1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "GDBRemoteRegisterContext.h" 10 11 #include "lldb/Target/ExecutionContext.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/RegisterValue.h" 16 #include "lldb/Utility/Scalar.h" 17 #include "lldb/Utility/StreamString.h" 18 #include "ProcessGDBRemote.h" 19 #include "ProcessGDBRemoteLog.h" 20 #include "ThreadGDBRemote.h" 21 #include "Utility/ARM_DWARF_Registers.h" 22 #include "Utility/ARM_ehframe_Registers.h" 23 #include "lldb/Utility/StringExtractorGDBRemote.h" 24 25 #include <memory> 26 27 using namespace lldb; 28 using namespace lldb_private; 29 using namespace lldb_private::process_gdb_remote; 30 31 //---------------------------------------------------------------------- 32 // GDBRemoteRegisterContext constructor 33 //---------------------------------------------------------------------- 34 GDBRemoteRegisterContext::GDBRemoteRegisterContext( 35 ThreadGDBRemote &thread, uint32_t concrete_frame_idx, 36 GDBRemoteDynamicRegisterInfo ®_info, bool read_all_at_once) 37 : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info), 38 m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) { 39 // Resize our vector of bools to contain one bool for every register. We will 40 // use these boolean values to know when a register value is valid in 41 // m_reg_data. 42 m_reg_valid.resize(reg_info.GetNumRegisters()); 43 44 // Make a heap based buffer that is big enough to store all registers 45 DataBufferSP reg_data_sp( 46 new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0)); 47 m_reg_data.SetData(reg_data_sp); 48 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 49 } 50 51 //---------------------------------------------------------------------- 52 // Destructor 53 //---------------------------------------------------------------------- 54 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {} 55 56 void GDBRemoteRegisterContext::InvalidateAllRegisters() { 57 SetAllRegisterValid(false); 58 } 59 60 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { 61 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 62 for (pos = m_reg_valid.begin(); pos != end; ++pos) 63 *pos = b; 64 } 65 66 size_t GDBRemoteRegisterContext::GetRegisterCount() { 67 return m_reg_info.GetNumRegisters(); 68 } 69 70 const RegisterInfo * 71 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { 72 RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg); 73 74 if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { 75 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 76 uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info); 77 reg_info->byte_size = reg_size; 78 } 79 return reg_info; 80 } 81 82 size_t GDBRemoteRegisterContext::GetRegisterSetCount() { 83 return m_reg_info.GetNumRegisterSets(); 84 } 85 86 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { 87 return m_reg_info.GetRegisterSet(reg_set); 88 } 89 90 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, 91 RegisterValue &value) { 92 // Read the register 93 if (ReadRegisterBytes(reg_info, m_reg_data)) { 94 const bool partial_data_ok = false; 95 Status error(value.SetValueFromData( 96 reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 97 return error.Success(); 98 } 99 return false; 100 } 101 102 bool GDBRemoteRegisterContext::PrivateSetRegisterValue( 103 uint32_t reg, llvm::ArrayRef<uint8_t> data) { 104 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 105 if (reg_info == NULL) 106 return false; 107 108 // Invalidate if needed 109 InvalidateIfNeeded(false); 110 111 const size_t reg_byte_size = reg_info->byte_size; 112 memcpy(const_cast<uint8_t *>( 113 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), 114 data.data(), std::min(data.size(), reg_byte_size)); 115 bool success = data.size() >= reg_byte_size; 116 if (success) { 117 SetRegisterIsValid(reg, true); 118 } else if (data.size() > 0) { 119 // Only set register is valid to false if we copied some bytes, else leave 120 // it as it was. 121 SetRegisterIsValid(reg, false); 122 } 123 return success; 124 } 125 126 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, 127 uint64_t new_reg_val) { 128 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 129 if (reg_info == NULL) 130 return false; 131 132 // Early in process startup, we can get a thread that has an invalid byte 133 // order because the process hasn't been completely set up yet (see the ctor 134 // where the byte order is setfrom the process). If that's the case, we 135 // can't set the value here. 136 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { 137 return false; 138 } 139 140 // Invalidate if needed 141 InvalidateIfNeeded(false); 142 143 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); 144 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); 145 146 // If our register context and our register info disagree, which should never 147 // happen, don't overwrite past the end of the buffer. 