1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "GDBRemoteRegisterContext.h"
10 
11 #include "lldb/Target/ExecutionContext.h"
12 #include "lldb/Target/Target.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/RegisterValue.h"
16 #include "lldb/Utility/Scalar.h"
17 #include "lldb/Utility/StreamString.h"
18 #include "ProcessGDBRemote.h"
19 #include "ProcessGDBRemoteLog.h"
20 #include "ThreadGDBRemote.h"
21 #include "Utility/ARM_DWARF_Registers.h"
22 #include "Utility/ARM_ehframe_Registers.h"
23 #include "lldb/Utility/StringExtractorGDBRemote.h"
24 
25 #include <memory>
26 
27 using namespace lldb;
28 using namespace lldb_private;
29 using namespace lldb_private::process_gdb_remote;
30 
31 //----------------------------------------------------------------------
32 // GDBRemoteRegisterContext constructor
33 //----------------------------------------------------------------------
34 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
35     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
36     GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
37     : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
38       m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
39   // Resize our vector of bools to contain one bool for every register. We will
40   // use these boolean values to know when a register value is valid in
41   // m_reg_data.
42   m_reg_valid.resize(reg_info.GetNumRegisters());
43 
44   // Make a heap based buffer that is big enough to store all registers
45   DataBufferSP reg_data_sp(
46       new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
47   m_reg_data.SetData(reg_data_sp);
48   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
49 }
50 
51 //----------------------------------------------------------------------
52 // Destructor
53 //----------------------------------------------------------------------
54 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
55 
56 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
57   SetAllRegisterValid(false);
58 }
59 
60 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
61   std::vector<bool>::iterator pos, end = m_reg_valid.end();
62   for (pos = m_reg_valid.begin(); pos != end; ++pos)
63     *pos = b;
64 }
65 
66 size_t GDBRemoteRegisterContext::GetRegisterCount() {
67   return m_reg_info.GetNumRegisters();
68 }
69 
70 const RegisterInfo *
71 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
72   RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
73 
74   if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
75     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
76     uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
77     reg_info->byte_size = reg_size;
78   }
79   return reg_info;
80 }
81 
82 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
83   return m_reg_info.GetNumRegisterSets();
84 }
85 
86 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
87   return m_reg_info.GetRegisterSet(reg_set);
88 }
89 
90 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
91                                             RegisterValue &value) {
92   // Read the register
93   if (ReadRegisterBytes(reg_info, m_reg_data)) {
94     const bool partial_data_ok = false;
95     Status error(value.SetValueFromData(
96         reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
97     return error.Success();
98   }
99   return false;
100 }
101 
102 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
103     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
104   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
105   if (reg_info == NULL)
106     return false;
107 
108   // Invalidate if needed
109   InvalidateIfNeeded(false);
110 
111   const size_t reg_byte_size = reg_info->byte_size;
112   memcpy(const_cast<uint8_t *>(
113              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
114          data.data(), std::min(data.size(), reg_byte_size));
115   bool success = data.size() >= reg_byte_size;
116   if (success) {
117     SetRegisterIsValid(reg, true);
118   } else if (data.size() > 0) {
119     // Only set register is valid to false if we copied some bytes, else leave
120     // it as it was.
121     SetRegisterIsValid(reg, false);
122   }
123   return success;
124 }
125 
126 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
127                                                        uint64_t new_reg_val) {
128   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
129   if (reg_info == NULL)
130     return false;
131 
132   // Early in process startup, we can get a thread that has an invalid byte
133   // order because the process hasn't been completely set up yet (see the ctor
134   // where the byte order is setfrom the process).  If that's the case, we
135   // can't set the value here.
136   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
137     return false;
138   }
139 
140   // Invalidate if needed
141   InvalidateIfNeeded(false);
142 
143   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
144   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
145 
146   // If our register context and our register info disagree, which should never
147   // happen, don't overwrite past the end of the buffer.
