1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #ifndef LLDB_DISABLE_PYTHON
21 #include "lldb/Interpreter/PythonDataObjects.h"
22 #endif
23 #include "lldb/Target/ExecutionContext.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Utility/Utils.h"
26 // Project includes
27 #include "Utility/StringExtractorGDBRemote.h"
28 #include "ProcessGDBRemote.h"
29 #include "ProcessGDBRemoteLog.h"
30 #include "ThreadGDBRemote.h"
31 #include "Utility/ARM_GCC_Registers.h"
32 #include "Utility/ARM_DWARF_Registers.h"
33 
34 using namespace lldb;
35 using namespace lldb_private;
36 using namespace lldb_private::process_gdb_remote;
37 
38 //----------------------------------------------------------------------
39 // GDBRemoteRegisterContext constructor
40 //----------------------------------------------------------------------
41 GDBRemoteRegisterContext::GDBRemoteRegisterContext
42 (
43     ThreadGDBRemote &thread,
44     uint32_t concrete_frame_idx,
45     GDBRemoteDynamicRegisterInfo &reg_info,
46     bool read_all_at_once
47 ) :
48     RegisterContext (thread, concrete_frame_idx),
49     m_reg_info (reg_info),
50     m_reg_valid (),
51     m_reg_data (),
52     m_read_all_at_once (read_all_at_once)
53 {
54     // Resize our vector of bools to contain one bool for every register.
55     // We will use these boolean values to know when a register value
56     // is valid in m_reg_data.
57     m_reg_valid.resize (reg_info.GetNumRegisters());
58 
59     // Make a heap based buffer that is big enough to store all registers
60     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
61     m_reg_data.SetData (reg_data_sp);
62     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
63 }
64 
65 //----------------------------------------------------------------------
66 // Destructor
67 //----------------------------------------------------------------------
68 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
69 {
70 }
71 
72 void
73 GDBRemoteRegisterContext::InvalidateAllRegisters ()
74 {
75     SetAllRegisterValid (false);
76 }
77 
78 void
79 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
80 {
81     std::vector<bool>::iterator pos, end = m_reg_valid.end();
82     for (pos = m_reg_valid.begin(); pos != end; ++pos)
83         *pos = b;
84 }
85 
86 size_t
87 GDBRemoteRegisterContext::GetRegisterCount ()
88 {
89     return m_reg_info.GetNumRegisters ();
90 }
91 
92 const RegisterInfo *
93 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
94 {
95     return m_reg_info.GetRegisterInfoAtIndex (reg);
96 }
97 
98 size_t
99 GDBRemoteRegisterContext::GetRegisterSetCount ()
100 {
101     return m_reg_info.GetNumRegisterSets ();
102 }
103 
104 
105 
106 const RegisterSet *
107 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
108 {
109     return m_reg_info.GetRegisterSet (reg_set);
110 }
111 
112 
113 
114 bool
115 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
116 {
117     // Read the register
118     if (ReadRegisterBytes (reg_info, m_reg_data))
119     {
120         const bool partial_data_ok = false;
121         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
122         return error.Success();
123     }
124     return false;
125 }
126 
127 bool
128 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
129 {
130     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
131     if (reg_info == NULL)
132         return false;
133 
134     // Invalidate if needed
135     InvalidateIfNeeded(false);
136 
137     const uint32_t reg_byte_size = reg_info->byte_size;
138     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
139     bool success = bytes_copied == reg_byte_size;
140     if (success)
141     {
142         SetRegisterIsValid(reg, true);
143     }
144     else if (bytes_copied > 0)
145     {
146         // Only set register is valid to false if we copied some bytes, else
147         // leave it as it was.
148         SetRegisterIsValid(reg, false);
149     }
150     return success;
151 }
152 
153 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
154 bool
155 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info,
156                                                 GDBRemoteCommunicationClient &gdb_comm)
157 {
158     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
159     StringExtractorGDBRemote response;
160     if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response))
161         return PrivateSetRegisterValue (reg, response);
162     return false;
163 }
164 
165 bool
166 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
167 {
168     ExecutionContext exe_ctx (CalculateThread());
169 
170     Process *process = exe_ctx.GetProcessPtr();
171     Thread *thread = exe_ctx.GetThreadPtr();
172     if (process == NULL || thread == NULL)
173         return false;
174 
175     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
176 
177     InvalidateIfNeeded(false);
178 
179     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
180 
181     if (!GetRegisterIsValid(reg))
182     {
183         if (m_read_all_at_once)
184         {
185             StringExtractorGDBRemote response;
186             if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
187                 return false;
188             if (response.IsNormalResponse())
189                 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
190                     SetAllRegisterValid (true);
191         }
192         else if (reg_info->value_regs)
193         {
194             // Process this composite register request by delegating to the constituent
195             // primordial registers.