148 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 149 return false; 150 151 // Grab a pointer to where we are going to put this register 152 uint8_t *dst = const_cast<uint8_t *>( 153 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 154 155 if (dst == NULL) 156 return false; 157 158 if (data.CopyByteOrderedData(0, // src offset 159 reg_info->byte_size, // src length 160 dst, // dst 161 reg_info->byte_size, // dst length 162 m_reg_data.GetByteOrder())) // dst byte order 163 { 164 SetRegisterIsValid(reg, true); 165 return true; 166 } 167 return false; 168 } 169 170 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 171 bool GDBRemoteRegisterContext::GetPrimordialRegister( 172 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 173 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; 174 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; 175 176 if (DataBufferSP buffer_sp = 177 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) 178 return PrivateSetRegisterValue( 179 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(), 180 buffer_sp->GetByteSize())); 181 return false; 182 } 183 184 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info, 185 DataExtractor &data) { 186 ExecutionContext exe_ctx(CalculateThread()); 187 188 Process *process = exe_ctx.GetProcessPtr(); 189 Thread *thread = exe_ctx.GetThreadPtr(); 190 if (process == NULL || thread == NULL) 191 return false; 192 193 GDBRemoteCommunicationClient &gdb_comm( 194 ((ProcessGDBRemote *)process)->GetGDBRemote()); 195 196 InvalidateIfNeeded(false); 197 198 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 199 200 if (!GetRegisterIsValid(reg)) { 201 if (m_read_all_at_once) { 202 if (DataBufferSP buffer_sp = 203 gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { 204 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()), 205 buffer_sp->GetBytes(), 206 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); 207 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { 208 SetAllRegisterValid(true); 209 return true; 210 } else { 211 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 212 GDBR_LOG_PACKETS)); 213 if (log) 214 log->Printf ("error: GDBRemoteRegisterContext::ReadRegisterBytes tried to read the " 215 "entire register context at once, expected at least %" PRId64 " bytes " 216 "but only got %" PRId64 " bytes.", m_reg_data.GetByteSize(), 217 buffer_sp->GetByteSize()); 218 } 219 } 220 return false; 221 } 222 if (reg_info->value_regs) { 223 // Process this composite register request by delegating to the 224 // constituent primordial registers. 225 226 // Index of the primordial register. 227 bool success = true; 228 for (uint32_t idx = 0; success; ++idx) { 229 const uint32_t prim_reg = reg_info->value_regs[idx]; 230 if (prim_reg == LLDB_INVALID_REGNUM) 231 break; 232 // We have a valid primordial register as our constituent. Grab the 233 // corresponding register info. 234 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 235 if (prim_reg_info == NULL) 236 success = false; 237 else { 238 // Read the containing register if it hasn't already been read 239 if (!GetRegisterIsValid(prim_reg)) 240 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 241 } 242 } 243 244 if (success) { 245 // If we reach this point, all primordial register requests have 246 // succeeded. Validate this composite register. 247 SetRegisterIsValid(reg_info, true); 248 } 249 } else { 250 // Get each register individually 251 GetPrimordialRegister(reg_info, gdb_comm); 252 } 253 254 // Make sure we got a valid register value after reading it 255 if (!GetRegisterIsValid(reg)) 256 return false; 257 } 258 259 if (&data != &m_reg_data) { 260 assert(m_reg_data.GetByteSize() >= 261 reg_info->byte_offset + reg_info->byte_size); 262 // If our register context and our register info disagree, which should 263 // never happen, don't read past the end of the buffer. 264 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 265 return false; 266 267 // If we aren't extracting into our own buffer (which only happens when 268 // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then 269 // we transfer bytes from our buffer into the data buffer that was passed 270 // in 271 272 data.SetByteOrder(m_reg_data.GetByteOrder()); 273 data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size); 274 } 275 return true; 276 } 277 278 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, 279 const RegisterValue &value) { 280 DataExtractor data; 281 if (value.GetData(data)) 282 return WriteRegisterBytes(reg_info, data, 0); 283 return false; 284 } 285 286 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 287 bool GDBRemoteRegisterContext::SetPrimordialRegister( 288 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 289 StreamString packet; 290 StringExtractorGDBRemote response; 291 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 292 // Invalidate just this register 293 SetRegisterIsValid(reg, false); 294 295 return gdb_comm.WriteRegister( 296 m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], 297 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 298 reg_info->byte_size}); 299 } 300 301 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, 302 DataExtractor &data, 303 uint32_t data_offset) { 304 ExecutionContext exe_ctx(CalculateThread()); 305 306 Process *process = exe_ctx.GetProcessPtr(); 307 Thread *thread = exe_ctx.GetThreadPtr(); 308 if (process == NULL || thread == NULL) 309 return false; 310 311 GDBRemoteCommunicationClient &gdb_comm( 312 ((ProcessGDBRemote *)process)->GetGDBRemote()); 313 314 assert(m_reg_data.GetByteSize() >= 315 reg_info->byte_offset + reg_info->byte_size); 316 317 // If our register context and our register info disagree, which should never 318 // happen, don't overwrite past the end of the buffer. 