148   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
149     return false;
150 
151   // Grab a pointer to where we are going to put this register
152   uint8_t *dst = const_cast<uint8_t *>(
153       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
154 
155   if (dst == NULL)
156     return false;
157 
158   if (data.CopyByteOrderedData(0,                          // src offset
159                                reg_info->byte_size,        // src length
160                                dst,                        // dst
161                                reg_info->byte_size,        // dst length
162                                m_reg_data.GetByteOrder())) // dst byte order
163   {
164     SetRegisterIsValid(reg, true);
165     return true;
166   }
167   return false;
168 }
169 
170 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
171 bool GDBRemoteRegisterContext::GetPrimordialRegister(
172     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
173   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
174   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
175 
176   if (DataBufferSP buffer_sp =
177           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
178     return PrivateSetRegisterValue(
179         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
180                                           buffer_sp->GetByteSize()));
181   return false;
182 }
183 
184 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
185                                                  DataExtractor &data) {
186   ExecutionContext exe_ctx(CalculateThread());
187 
188   Process *process = exe_ctx.GetProcessPtr();
189   Thread *thread = exe_ctx.GetThreadPtr();
190   if (process == NULL || thread == NULL)
191     return false;
192 
193   GDBRemoteCommunicationClient &gdb_comm(
194       ((ProcessGDBRemote *)process)->GetGDBRemote());
195 
196   InvalidateIfNeeded(false);
197 
198   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
199 
200   if (!GetRegisterIsValid(reg)) {
201     if (m_read_all_at_once) {
202       if (DataBufferSP buffer_sp =
203               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
204         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
205                buffer_sp->GetBytes(),
206                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
207         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
208           SetAllRegisterValid(true);
209           return true;
210         } else {
211           Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
212                                                                 GDBR_LOG_PACKETS));
213           if (log)
214             log->Printf ("error: GDBRemoteRegisterContext::ReadRegisterBytes tried to read the "
215                         "entire register context at once, expected at least %" PRId64 " bytes "
216                         "but only got %" PRId64 " bytes.", m_reg_data.GetByteSize(),
217                         buffer_sp->GetByteSize());
218         }
219       }
220       return false;
221     }
222     if (reg_info->value_regs) {
223       // Process this composite register request by delegating to the
224       // constituent primordial registers.
225 
226       // Index of the primordial register.
227       bool success = true;
228       for (uint32_t idx = 0; success; ++idx) {
229         const uint32_t prim_reg = reg_info->value_regs[idx];
230         if (prim_reg == LLDB_INVALID_REGNUM)
231           break;
232         // We have a valid primordial register as our constituent. Grab the
233         // corresponding register info.
234         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
235         if (prim_reg_info == NULL)
236           success = false;
237         else {
238           // Read the containing register if it hasn't already been read
239           if (!GetRegisterIsValid(prim_reg))
240             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
241         }
242       }
243 
244       if (success) {
245         // If we reach this point, all primordial register requests have
246         // succeeded. Validate this composite register.
247         SetRegisterIsValid(reg_info, true);
248       }
249     } else {
250       // Get each register individually
251       GetPrimordialRegister(reg_info, gdb_comm);
252     }
253 
254     // Make sure we got a valid register value after reading it
255     if (!GetRegisterIsValid(reg))
256       return false;
257   }
258 
259   if (&data != &m_reg_data) {
260     assert(m_reg_data.GetByteSize() >=
261            reg_info->byte_offset + reg_info->byte_size);
262     // If our register context and our register info disagree, which should
263     // never happen, don't read past the end of the buffer.