196 
197             // Index of the primordial register.
198             bool success = true;
199             for (uint32_t idx = 0; success; ++idx)
200             {
201                 const uint32_t prim_reg = reg_info->value_regs[idx];
202                 if (prim_reg == LLDB_INVALID_REGNUM)
203                     break;
204                 // We have a valid primordial register as our constituent.
205                 // Grab the corresponding register info.
206                 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
207                 if (prim_reg_info == NULL)
208                     success = false;
209                 else
210                 {
211                     // Read the containing register if it hasn't already been read
212                     if (!GetRegisterIsValid(prim_reg))
213                         success = GetPrimordialRegister(prim_reg_info, gdb_comm);
214                 }
215             }
216 
217             if (success)
218             {
219                 // If we reach this point, all primordial register requests have succeeded.
220                 // Validate this composite register.
221                 SetRegisterIsValid (reg_info, true);
222             }
223         }
224         else
225         {
226             // Get each register individually
227             GetPrimordialRegister(reg_info, gdb_comm);
228         }
229 
230         // Make sure we got a valid register value after reading it
231         if (!GetRegisterIsValid(reg))
232             return false;
233     }
234 
235     if (&data != &m_reg_data)
236     {
237 #if defined (LLDB_CONFIGURATION_DEBUG)
238         assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
239 #endif
240         // If our register context and our register info disagree, which should never happen, don't
241         // read past the end of the buffer.
242         if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
243             return false;
244 
245         // If we aren't extracting into our own buffer (which
246         // only happens when this function is called from
247         // ReadRegisterValue(uint32_t, Scalar&)) then
248         // we transfer bytes from our buffer into the data
249         // buffer that was passed in
250 
251         data.SetByteOrder (m_reg_data.GetByteOrder());
252         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
253     }
254     return true;
255 }
256 
257 bool
258 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
259                                          const RegisterValue &value)
260 {
261     DataExtractor data;
262     if (value.GetData (data))
263         return WriteRegisterBytes (reg_info, data, 0);
264     return false;
265 }
266 
267 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
268 bool
269 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info,
270                                                 GDBRemoteCommunicationClient &gdb_comm)
271 {
272     StreamString packet;
273     StringExtractorGDBRemote response;
274     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
275     packet.Printf ("P%x=", reg);
276     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
277                               reg_info->byte_size,
278                               lldb::endian::InlHostByteOrder(),
279                               lldb::endian::InlHostByteOrder());
280 
281     if (gdb_comm.GetThreadSuffixSupported())
282         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
283 
284     // Invalidate just this register
285     SetRegisterIsValid(reg, false);
286     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
287                                               packet.GetString().size(),
288                                               response,
289                                               false) == GDBRemoteCommunication::PacketResult::Success)
290     {
291         if (response.IsOKResponse())
292             return true;
293     }
294     return false;
295 }
296 
297 void
298 GDBRemoteRegisterContext::SyncThreadState(Process *process)
299 {
300     // NB.  We assume our caller has locked the sequence mutex.
301 
302     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
303     if (!gdb_comm.GetSyncThreadStateSupported())
304         return;
305 
306     StreamString packet;
307     StringExtractorGDBRemote response;
308     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
309     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
310                                               packet.GetString().size(),
311                                               response,
312                                               false) == GDBRemoteCommunication::PacketResult::Success)
313     {
314         if (response.IsOKResponse())
315             InvalidateAllRegisters();
316     }
317 }
318 
319 bool
320 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
321 {
322     ExecutionContext exe_ctx (CalculateThread());
323 
324     Process *process = exe_ctx.GetProcessPtr();
325     Thread *thread = exe_ctx.GetThreadPtr();
326     if (process == NULL || thread == NULL)
327         return false;
328 
329     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
330 // FIXME: This check isn't right because IsRunning checks the Public state, but this
331 // is work you need to do - for instance in ShouldStop & friends - before the public
332 // state has been changed.