319 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 320 return false; 321 322 // Grab a pointer to where we are going to put this register 323 uint8_t *dst = const_cast<uint8_t *>( 324 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 325 326 if (dst == NULL) 327 return false; 328 329 if (data.CopyByteOrderedData(data_offset, // src offset 330 reg_info->byte_size, // src length 331 dst, // dst 332 reg_info->byte_size, // dst length 333 m_reg_data.GetByteOrder())) // dst byte order 334 { 335 GDBRemoteClientBase::Lock lock(gdb_comm, false); 336 if (lock) { 337 if (m_read_all_at_once) { 338 // Invalidate all register values 339 InvalidateIfNeeded(true); 340 341 // Set all registers in one packet 342 if (gdb_comm.WriteAllRegisters( 343 m_thread.GetProtocolID(), 344 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) 345 346 { 347 SetAllRegisterValid(false); 348 return true; 349 } 350 } else { 351 bool success = true; 352 353 if (reg_info->value_regs) { 354 // This register is part of another register. In this case we read 355 // the actual register data for any "value_regs", and once all that 356 // data is read, we will have enough data in our register context 357 // bytes for the value of this register 358 359 // Invalidate this composite register first. 360 361 for (uint32_t idx = 0; success; ++idx) { 362 const uint32_t reg = reg_info->value_regs[idx]; 363 if (reg == LLDB_INVALID_REGNUM) 364 break; 365 // We have a valid primordial register as our constituent. Grab the 366 // corresponding register info. 367 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 368 if (value_reg_info == NULL) 369 success = false; 370 else 371 success = SetPrimordialRegister(value_reg_info, gdb_comm); 372 } 373 } else { 374 // This is an actual register, write it 375 success = SetPrimordialRegister(reg_info, gdb_comm); 376 } 377 378 // Check if writing this register will invalidate any other register 379 // values? If so, invalidate them 380 if (reg_info->invalidate_regs) { 381 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 382 reg != LLDB_INVALID_REGNUM; 383 reg = reg_info->invalidate_regs[++idx]) { 384 SetRegisterIsValid(reg, false); 385 } 386 } 387 388 return success; 389 } 390 } else { 391 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 392 GDBR_LOG_PACKETS)); 393 if (log) { 394 if (log->GetVerbose()) { 395 StreamString strm; 396 gdb_comm.DumpHistory(strm); 397 log->Printf("error: failed to get packet sequence mutex, not sending " 398 "write register for \"%s\":\n%s", 399 reg_info->name, strm.GetData()); 400 } else 401 log->Printf("error: failed to get packet sequence mutex, not sending " 402 "write register for \"%s\"", 403 reg_info->name); 404 } 405 } 406 } 407 return false; 408 } 409 410 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 411 RegisterCheckpoint ®_checkpoint) { 412 ExecutionContext exe_ctx(CalculateThread()); 413 414 Process *process = exe_ctx.GetProcessPtr(); 415 Thread *thread = exe_ctx.GetThreadPtr(); 416 if (process == NULL || thread == NULL) 417 return false; 418 419 GDBRemoteCommunicationClient &gdb_comm( 420 ((ProcessGDBRemote *)process)->GetGDBRemote()); 421 422 uint32_t save_id = 0; 423 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { 424 reg_checkpoint.SetID(save_id); 425 reg_checkpoint.GetData().reset(); 426 return true; 427 } else { 428 reg_checkpoint.SetID(0); // Invalid save ID is zero 429 return ReadAllRegisterValues(reg_checkpoint.GetData()); 430 } 431 } 432 433 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 434 const RegisterCheckpoint ®_checkpoint) { 435 uint32_t save_id = reg_checkpoint.GetID(); 436 if (save_id != 0) { 437 ExecutionContext exe_ctx(CalculateThread()); 438 439 Process *process = exe_ctx.GetProcessPtr(); 440 Thread *thread = exe_ctx.GetThreadPtr(); 441 if (process == NULL || thread == NULL) 442 return false; 443 444 GDBRemoteCommunicationClient &gdb_comm( 445 ((ProcessGDBRemote *)process)->GetGDBRemote()); 446 447 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 448 } else { 449 return WriteAllRegisterValues(reg_checkpoint.GetData()); 450 } 451 } 452 453 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 454 lldb::DataBufferSP &data_sp) { 455 ExecutionContext exe_ctx(CalculateThread()); 456 457 Process *process = exe_ctx.GetProcessPtr(); 458 Thread *thread = exe_ctx.GetThreadPtr(); 459 if (process == NULL || thread == NULL) 460 return false; 461 462 GDBRemoteCommunicationClient &gdb_comm( 463 ((ProcessGDBRemote *)process)->GetGDBRemote()); 464 465 const bool use_g_packet = 466 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 467 468 GDBRemoteClientBase::Lock lock(gdb_comm, false); 469 if (lock) { 470 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) 471 InvalidateAllRegisters(); 472 473 if (use_g_packet && 474 (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID()))) 475 return true; 476 477 // We're going to read each register 478 // individually and store them as binary data in a buffer. 