264     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
265       return false;
266 
267     // If we aren't extracting into our own buffer (which only happens when
268     // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
269     // we transfer bytes from our buffer into the data buffer that was passed
270     // in
271 
272     data.SetByteOrder(m_reg_data.GetByteOrder());
273     data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
274   }
275   return true;
276 }
277 
278 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
279                                              const RegisterValue &value) {
280   DataExtractor data;
281   if (value.GetData(data))
282     return WriteRegisterBytes(reg_info, data, 0);
283   return false;
284 }
285 
286 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
287 bool GDBRemoteRegisterContext::SetPrimordialRegister(
288     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
289   StreamString packet;
290   StringExtractorGDBRemote response;
291   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
292   // Invalidate just this register
293   SetRegisterIsValid(reg, false);
294 
295   return gdb_comm.WriteRegister(
296       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
297       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
298        reg_info->byte_size});
299 }
300 
301 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
302                                                   DataExtractor &data,
303                                                   uint32_t data_offset) {
304   ExecutionContext exe_ctx(CalculateThread());
305 
306   Process *process = exe_ctx.GetProcessPtr();
307   Thread *thread = exe_ctx.GetThreadPtr();
308   if (process == NULL || thread == NULL)
309     return false;
310 
311   GDBRemoteCommunicationClient &gdb_comm(
312       ((ProcessGDBRemote *)process)->GetGDBRemote());
313 
314   assert(m_reg_data.GetByteSize() >=
315          reg_info->byte_offset + reg_info->byte_size);
316 
317   // If our register context and our register info disagree, which should never
318   // happen, don't overwrite past the end of the buffer.
319   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
320     return false;
321 
322   // Grab a pointer to where we are going to put this register
323   uint8_t *dst = const_cast<uint8_t *>(
324       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
325 
326   if (dst == NULL)
327     return false;
328 
329   if (data.CopyByteOrderedData(data_offset,                // src offset
330                                reg_info->byte_size,        // src length
331                                dst,                        // dst
332                                reg_info->byte_size,        // dst length
333                                m_reg_data.GetByteOrder())) // dst byte order
334   {
335     GDBRemoteClientBase::Lock lock(gdb_comm, false);
336     if (lock) {
337       if (m_read_all_at_once) {
338         // Invalidate all register values
339         InvalidateIfNeeded(true);
340 
341         // Set all registers in one packet
342         if (gdb_comm.WriteAllRegisters(
343                 m_thread.GetProtocolID(),
344                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
345 
346         {
347           SetAllRegisterValid(false);
348           return true;
349         }
350       } else {
351         bool success = true;
352 
353         if (reg_info->value_regs) {
354           // This register is part of another register. In this case we read
355           // the actual register data for any "value_regs", and once all that
356           // data is read, we will have enough data in our register context
357           // bytes for the value of this register
358 
359           // Invalidate this composite register first.
360 
361           for (uint32_t idx = 0; success; ++idx) {
362             const uint32_t reg = reg_info->value_regs[idx];
363             if (reg == LLDB_INVALID_REGNUM)
364               break;
365             // We have a valid primordial register as our constituent. Grab the
366             // corresponding register info.