333 //    if (gdb_comm.IsRunning())
334 //        return false;
335 
336 
337 #if defined (LLDB_CONFIGURATION_DEBUG)
338     assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
339 #endif
340 
341     // If our register context and our register info disagree, which should never happen, don't
342     // overwrite past the end of the buffer.
343     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
344         return false;
345 
346     // Grab a pointer to where we are going to put this register
347     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
348 
349     if (dst == NULL)
350         return false;
351 
352 
353     if (data.CopyByteOrderedData (data_offset,                  // src offset
354                                   reg_info->byte_size,          // src length
355                                   dst,                          // dst
356                                   reg_info->byte_size,          // dst length
357                                   m_reg_data.GetByteOrder()))   // dst byte order
358     {
359         Mutex::Locker locker;
360         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
361         {
362             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
363             ProcessSP process_sp (m_thread.GetProcess());
364             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
365             {
366                 StreamString packet;
367                 StringExtractorGDBRemote response;
368 
369                 if (m_read_all_at_once)
370                 {
371                     // Set all registers in one packet
372                     packet.PutChar ('G');
373                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
374                                               m_reg_data.GetByteSize(),
375                                               lldb::endian::InlHostByteOrder(),
376                                               lldb::endian::InlHostByteOrder());
377 
378                     if (thread_suffix_supported)
379                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
380 
381                     // Invalidate all register values
382                     InvalidateIfNeeded (true);
383 
384                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
385                                                               packet.GetString().size(),
386                                                               response,
387                                                               false) == GDBRemoteCommunication::PacketResult::Success)
388                     {
389                         SetAllRegisterValid (false);
390                         if (response.IsOKResponse())
391                         {
392                             return true;
393                         }
394                     }
395                 }
396                 else
397                 {
398                     bool success = true;
399 
400                     if (reg_info->value_regs)
401                     {
402                         // This register is part of another register. In this case we read the actual
403                         // register data for any "value_regs", and once all that data is read, we will
404                         // have enough data in our register context bytes for the value of this register
405 
406                         // Invalidate this composite register first.
407 
408                         for (uint32_t idx = 0; success; ++idx)
409                         {
410                             const uint32_t reg = reg_info->value_regs[idx];
411                             if (reg == LLDB_INVALID_REGNUM)
412                                 break;
413                             // We have a valid primordial register as our constituent.
414                             // Grab the corresponding register info.
415                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
416                             if (value_reg_info == NULL)
417                                 success = false;
418                             else
419                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
420                         }
421                     }
422                     else
423                     {
424                         // This is an actual register, write it
425                         success = SetPrimordialRegister(reg_info, gdb_comm);
426                     }
427 
428                     // Check if writing this register will invalidate any other register values?
429                     // If so, invalidate them
430                     if (reg_info->invalidate_regs)
431                     {
432                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
433                              reg != LLDB_INVALID_REGNUM;
434                              reg = reg_info->invalidate_regs[++idx])
435                         {
436                             SetRegisterIsValid(reg, false);
437                         }
438                     }
439 
440                     return success;
441                 }
442             }
443         }
444         else
445         {
446             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
447             if (log)
448             {
449                 if (log->GetVerbose())
450                 {
451                     StreamString strm;
452                     gdb_comm.DumpHistory(strm);
453                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
454                 }
455                 else
456                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
457             }
458         }
459     }
460     return false;
461 }
462 
463 bool
464 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint &reg_checkpoint)
465 {
466     ExecutionContext exe_ctx (CalculateThread());
467 
468     Process *process = exe_ctx.GetProcessPtr();
469     Thread *thread = exe_ctx.GetThreadPtr();
470     if (process == NULL || thread == NULL)
471         return false;
472 
473     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
474 
475     uint32_t save_id = 0;
476     if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
477     {
478         reg_checkpoint.SetID(save_id);
479         reg_checkpoint.GetData().reset();
480         return true;
481     }
482     else
483     {
484         reg_checkpoint.SetID(0); // Invalid save ID is zero
485         return ReadAllRegisterValues(reg_checkpoint.GetData());
486     }
487 }
488 
489 bool
490 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint &reg_checkpoint)