479 const RegisterInfo *reg_info; 480 481 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) { 482 if (reg_info 483 ->value_regs) // skip registers that are slices of real registers 484 continue; 485 ReadRegisterBytes(reg_info, m_reg_data); 486 // ReadRegisterBytes saves the contents of the register in to the 487 // m_reg_data buffer 488 } 489 data_sp = std::make_shared<DataBufferHeap>( 490 m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 491 return true; 492 } else { 493 494 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 495 GDBR_LOG_PACKETS)); 496 if (log) { 497 if (log->GetVerbose()) { 498 StreamString strm; 499 gdb_comm.DumpHistory(strm); 500 log->Printf("error: failed to get packet sequence mutex, not sending " 501 "read all registers:\n%s", 502 strm.GetData()); 503 } else 504 log->Printf("error: failed to get packet sequence mutex, not sending " 505 "read all registers"); 506 } 507 } 508 509 data_sp.reset(); 510 return false; 511 } 512 513 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 514 const lldb::DataBufferSP &data_sp) { 515 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 516 return false; 517 518 ExecutionContext exe_ctx(CalculateThread()); 519 520 Process *process = exe_ctx.GetProcessPtr(); 521 Thread *thread = exe_ctx.GetThreadPtr(); 522 if (process == NULL || thread == NULL) 523 return false; 524 525 GDBRemoteCommunicationClient &gdb_comm( 526 ((ProcessGDBRemote *)process)->GetGDBRemote()); 527 528 const bool use_g_packet = 529 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 530 531 GDBRemoteClientBase::Lock lock(gdb_comm, false); 532 if (lock) { 533 // The data_sp contains the G response packet. 534 if (use_g_packet) { 535 if (gdb_comm.WriteAllRegisters( 536 m_thread.GetProtocolID(), 537 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) 538 return true; 539 540 uint32_t num_restored = 0; 541 // We need to manually go through all of the registers and restore them 542 // manually 543 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), 544 m_reg_data.GetAddressByteSize()); 545 546 const RegisterInfo *reg_info; 547 548 // The g packet contents may either include the slice registers 549 // (registers defined in terms of other registers, e.g. eax is a subset 550 // of rax) or not. The slice registers should NOT be in the g packet, 551 // but some implementations may incorrectly include them. 552 // 553 // If the slice registers are included in the packet, we must step over 554 // the slice registers when parsing the packet -- relying on the 555 // RegisterInfo byte_offset field would be incorrect. If the slice 556 // registers are not included, then using the byte_offset values into the 557 // data buffer is the best way to find individual register values. 558 559 uint64_t size_including_slice_registers = 0; 560 uint64_t size_not_including_slice_registers = 0; 561 uint64_t size_by_highest_offset = 0; 562 563 for (uint32_t reg_idx = 0; 564 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) { 565 size_including_slice_registers += reg_info->byte_size; 566 if (reg_info->value_regs == NULL) 567 size_not_including_slice_registers += reg_info->byte_size; 568 if (reg_info->byte_offset >= size_by_highest_offset) 569 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 570 } 571 572 bool use_byte_offset_into_buffer; 573 if (size_by_highest_offset == restore_data.GetByteSize()) { 574 // The size of the packet agrees with the highest offset: + size in the 575 // register file 576 use_byte_offset_into_buffer = true; 577 } else if (size_not_including_slice_registers == 578 restore_data.GetByteSize()) { 579 // The size of the packet is the same as concatenating all of the 580 // registers sequentially, skipping the slice registers 581 use_byte_offset_into_buffer = true; 582 } else if (size_including_slice_registers == restore_data.GetByteSize()) { 583 // The slice registers are present in the packet (when they shouldn't 584 // be). Don't try to use the RegisterInfo byte_offset into the 585 // restore_data, it will point to the wrong place. 586 use_byte_offset_into_buffer = false; 587 } else { 588 // None of our expected sizes match the actual g packet data we're 589 // looking at. The most conservative approach here is to use the 590 // running total byte offset. 591 use_byte_offset_into_buffer = false; 592 } 593 594 // In case our register definitions don't include the correct offsets, 595 // keep track of the size of each reg & compute offset based on that. 596 uint32_t running_byte_offset = 0; 597 for (uint32_t reg_idx = 0; 598 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; 599 ++reg_idx, running_byte_offset += reg_info->byte_size) { 600 // Skip composite aka slice registers (e.g. eax is a slice of rax). 601 if (reg_info->value_regs) 602 continue; 603 604 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 605 606 uint32_t register_offset; 607 if (use_byte_offset_into_buffer) { 608 register_offset = reg_info->byte_offset; 609 } else { 610 register_offset = running_byte_offset; 611 } 612 613 const uint32_t reg_byte_size = reg_info->byte_size; 614 615 const uint8_t *restore_src = 616 restore_data.PeekData(register_offset, reg_byte_size); 617 if (restore_src) { 618 SetRegisterIsValid(reg, false); 619 if (gdb_comm.WriteRegister( 620 m_thread.GetProtocolID(), 621 reg_info->kinds[eRegisterKindProcessPlugin], 622 {restore_src, reg_byte_size})) 623 ++num_restored; 624 } 625 } 626 return num_restored > 0; 627 } else { 628 // For the use_g_packet == false case, we're going to write each register 629 // individually. The data buffer is binary data in this case, instead of 630 // ascii characters. 