367             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
368             if (value_reg_info == NULL)
369               success = false;
370             else
371               success = SetPrimordialRegister(value_reg_info, gdb_comm);
372           }
373         } else {
374           // This is an actual register, write it
375           success = SetPrimordialRegister(reg_info, gdb_comm);
376         }
377 
378         // Check if writing this register will invalidate any other register
379         // values? If so, invalidate them
380         if (reg_info->invalidate_regs) {
381           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
382                reg != LLDB_INVALID_REGNUM;
383                reg = reg_info->invalidate_regs[++idx]) {
384             SetRegisterIsValid(reg, false);
385           }
386         }
387 
388         return success;
389       }
390     } else {
391       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
392                                                              GDBR_LOG_PACKETS));
393       if (log) {
394         if (log->GetVerbose()) {
395           StreamString strm;
396           gdb_comm.DumpHistory(strm);
397           log->Printf("error: failed to get packet sequence mutex, not sending "
398                       "write register for \"%s\":\n%s",
399                       reg_info->name, strm.GetData());
400         } else
401           log->Printf("error: failed to get packet sequence mutex, not sending "
402                       "write register for \"%s\"",
403                       reg_info->name);
404       }
405     }
406   }
407   return false;
408 }
409 
410 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
411     RegisterCheckpoint &reg_checkpoint) {
412   ExecutionContext exe_ctx(CalculateThread());
413 
414   Process *process = exe_ctx.GetProcessPtr();
415   Thread *thread = exe_ctx.GetThreadPtr();
416   if (process == NULL || thread == NULL)
417     return false;
418 
419   GDBRemoteCommunicationClient &gdb_comm(
420       ((ProcessGDBRemote *)process)->GetGDBRemote());
421 
422   uint32_t save_id = 0;
423   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
424     reg_checkpoint.SetID(save_id);
425     reg_checkpoint.GetData().reset();
426     return true;
427   } else {
428     reg_checkpoint.SetID(0); // Invalid save ID is zero
429     return ReadAllRegisterValues(reg_checkpoint.GetData());
430   }
431 }
432 
433 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
434     const RegisterCheckpoint &reg_checkpoint) {
435   uint32_t save_id = reg_checkpoint.GetID();
436   if (save_id != 0) {
437     ExecutionContext exe_ctx(CalculateThread());
438 
439     Process *process = exe_ctx.GetProcessPtr();
440     Thread *thread = exe_ctx.GetThreadPtr();
441     if (process == NULL || thread == NULL)
442       return false;
443 
444     GDBRemoteCommunicationClient &gdb_comm(
445         ((ProcessGDBRemote *)process)->GetGDBRemote());
446 
447     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
448   } else {
449     return WriteAllRegisterValues(reg_checkpoint.GetData());
450   }
451 }
452 
453 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
454     lldb::DataBufferSP &data_sp) {
455   ExecutionContext exe_ctx(CalculateThread());
456 
457   Process *process = exe_ctx.GetProcessPtr();
458   Thread *thread = exe_ctx.GetThreadPtr();
459   if (process == NULL || thread == NULL)
460     return false;
461 
462   GDBRemoteCommunicationClient &gdb_comm(
463       ((ProcessGDBRemote *)process)->GetGDBRemote());
464 
465   const bool use_g_packet =
466       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
467 
468   GDBRemoteClientBase::Lock lock(gdb_comm, false);
469   if (lock) {
470     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
471       InvalidateAllRegisters();
472 
473     if (use_g_packet &&
474         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
475       return true;
476 
477     // We're going to read each register
478     // individually and store them as binary data in a buffer.
479     const RegisterInfo *reg_info;
480 
481     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) {
482       if (reg_info
483               ->value_regs) // skip registers that are slices of real registers
484         continue;
485       ReadRegisterBytes(reg_info, m_reg_data);
486       // ReadRegisterBytes saves the contents of the register in to the
487       // m_reg_data buffer
488     }
489     data_sp = std::make_shared<DataBufferHeap>(
490         m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
491     return true;
492   } else {
493 
494     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
495                                                            GDBR_LOG_PACKETS));
496     if (log) {
497       if (log->GetVerbose()) {
498         StreamString strm;
499         gdb_comm.DumpHistory(strm);
500         log->Printf("error: failed to get packet sequence mutex, not sending "
501                     "read all registers:\n%s",
502                     strm.GetData());
503       } else
504         log->Printf("error: failed to get packet sequence mutex, not sending "
505                     "read all registers");
506     }
507   }
508 
509   data_sp.reset();
510   return false;
511 }
512 
513 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
514     const lldb::DataBufferSP &data_sp) {
515   if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
516     return false;
517 
518   ExecutionContext exe_ctx(CalculateThread());
519 
520   Process *process = exe_ctx.GetProcessPtr();
521   Thread *thread = exe_ctx.GetThreadPtr();
522   if (process == NULL || thread == NULL)
523     return false;
524 
525   GDBRemoteCommunicationClient &gdb_comm(
526       ((ProcessGDBRemote *)process)->GetGDBRemote());
527 
528   const bool use_g_packet =
529       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
530 
531   GDBRemoteClientBase::Lock lock(gdb_comm, false);
532   if (lock) {
533     // The data_sp contains the G response packet.