491 {
492     uint32_t save_id = reg_checkpoint.GetID();
493     if (save_id != 0)
494     {
495         ExecutionContext exe_ctx (CalculateThread());
496 
497         Process *process = exe_ctx.GetProcessPtr();
498         Thread *thread = exe_ctx.GetThreadPtr();
499         if (process == NULL || thread == NULL)
500             return false;
501 
502         GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
503 
504         return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
505     }
506     else
507     {
508         return WriteAllRegisterValues(reg_checkpoint.GetData());
509     }
510 }
511 
512 bool
513 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
514 {
515     ExecutionContext exe_ctx (CalculateThread());
516 
517     Process *process = exe_ctx.GetProcessPtr();
518     Thread *thread = exe_ctx.GetThreadPtr();
519     if (process == NULL || thread == NULL)
520         return false;
521 
522     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
523 
524     StringExtractorGDBRemote response;
525 
526     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
527 
528     Mutex::Locker locker;
529     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
530     {
531         SyncThreadState(process);
532 
533         char packet[32];
534         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
535         ProcessSP process_sp (m_thread.GetProcess());
536         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
537         {
538             int packet_len = 0;
539             if (thread_suffix_supported)
540                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
541             else
542                 packet_len = ::snprintf (packet, sizeof(packet), "g");
543             assert (packet_len < ((int)sizeof(packet) - 1));
544 
545             if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
546             {
547                 int packet_len = 0;
548                 if (thread_suffix_supported)
549                     packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
550                 else
551                     packet_len = ::snprintf (packet, sizeof(packet), "g");
552                 assert (packet_len < ((int)sizeof(packet) - 1));
553 
554                 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
555                 {
556                     if (response.IsErrorResponse())
557                         return false;
558 
559                     std::string &response_str = response.GetStringRef();
560                     if (isxdigit(response_str[0]))
561                     {
562                         response_str.insert(0, 1, 'G');
563                         if (thread_suffix_supported)
564                         {
565                             char thread_id_cstr[64];
566                             ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
567                             response_str.append (thread_id_cstr);
568                         }
569                         data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
570                         return true;
571                     }
572                 }
573             }
574             else
575             {
576                 // For the use_g_packet == false case, we're going to read each register
577                 // individually and store them as binary data in a buffer instead of as ascii
578                 // characters.
579                 const RegisterInfo *reg_info;
580 
581                 // data_sp will take ownership of this DataBufferHeap pointer soon.
582                 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));
583 
584                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
585                 {
586                     if (reg_info->value_regs) // skip registers that are slices of real registers
587                         continue;
588                     ReadRegisterBytes (reg_info, m_reg_data);
589                     // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
590                 }
591                 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
592 
593                 data_sp = reg_ctx;
594                 return true;
595             }
596         }
597     }
598     else
599     {
600 
601         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
602         if (log)
603         {
604             if (log->GetVerbose())
605             {
606                 StreamString strm;
607                 gdb_comm.DumpHistory(strm);
608                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
609             }
610             else
611                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
612         }
613     }
614 
615     data_sp.reset();
616     return false;
617 }
618 
619 bool
620 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
621 {
622     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
623         return false;
624 
625     ExecutionContext exe_ctx (CalculateThread());
626 
627     Process *process = exe_ctx.GetProcessPtr();
628     Thread *thread = exe_ctx.GetThreadPtr();
629     if (process == NULL || thread == NULL)
630         return false;
631 
632     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
633 
634     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
635 
636     StringExtractorGDBRemote response;
637     Mutex::Locker locker;
638     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
639     {
640         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
641         ProcessSP process_sp (m_thread.GetProcess());
642         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
643         {
644             // The data_sp contains the entire G response packet including the
645             // G, and if the thread suffix is supported, it has the thread suffix
646             // as well.
647             const char *G_packet = (const char *)data_sp->GetBytes();
648             size_t G_packet_len = data_sp->GetByteSize();
649             if (use_g_packet
650                 && gdb_comm.SendPacketAndWaitForResponse (G_packet,
651                                                           G_packet_len,
652                                                           response,
653                                                           false) == GDBRemoteCommunication::PacketResult::Success)
654             {
655                 // The data_sp contains the entire G response packet including the
656                 // G, and if the thread suffix is supported, it has the thread suffix
657                 // as well.