631 632 bool arm64_debugserver = false; 633 if (m_thread.GetProcess().get()) { 634 const ArchSpec &arch = 635 m_thread.GetProcess()->GetTarget().GetArchitecture(); 636 if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 && 637 arch.GetTriple().getVendor() == llvm::Triple::Apple && 638 arch.GetTriple().getOS() == llvm::Triple::IOS) { 639 arm64_debugserver = true; 640 } 641 } 642 uint32_t num_restored = 0; 643 const RegisterInfo *reg_info; 644 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; 645 i++) { 646 if (reg_info->value_regs) // skip registers that are slices of real 647 // registers 648 continue; 649 // Skip the fpsr and fpcr floating point status/control register 650 // writing to work around a bug in an older version of debugserver that 651 // would lead to register context corruption when writing fpsr/fpcr. 652 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || 653 strcmp(reg_info->name, "fpcr") == 0)) { 654 continue; 655 } 656 657 SetRegisterIsValid(reg_info, false); 658 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), 659 reg_info->kinds[eRegisterKindProcessPlugin], 660 {data_sp->GetBytes() + reg_info->byte_offset, 661 reg_info->byte_size})) 662 ++num_restored; 663 } 664 return num_restored > 0; 665 } 666 } else { 667 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 668 GDBR_LOG_PACKETS)); 669 if (log) { 670 if (log->GetVerbose()) { 671 StreamString strm; 672 gdb_comm.DumpHistory(strm); 673 log->Printf("error: failed to get packet sequence mutex, not sending " 674 "write all registers:\n%s", 675 strm.GetData()); 676 } else 677 log->Printf("error: failed to get packet sequence mutex, not sending " 678 "write all registers"); 679 } 680 } 681 return false; 682 } 683 684 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( 685 lldb::RegisterKind kind, uint32_t num) { 686 return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num); 687 } 688 689 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { 690 // For Advanced SIMD and VFP register mapping. 691 static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1) 692 static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3) 693 static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5) 694 static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7) 695 static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9) 696 static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11) 697 static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13) 698 static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15) 699 static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17) 700 static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19) 701 static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21) 702 static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23) 703 static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25) 704 static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27) 705 static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29) 706 static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31) 707 static uint32_t g_q0_regs[] = { 708 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3) 709 static uint32_t g_q1_regs[] = { 710 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7) 711 static uint32_t g_q2_regs[] = { 712 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11) 713 static uint32_t g_q3_regs[] = { 714 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15) 715 static uint32_t g_q4_regs[] = { 716 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19) 717 static uint32_t g_q5_regs[] = { 718 46, 47, 48, 49, 719 LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23) 720 static uint32_t g_q6_regs[] = { 721 50, 51, 52, 53, 722 LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27) 723 static uint32_t g_q7_regs[] = { 724 54, 55, 56, 57, 725 LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31) 726 static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17) 727 static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19) 728 static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21) 729 static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23) 730 static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25) 731 static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27) 732 static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29) 733 static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31) 734 735 // This is our array of composite registers, with each element coming from 736 // the above register mappings. 