534     if (use_g_packet) {
535       if (gdb_comm.WriteAllRegisters(
536               m_thread.GetProtocolID(),
537               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
538         return true;
539 
540       uint32_t num_restored = 0;
541       // We need to manually go through all of the registers and restore them
542       // manually
543       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
544                                  m_reg_data.GetAddressByteSize());
545 
546       const RegisterInfo *reg_info;
547 
548       // The g packet contents may either include the slice registers
549       // (registers defined in terms of other registers, e.g. eax is a subset
550       // of rax) or not.  The slice registers should NOT be in the g packet,
551       // but some implementations may incorrectly include them.
552       //
553       // If the slice registers are included in the packet, we must step over
554       // the slice registers when parsing the packet -- relying on the
555       // RegisterInfo byte_offset field would be incorrect. If the slice
556       // registers are not included, then using the byte_offset values into the
557       // data buffer is the best way to find individual register values.
558 
559       uint64_t size_including_slice_registers = 0;
560       uint64_t size_not_including_slice_registers = 0;
561       uint64_t size_by_highest_offset = 0;
562 
563       for (uint32_t reg_idx = 0;
564            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) {
565         size_including_slice_registers += reg_info->byte_size;
566         if (reg_info->value_regs == NULL)
567           size_not_including_slice_registers += reg_info->byte_size;
568         if (reg_info->byte_offset >= size_by_highest_offset)
569           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
570       }
571 
572       bool use_byte_offset_into_buffer;
573       if (size_by_highest_offset == restore_data.GetByteSize()) {
574         // The size of the packet agrees with the highest offset: + size in the
575         // register file
576         use_byte_offset_into_buffer = true;
577       } else if (size_not_including_slice_registers ==
578                  restore_data.GetByteSize()) {
579         // The size of the packet is the same as concatenating all of the
580         // registers sequentially, skipping the slice registers
581         use_byte_offset_into_buffer = true;
582       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
583         // The slice registers are present in the packet (when they shouldn't
584         // be). Don't try to use the RegisterInfo byte_offset into the
585         // restore_data, it will point to the wrong place.
586         use_byte_offset_into_buffer = false;
587       } else {
588         // None of our expected sizes match the actual g packet data we're
589         // looking at. The most conservative approach here is to use the
590         // running total byte offset.
591         use_byte_offset_into_buffer = false;
592       }
593 
594       // In case our register definitions don't include the correct offsets,
595       // keep track of the size of each reg & compute offset based on that.
596       uint32_t running_byte_offset = 0;
597       for (uint32_t reg_idx = 0;
598            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL;
599            ++reg_idx, running_byte_offset += reg_info->byte_size) {
600         // Skip composite aka slice registers (e.g. eax is a slice of rax).
601         if (reg_info->value_regs)
602           continue;
603 
604         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
605 
606         uint32_t register_offset;
607         if (use_byte_offset_into_buffer) {
608           register_offset = reg_info->byte_offset;
609         } else {
610           register_offset = running_byte_offset;
611         }
612 
613         const uint32_t reg_byte_size = reg_info->byte_size;
614 
615         const uint8_t *restore_src =
616             restore_data.PeekData(register_offset, reg_byte_size);
617         if (restore_src) {
618           SetRegisterIsValid(reg, false);
619           if (gdb_comm.WriteRegister(
620                   m_thread.GetProtocolID(),
621                   reg_info->kinds[eRegisterKindProcessPlugin],
622                   {restore_src, reg_byte_size}))
623             ++num_restored;
624         }
625       }
626       return num_restored > 0;
627     } else {
628       // For the use_g_packet == false case, we're going to write each register
629       // individually.  The data buffer is binary data in this case, instead of
630       // ascii characters.
