                 else
785                 {
786                     reg_info.format = (Format)reg_info_dict.GetItemForKeyAsInteger (format_pystr, eFormatHex);
787                 }
788 
789                 const char *encoding_cstr = reg_info_dict.GetItemForKeyAsString(encoding_pystr);
790                 if (encoding_cstr)
791                     reg_info.encoding = Args::StringToEncoding (encoding_cstr, eEncodingUint);
792                 else
793                     reg_info.encoding = (Encoding)reg_info_dict.GetItemForKeyAsInteger (encoding_pystr, eEncodingUint);
794 
795                 const int64_t set = reg_info_dict.GetItemForKeyAsInteger(set_pystr, -1);
796                 if (set >= m_sets.size())
797                 {
798                     Clear();
799                     return 0;
800                 }
801 
802                 reg_info.kinds[lldb::eRegisterKindLLDB]    = i;
803                 reg_info.kinds[lldb::eRegisterKindGDB]     = reg_info_dict.GetItemForKeyAsInteger(gdb_pystr    , LLDB_INVALID_REGNUM);
804                 reg_info.kinds[lldb::eRegisterKindGCC]     = reg_info_dict.GetItemForKeyAsInteger(gcc_pystr    , LLDB_INVALID_REGNUM);
805                 reg_info.kinds[lldb::eRegisterKindDWARF]   = reg_info_dict.GetItemForKeyAsInteger(dwarf_pystr  , LLDB_INVALID_REGNUM);
806                 const char *generic_cstr = reg_info_dict.GetItemForKeyAsString(generic_pystr);
807                 if (generic_cstr)
808                     reg_info.kinds[lldb::eRegisterKindGeneric] = Args::StringToGenericRegister (generic_cstr);
809                 else
810                     reg_info.kinds[lldb::eRegisterKindGeneric] = reg_info_dict.GetItemForKeyAsInteger(generic_pystr, LLDB_INVALID_REGNUM);
811                 const size_t end_reg_offset = reg_info.byte_offset + reg_info.byte_size;
812                 if (m_reg_data_byte_size < end_reg_offset)
813                     m_reg_data_byte_size = end_reg_offset;
814 
815                 m_regs.push_back (reg_info);
816                 m_set_reg_nums[set].push_back(i);
817 
818             }
819             else
820             {
821                 Clear();
822                 return 0;
823             }
824         }
825         Finalize ();
826     }
827 #endif
828     return 0;
829 }
830 
831 void
832 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
833 {
834     // For Advanced SIMD and VFP register mapping.
835     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
836     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
837     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
838     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
839     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
840     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
841     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
842     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
843     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
844     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
845     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
846     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
847     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
848     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
849     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
850     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
851     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
852     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
853     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
854     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
855     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
856     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
857     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
858     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
859     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
860     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
861     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
862     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
863     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
864     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
865     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
866     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
867 
868     // This is our array of composite registers, with each element coming from the above register mappings.
869     static uint32_t *g_composites[] = {
870         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
871         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
872         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
873         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
874     };
875 
876     static RegisterInfo g_register_infos[] = {
877 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
878 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
879     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
880     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
881     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
882     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
883     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
884     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
885     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
886     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
887     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
888     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
889     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
890     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
891     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
892     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
893     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
894     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
895     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
896     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
897     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
898     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
899     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
900     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
901     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
902     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
903     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
904     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
905     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
906     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
907     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
908     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
909     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
910     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
911     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
912     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
913     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
914     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
915     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
916     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
917     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
918     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
919     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
920     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
921     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
922     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
923     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
924     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
925     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
926     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
927     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
928     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
929     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
930     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
931     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
932     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
933     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
934     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
935     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
936     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
937     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
938     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
939     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
940     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
941     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
942     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
943     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
944     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
945     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
946     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
947     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
948     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
949     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
950     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
951     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
952     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
953     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
954     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
955     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
956     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
957     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
958     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
959     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
960     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
961     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
962     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
963     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
964     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
965     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
966     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
967     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
968     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
969     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
970     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
971     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
972     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
973     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
974     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
975     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
976     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
977     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
978     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
979     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
980     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
981     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
982     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
983     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
984     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
985     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
986     };
987 
988     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
989     static ConstString gpr_reg_set ("General Purpose Registers");
990     static ConstString sfp_reg_set ("Software Floating Point Registers");
991     static ConstString vfp_reg_set ("Floating Point Registers");
992     size_t i;
993     if (from_scratch)
994     {
995         // Calculate the offsets of the registers
996         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
997         // "primordial" registers is important.  This enables us to calculate the offset of the composite
998         // register by using the offset of its first primordial register.  For example, to calculate the
999         // offset of q0, use s0's offset.
1000         if (g_register_infos[2].byte_offset == 0)
1001         {
1002             uint32_t byte_offset = 0;
1003             for (i=0; i<num_registers; ++i)
1004             {
1005                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
1006                 // byte_offset for the next register.  Otherwise, we have a composite register whose
1007                 // offset can be calculated by consulting the offset of its first primordial register.
1008                 if (!g_register_infos[i].value_regs)
1009                 {
1010                     g_register_infos[i].byte_offset = byte_offset;
1011                     byte_offset += g_register_infos[i].byte_size;
1012                 }
1013                 else
1014                 {
1015                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
1016                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
1017                 }
1018             }
1019         }
1020         for (i=0; i<num_registers; ++i)
1021         {
1022             ConstString name;
1023             ConstString alt_name;
1024             if (g_register_infos[i].name && g_register_infos[i].name[0])
1025                 name.SetCString(g_register_infos[i].name);
1026             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1027                 alt_name.SetCString(g_register_infos[i].alt_name);
1028 
1029             if (i <= 15 || i == 25)
1030                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
1031             else if (i <= 24)
1032                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
1033             else
1034                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
1035         }
1036     }
1037     else
1038     {
1039         // Add composite registers to our primordial registers, then.
1040         const size_t num_composites = llvm::array_lengthof(g_composites);
1041         const size_t num_dynamic_regs = GetNumRegisters();
1042         const size_t num_common_regs = num_registers - num_composites;
1043         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1044 
1045         // First we need to validate that all registers that we already have match the non composite regs.
1046         // If so, then we can add the registers, else we need to bail
1047         bool match = true;
1048         if (num_dynamic_regs == num_common_regs)
1049         {
1050             for (i=0; match && i<num_dynamic_regs; ++i)
1051             {
1052                 // Make sure all register names match
1053                 if (m_regs[i].name && g_register_infos[i].name)
1054                 {
1055                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
1056                     {
1057                         match = false;
1058                         break;
1059                     }
1060                 }
1061 
1062                 // Make sure all register byte sizes match
1063                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
1064                 {
1065                     match = false;
1066                     break;
1067                 }
1068             }
1069         }
1070         else
1071         {
1072             // Wrong number of registers.
1073             match = false;
1074         }
1075         // If "match" is true, then we can add extra registers.
1076         if (match)
1077         {
1078             for (i=0; i<num_composites; ++i)
1079             {
1080                 ConstString name;
1081                 ConstString alt_name;
1082                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
1083                 const char *reg_name = g_register_infos[first_primordial_reg].name;
1084                 if (reg_name && reg_name[0])
1085                 {
1086                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
1087                     {
1088                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1089                         // Find a matching primordial register info entry.
1090                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
1091                         {
1092                             // The name matches the existing primordial entry.
1093                             // Find and assign the offset, and then add this composite register entry.
1094                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1095                             name.SetCString(g_comp_register_infos[i].name);
1096                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
1097                         }
1098                     }
1099                 }
1100             }
1101         }
1102     }
1103 }
1104