737 static uint32_t *g_composites[] = { 738 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, 739 g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, 740 g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, 741 g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 742 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, 743 g_q14_regs, g_q15_regs}; 744 745 // clang-format off 746 static RegisterInfo g_register_infos[] = { 747 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN 748 // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ======== 749 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 }, 750 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 }, 751 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 }, 752 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 }, 753 { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 }, 754 { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 }, 755 { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 }, 756 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 }, 757 { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 }, 758 { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 }, 759 { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 }, 760 { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 }, 761 { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 }, 762 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 }, 763 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 }, 764 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 }, 765 { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 }, 766 { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 }, 767 { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 }, 768 { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 }, 769 { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 }, 770 { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 }, 771 { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 }, 772 { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 }, 773 { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 }, 774 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 }, 775 { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 }, 776 { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 }, 777 { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 }, 778 { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 }, 779 { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 }, 780 { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 }, 781 { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 }, 782 { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 }, 783 { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 }, 784 { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 }, 785 { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 }, 786 { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 }, 787 { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 }, 788 { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 }, 789 { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 }, 790 { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 }, 791 { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 }, 792 { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 }, 793 { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 }, 794 { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 }, 795 { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 }, 796 { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 }, 797 { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 }, 798 { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 }, 799 { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 }, 800 { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 }, 801 { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 }, 802 { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 }, 803 { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 }, 804 { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 }, 805 { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 }, 806 { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 }, 807 { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 }, 808 { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 }, 809 { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 }, 810 { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 }, 811 { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 }, 812 { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 }, 813 { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 }, 814 { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 }, 815 { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 }, 816 { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 }, 817 { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 }, 818 { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 }, 819 { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 }, 820 { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 }, 821 { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 }, 822 { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 }, 823 { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 }, 824 { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 }, 825 { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 }, 826 { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 }, 827 { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 }, 828 { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 }, 829 { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 }, 830 { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 }, 831 { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 }, 832 { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 }, 833 { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 }, 834 { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 }, 835 { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 }, 836 { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 }, 837 { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 }, 838 { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 }, 839 { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 }, 840 { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 }, 841 { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 }, 842 { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 }, 843 { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 }, 844 { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 }, 845 { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 }, 846 { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 }, 847 { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 }, 848 { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 }, 849 { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 }, 850 { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 }, 851 { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 }, 852 { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 }, 853 { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 }, 854 { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 }, 855 { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 } 856 }; 857 // clang-format on 858 859 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 860 static ConstString gpr_reg_set("General Purpose Registers"); 861 static ConstString sfp_reg_set("Software Floating Point Registers"); 862 static ConstString vfp_reg_set("Floating Point Registers"); 863 size_t i; 864 if (from_scratch) { 865 // Calculate the offsets of the registers 866 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) 867 // which comes after the "primordial" registers is important. This enables 868 // us to calculate the offset of the composite register by using the offset 869 // of its first primordial register. For example, to calculate the offset 870 // of q0, use s0's offset. 871 if (g_register_infos[2].byte_offset == 0) { 872 uint32_t byte_offset = 0; 873 for (i = 0; i < num_registers; ++i) { 874 // For primordial registers, increment the byte_offset by the byte_size 875 // to arrive at the byte_offset for the next register. Otherwise, we 876 // have a composite register whose offset can be calculated by 877 // consulting the offset of its first primordial register. 878 if (!g_register_infos[i].value_regs) { 879 g_register_infos[i].byte_offset = byte_offset; 880 byte_offset += g_register_infos[i].byte_size; 881 } else { 882 const uint32_t first_primordial_reg = 883 g_register_infos[i].value_regs[0]; 884 g_register_infos[i].byte_offset = 885 g_register_infos[first_primordial_reg].byte_offset; 886 } 887 } 888 } 889 for (i = 0; i < num_registers; ++i) { 890 ConstString name; 891 ConstString alt_name; 892 if (g_register_infos[i].name && g_register_infos[i].name[0]) 893 name.SetCString(g_register_infos[i].name); 894 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 895 alt_name.SetCString(g_register_infos[i].alt_name); 896 897 if (i <= 15 || i == 25) 898 AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set); 899 else if (i <= 24) 900 AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set); 901 else 902 AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set); 903 } 904 } else { 905 // Add composite registers to our primordial registers, then. 906 const size_t num_composites = llvm::array_lengthof(g_composites); 907 const size_t num_dynamic_regs = GetNumRegisters(); 908 const size_t num_common_regs = num_registers - num_composites; 909 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 910 911 // First we need to validate that all registers that we already have match 912 // the non composite regs. If so, then we can add the registers, else we 913 // need to bail 914 bool match = true; 915 if (num_dynamic_regs == num_common_regs) { 916 for (i = 0; match && i < num_dynamic_regs; ++i) { 917 // Make sure all register names match 918 if (m_regs[i].name && g_register_infos[i].name) { 919 if (strcmp(m_regs[i].name, g_register_infos[i].name)) { 920 match = false; 921 break; 922 } 923 } 924 925 // Make sure all register byte sizes match 926 if (m_regs[i].byte_size != g_register_infos[i].byte_size) { 927 match = false; 928 break; 929 } 930 } 931 } else { 932 // Wrong number of registers. 933 match = false; 934 } 935 // If "match" is true, then we can add extra registers. 936 if (match) { 937 for (i = 0; i < num_composites; ++i) { 938 ConstString name; 939 ConstString alt_name; 940 const uint32_t first_primordial_reg = 941 g_comp_register_infos[i].value_regs[0]; 942 const char *reg_name = g_register_infos[first_primordial_reg].name; 943 if (reg_name && reg_name[0]) { 944 for (uint32_t j = 0; j < num_dynamic_regs; ++j) { 945 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 946 // Find a matching primordial register info entry. 947 if (reg_info && reg_info->name && 948 ::strcasecmp(reg_info->name, reg_name) == 0) { 949 // The name matches the existing primordial entry. Find and 950 // assign the offset, and then add this composite register entry. 951 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 952 name.SetCString(g_comp_register_infos[i].name); 953 AddRegister(g_comp_register_infos[i], name, alt_name, 954 vfp_reg_set); 955 } 956 } 957 } 958 } 959 } 960 } 961 } 962