631 
632       bool arm64_debugserver = false;
633       if (m_thread.GetProcess().get()) {
634         const ArchSpec &arch =
635             m_thread.GetProcess()->GetTarget().GetArchitecture();
636         if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
637             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
638             arch.GetTriple().getOS() == llvm::Triple::IOS) {
639           arm64_debugserver = true;
640         }
641       }
642       uint32_t num_restored = 0;
643       const RegisterInfo *reg_info;
644       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL;
645            i++) {
646         if (reg_info->value_regs) // skip registers that are slices of real
647                                   // registers
648           continue;
649         // Skip the fpsr and fpcr floating point status/control register
650         // writing to work around a bug in an older version of debugserver that
651         // would lead to register context corruption when writing fpsr/fpcr.
652         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
653                                   strcmp(reg_info->name, "fpcr") == 0)) {
654           continue;
655         }
656 
657         SetRegisterIsValid(reg_info, false);
658         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
659                                    reg_info->kinds[eRegisterKindProcessPlugin],
660                                    {data_sp->GetBytes() + reg_info->byte_offset,
661                                     reg_info->byte_size}))
662           ++num_restored;
663       }
664       return num_restored > 0;
665     }
666   } else {
667     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
668                                                            GDBR_LOG_PACKETS));
669     if (log) {
670       if (log->GetVerbose()) {
671         StreamString strm;
672         gdb_comm.DumpHistory(strm);
673         log->Printf("error: failed to get packet sequence mutex, not sending "
674                     "write all registers:\n%s",
675                     strm.GetData());
676       } else
677         log->Printf("error: failed to get packet sequence mutex, not sending "
678                     "write all registers");
679     }
680   }
681   return false;
682 }
683 
684 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
685     lldb::RegisterKind kind, uint32_t num) {
686   return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
687 }
688 
689 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
690   // For Advanced SIMD and VFP register mapping.
691   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
692   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
693   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
694   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
695   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
696   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
697   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
698   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
699   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
700   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
701   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
702   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
703   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
704   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
705   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
706   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
707   static uint32_t g_q0_regs[] = {
708       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
709   static uint32_t g_q1_regs[] = {
710       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
711   static uint32_t g_q2_regs[] = {
712       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
713   static uint32_t g_q3_regs[] = {
714       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
715   static uint32_t g_q4_regs[] = {
716       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
717   static uint32_t g_q5_regs[] = {
718       46, 47, 48, 49,
719       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
720   static uint32_t g_q6_regs[] = {
721       50, 51, 52, 53,
722       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
723   static uint32_t g_q7_regs[] = {
724       54, 55, 56, 57,
725       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
726   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
727   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
728   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
729   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
730   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
731   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
732   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
733   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
734 
735   // This is our array of composite registers, with each element coming from
736   // the above register mappings.
737   static uint32_t *g_composites[] = {
738       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
739       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
740       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
741       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
742       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
743       g_q14_regs, g_q15_regs};
744 
745   // clang-format off
746     static RegisterInfo g_register_infos[] = {
747 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
748 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
749     { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
750     { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
751     { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
752     { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
753     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
754     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
755     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
756     { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
757     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
758     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
759     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
760     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
761     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
762     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
763     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
764     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
765     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
766     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
767     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
768     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
769     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
770     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
771     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
772     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
773     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
774     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
775     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
776     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
777     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
778     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
779     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
780     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
781     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
782     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
783     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
784     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
785     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
786     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
787     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
788     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
789     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
790     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
791     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
792     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
793     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
794     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
795     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
796     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
797     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
798     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
799     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
800     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
801     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
802     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
803     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
804     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
805     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
806     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
807     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
808     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
809     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
810     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
811     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
812     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
813     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
814     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
815     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
816     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
817     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
818     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
819     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
820     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
821     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
822     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
823     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
824     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
825     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
826     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
827     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
828     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
829     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
830     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
831     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
832     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
833     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
834     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
835     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
836     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
837     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
838     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
839     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
840     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
841     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
842     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
843     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
844     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
845     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
846     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
847     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
848     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
849     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
850     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
851     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
852     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
853     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
854     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
855     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
856     };
857   // clang-format on
858 
859   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
860   static ConstString gpr_reg_set("General Purpose Registers");
861   static ConstString sfp_reg_set("Software Floating Point Registers");
862   static ConstString vfp_reg_set("Floating Point Registers");
863   size_t i;
864   if (from_scratch) {
865     // Calculate the offsets of the registers
866     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
867     // which comes after the "primordial" registers is important.  This enables
868     // us to calculate the offset of the composite register by using the offset
869     // of its first primordial register.  For example, to calculate the offset
870     // of q0, use s0's offset.