658                 const char *G_packet = (const char *)data_sp->GetBytes();
659                 size_t G_packet_len = data_sp->GetByteSize();
660                 if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
661                                                            G_packet_len,
662                                                            response,
663                                                            false) == GDBRemoteCommunication::PacketResult::Success)
664                 {
665                     if (response.IsOKResponse())
666                         return true;
667                     else if (response.IsErrorResponse())
668                     {
669                         uint32_t num_restored = 0;
670                         // We need to manually go through all of the registers and
671                         // restore them manually
672 
673                         response.GetStringRef().assign (G_packet, G_packet_len);
674                         response.SetFilePos(1); // Skip the leading 'G'
675 
676                         // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier.
677                         // This means buffer will be a little more than 2x larger than necessary but we resize
678                         // it down once we've extracted all hex ascii chars from the packet.
679                         DataBufferHeap buffer (G_packet_len, 0);
680 
681                         const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(),
682                                                                                buffer.GetByteSize(),
683                                                                                '\xcc');
684 
685                         DataExtractor restore_data (buffer.GetBytes(),
686                                                     buffer.GetByteSize(),
687                                                     m_reg_data.GetByteOrder(),
688                                                     m_reg_data.GetAddressByteSize());
689 
690                         if (bytes_extracted < restore_data.GetByteSize())
691                             restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
692 
693                         const RegisterInfo *reg_info;
694 
695                         // The g packet contents may either include the slice registers (registers defined in
696                         // terms of other registers, e.g. eax is a subset of rax) or not.  The slice registers
697                         // should NOT be in the g packet, but some implementations may incorrectly include them.
698                         //
699                         // If the slice registers are included in the packet, we must step over the slice registers
700                         // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
701                         // If the slice registers are not included, then using the byte_offset values into the
702                         // data buffer is the best way to find individual register values.
703 
704                         uint64_t size_including_slice_registers = 0;
705                         uint64_t size_not_including_slice_registers = 0;
706                         uint64_t size_by_highest_offset = 0;
707 
708                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
709                         {
710                             size_including_slice_registers += reg_info->byte_size;
711                             if (reg_info->value_regs == NULL)
712                                 size_not_including_slice_registers += reg_info->byte_size;
713                             if (reg_info->byte_offset >= size_by_highest_offset)
714                                 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
715                         }
716 
717                         bool use_byte_offset_into_buffer;
718                         if (size_by_highest_offset == restore_data.GetByteSize())
719                         {
720                             // The size of the packet agrees with the highest offset: + size in the register file
721                             use_byte_offset_into_buffer = true;
722                         }
723                         else if (size_not_including_slice_registers == restore_data.GetByteSize())
724                         {
725                             // The size of the packet is the same as concatenating all of the registers sequentially,
726                             // skipping the slice registers
727                             use_byte_offset_into_buffer = true;
728                         }
729                         else if (size_including_slice_registers == restore_data.GetByteSize())
730                         {
731                             // The slice registers are present in the packet (when they shouldn't be).
732                             // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
733                             // point to the wrong place.
734                             use_byte_offset_into_buffer = false;
735                         }
736                         else {
737                             // None of our expected sizes match the actual g packet data we're looking at.
738                             // The most conservative approach here is to use the running total byte offset.
739                             use_byte_offset_into_buffer = false;
740                         }
741 
742                         // In case our register definitions don't include the correct offsets,
743                         // keep track of the size of each reg & compute offset based on that.
744                         uint32_t running_byte_offset = 0;
745                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
746                         {
747                             // Skip composite aka slice registers (e.g. eax is a slice of rax).
748                             if (reg_info->value_regs)
749                                 continue;
750 
751                             const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
752 
753                             uint32_t register_offset;
754                             if (use_byte_offset_into_buffer)
755                             {
756                                 register_offset = reg_info->byte_offset;
757                             }
758                             else
759                             {
760                                 register_offset = running_byte_offset;
761                             }
762 
763                             // Only write down the registers that need to be written
764                             // if we are going to be doing registers individually.