871     if (g_register_infos[2].byte_offset == 0) {
872       uint32_t byte_offset = 0;
873       for (i = 0; i < num_registers; ++i) {
874         // For primordial registers, increment the byte_offset by the byte_size
875         // to arrive at the byte_offset for the next register.  Otherwise, we
876         // have a composite register whose offset can be calculated by
877         // consulting the offset of its first primordial register.
878         if (!g_register_infos[i].value_regs) {
879           g_register_infos[i].byte_offset = byte_offset;
880           byte_offset += g_register_infos[i].byte_size;
881         } else {
882           const uint32_t first_primordial_reg =
883               g_register_infos[i].value_regs[0];
884           g_register_infos[i].byte_offset =
885               g_register_infos[first_primordial_reg].byte_offset;
886         }
887       }
888     }
889     for (i = 0; i < num_registers; ++i) {
890       ConstString name;
891       ConstString alt_name;
892       if (g_register_infos[i].name && g_register_infos[i].name[0])
893         name.SetCString(g_register_infos[i].name);
894       if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
895         alt_name.SetCString(g_register_infos[i].alt_name);
896 
897       if (i <= 15 || i == 25)
898         AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
899       else if (i <= 24)
900         AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
901       else
902         AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
903     }
904   } else {
905     // Add composite registers to our primordial registers, then.
906     const size_t num_composites = llvm::array_lengthof(g_composites);
907     const size_t num_dynamic_regs = GetNumRegisters();
908     const size_t num_common_regs = num_registers - num_composites;
909     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
910 
911     // First we need to validate that all registers that we already have match
912     // the non composite regs. If so, then we can add the registers, else we
913     // need to bail
914     bool match = true;
915     if (num_dynamic_regs == num_common_regs) {
916       for (i = 0; match && i < num_dynamic_regs; ++i) {
917         // Make sure all register names match
918         if (m_regs[i].name && g_register_infos[i].name) {
919           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
920             match = false;
921             break;
922           }
923         }
924 
925         // Make sure all register byte sizes match
926         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
927           match = false;
928           break;
929         }
930       }
931     } else {
932       // Wrong number of registers.
933       match = false;
934     }
935     // If "match" is true, then we can add extra registers.
936     if (match) {
937       for (i = 0; i < num_composites; ++i) {
938         ConstString name;
939         ConstString alt_name;
940         const uint32_t first_primordial_reg =
941             g_comp_register_infos[i].value_regs[0];
942         const char *reg_name = g_register_infos[first_primordial_reg].name;
943         if (reg_name && reg_name[0]) {
944           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
945             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
946             // Find a matching primordial register info entry.
947             if (reg_info && reg_info->name &&
948                 ::strcasecmp(reg_info->name, reg_name) == 0) {
949               // The name matches the existing primordial entry. Find and
950               // assign the offset, and then add this composite register entry.
951               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
952               name.SetCString(g_comp_register_infos[i].name);
953               AddRegister(g_comp_register_infos[i], name, alt_name,
954                           vfp_reg_set);
955             }
956           }
957         }
958       }
959     }
960   }
961 }
962