765                             bool write_reg = true;
766                             const uint32_t reg_byte_size = reg_info->byte_size;
767 
768                             const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
769                             if (restore_src)
770                             {
771                                 StreamString packet;
772                                 packet.Printf ("P%x=", reg);
773                                 packet.PutBytesAsRawHex8 (restore_src,
774                                                           reg_byte_size,
775                                                           lldb::endian::InlHostByteOrder(),
776                                                           lldb::endian::InlHostByteOrder());
777 
778                                 if (thread_suffix_supported)
779                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
780 
781                                 SetRegisterIsValid(reg, false);
782                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
783                                                                           packet.GetString().size(),
784                                                                           response,
785                                                                           false) == GDBRemoteCommunication::PacketResult::Success)
786                                 {
787                                     const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
788                                     if (current_src)
789                                         write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
790                                 }
791 
792                                 if (write_reg)
793                                 {
794                                     StreamString packet;
795                                     packet.Printf ("P%x=", reg);
796                                     packet.PutBytesAsRawHex8 (restore_src,
797                                                               reg_byte_size,
798                                                               lldb::endian::InlHostByteOrder(),
799                                                               lldb::endian::InlHostByteOrder());
800 
801                                     if (thread_suffix_supported)
802                                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
803 
804                                     SetRegisterIsValid(reg, false);
805                                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
806                                                                               packet.GetString().size(),
807                                                                               response,
808                                                                               false) == GDBRemoteCommunication::PacketResult::Success)
809                                     {
810                                         if (response.IsOKResponse())
811                                             ++num_restored;
812                                     }
813                                 }
814                             }
815                         }
816                         return num_restored > 0;
817                     }
818                 }
819             }
820             else
821             {
822                 // For the use_g_packet == false case, we're going to write each register
823                 // individually.  The data buffer is binary data in this case, instead of
824                 // ascii characters.
825 
826                 bool arm64_debugserver = false;
827                 if (m_thread.GetProcess().get())
828                 {
829                     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
830                     if (arch.IsValid()
831                         && arch.GetMachine() == llvm::Triple::aarch64
832                         && arch.GetTriple().getVendor() == llvm::Triple::Apple
833                         && arch.GetTriple().getOS() == llvm::Triple::IOS)
834                     {
835                         arm64_debugserver = true;
836                     }
837                 }
838                 uint32_t num_restored = 0;
839                 const RegisterInfo *reg_info;
840                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
841                 {
842                     if (reg_info->value_regs) // skip registers that are slices of real registers
843                         continue;
844                     // Skip the fpsr and fpcr floating point status/control register writing to
845                     // work around a bug in an older version of debugserver that would lead to
846                     // register context corruption when writing fpsr/fpcr.
847                     if (arm64_debugserver &&
848                         (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
849                     {
850                         continue;
851                     }
852                     StreamString packet;
853                     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]);
854                     packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder());
855                     if (thread_suffix_supported)
856                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
857 
858                     SetRegisterIsValid(reg_info, false);
859                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
860                                                               packet.GetString().size(),
861                                                               response,
862                                                               false) == GDBRemoteCommunication::PacketResult::Success)
863                     {
864                         if (response.IsOKResponse())
865                             ++num_restored;
866                     }
867                 }
868                 return num_restored > 0;
869             }
870         }
871     }
872     else
873     {
874         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
875         if (log)
876         {
877             if (log->GetVerbose())
878             {
879                 StreamString strm;
880                 gdb_comm.DumpHistory(strm);
881                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
882             }
883             else
884                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
885         }
886     }
887     return false;
888 }
889 
890 
891 uint32_t
892 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
893 {
894     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
895 }
896 
897 
898 void
899 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
900 {
901     // For Advanced SIMD and VFP register mapping.
902     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
903     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
904     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
905     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
906     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
907     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
908     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
909     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
910     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
911     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
912     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
913     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
914     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
915     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
916     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
917     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
918     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
919     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
920     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
921     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
922     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
923     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
924     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
925     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
926     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
927     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
928     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
929     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
930     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
931     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
932     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
933     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
934 
935     // This is our array of composite registers, with each element coming from the above register mappings.
936     static uint32_t *g_composites[] = {
937         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
938         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
939         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
940         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
941     };
942 
943     static RegisterInfo g_register_infos[] = {
944 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
945 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
946     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
947     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
948     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
949     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
950     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
951     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
952     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
953     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
954     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
955     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
956     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
957     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
958     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
959     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
960     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
961     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
962     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
963     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
964     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
965     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
966     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
967     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
968     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
969     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
970     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
971     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
972     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
973     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
974     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
975     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
976     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
977     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
978     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
979     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
980     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
981     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
982     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
983     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
984     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
985     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
986     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
987     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
988     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
989     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
990     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
991     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
992     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
993     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
994     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
995     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
996     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
997     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
998     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
999     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
1000     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
1001     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
1002     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
1003     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
1004     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
1005     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
1006     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
1007     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
1008     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
1009     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
1010     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
1011     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
1012     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
1013     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
1014     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
1015     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
1016     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
1017     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
1018     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
1019     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
1020     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
1021     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
1022     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
1023     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
1024     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
1025     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
1026     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
1027     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
1028     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
1029     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
1030     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
1031     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
1032     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
1033     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
1034     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
1035     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
1036     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
1037     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
1038     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
1039     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
1040     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
1041     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
1042     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
1043     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
1044     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
1045     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
1046     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
1047     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
1048     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
1049     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
1050     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
1051     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
1052     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
1053     };
1054 
1055     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
1056     static ConstString gpr_reg_set ("General Purpose Registers");
1057     static ConstString sfp_reg_set ("Software Floating Point Registers");
1058     static ConstString vfp_reg_set ("Floating Point Registers");
1059     size_t i;
1060     if (from_scratch)
1061     {
1062         // Calculate the offsets of the registers
1063         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
1064         // "primordial" registers is important.  This enables us to calculate the offset of the composite
1065         // register by using the offset of its first primordial register.  For example, to calculate the
1066         // offset of q0, use s0's offset.
1067         if (g_register_infos[2].byte_offset == 0)
1068         {
1069             uint32_t byte_offset = 0;
1070             for (i=0; i<num_registers; ++i)
1071             {
1072                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
1073                 // byte_offset for the next register.  Otherwise, we have a composite register whose
1074                 // offset can be calculated by consulting the offset of its first primordial register.
1075                 if (!g_register_infos[i].value_regs)
1076                 {
1077                     g_register_infos[i].byte_offset = byte_offset;
1078                     byte_offset += g_register_infos[i].byte_size;
1079                 }
1080                 else
1081                 {
1082                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
1083                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
1084                 }
1085             }
1086         }
1087         for (i=0; i<num_registers; ++i)
1088         {
1089             ConstString name;
1090             ConstString alt_name;
1091             if (g_register_infos[i].name && g_register_infos[i].name[0])
1092                 name.SetCString(g_register_infos[i].name);
1093             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1094                 alt_name.SetCString(g_register_infos[i].alt_name);
1095 
1096             if (i <= 15 || i == 25)
1097                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
1098             else if (i <= 24)
1099                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
1100             else
1101                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
1102         }
1103     }
1104     else
1105     {
1106         // Add composite registers to our primordial registers, then.
1107         const size_t num_composites = llvm::array_lengthof(g_composites);
1108         const size_t num_dynamic_regs = GetNumRegisters();
1109         const size_t num_common_regs = num_registers - num_composites;
1110         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1111 
1112         // First we need to validate that all registers that we already have match the non composite regs.
1113         // If so, then we can add the registers, else we need to bail
1114         bool match = true;
1115         if (num_dynamic_regs == num_common_regs)
1116         {
1117             for (i=0; match && i<num_dynamic_regs; ++i)
1118             {
1119                 // Make sure all register names match
1120                 if (m_regs[i].name && g_register_infos[i].name)
1121                 {
1122                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
1123                     {
1124                         match = false;
1125                         break;
1126                     }
1127                 }
1128 
1129                 // Make sure all register byte sizes match
1130                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
1131                 {
1132                     match = false;
1133                     break;
1134                 }
1135             }
1136         }
1137         else
1138         {
1139             // Wrong number of registers.
1140             match = false;
1141         }
1142         // If "match" is true, then we can add extra registers.
1143         if (match)
1144         {
1145             for (i=0; i<num_composites; ++i)
1146             {
1147                 ConstString name;
1148                 ConstString alt_name;
1149                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
1150                 const char *reg_name = g_register_infos[first_primordial_reg].name;
1151                 if (reg_name && reg_name[0])
1152                 {
1153                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
1154                     {
1155                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1156                         // Find a matching primordial register info entry.
1157                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
1158                         {
1159                             // The name matches the existing primordial entry.
1160                             // Find and assign the offset, and then add this composite register entry.
1161                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1162                             name.SetCString(g_comp_register_infos[i].name);
1163                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
1164                         }
1165                     }
1166                 }
1167             }
1168         }
1169     }
1170 }
1171