1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #ifndef LLDB_DISABLE_PYTHON 21 #include "lldb/Interpreter/PythonDataObjects.h" 22 #endif 23 #include "lldb/Target/ExecutionContext.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/Utils.h" 26 // Project includes 27 #include "Utility/StringExtractorGDBRemote.h" 28 #include "ProcessGDBRemote.h" 29 #include "ProcessGDBRemoteLog.h" 30 #include "ThreadGDBRemote.h" 31 #include "Utility/ARM_GCC_Registers.h" 32 #include "Utility/ARM_DWARF_Registers.h" 33 34 using namespace lldb; 35 using namespace lldb_private; 36 using namespace lldb_private::process_gdb_remote; 37 38 //---------------------------------------------------------------------- 39 // GDBRemoteRegisterContext constructor 40 //---------------------------------------------------------------------- 41 GDBRemoteRegisterContext::GDBRemoteRegisterContext 42 ( 43 ThreadGDBRemote &thread, 44 uint32_t concrete_frame_idx, 45 GDBRemoteDynamicRegisterInfo ®_info, 46 bool read_all_at_once 47 ) : 48 RegisterContext (thread, concrete_frame_idx), 49 m_reg_info (reg_info), 50 m_reg_valid (), 51 m_reg_data (), 52 m_read_all_at_once (read_all_at_once) 53 { 54 // Resize our vector of bools to contain one bool for every register. 55 // We will use these boolean values to know when a register value 56 // is valid in m_reg_data. 57 m_reg_valid.resize (reg_info.GetNumRegisters()); 58 59 // Make a heap based buffer that is big enough to store all registers 60 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 61 m_reg_data.SetData (reg_data_sp); 62 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 63 } 64 65 //---------------------------------------------------------------------- 66 // Destructor 67 //---------------------------------------------------------------------- 68 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 69 { 70 } 71 72 void 73 GDBRemoteRegisterContext::InvalidateAllRegisters () 74 { 75 SetAllRegisterValid (false); 76 } 77 78 void 79 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 80 { 81 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 82 for (pos = m_reg_valid.begin(); pos != end; ++pos) 83 *pos = b; 84 } 85 86 size_t 87 GDBRemoteRegisterContext::GetRegisterCount () 88 { 89 return m_reg_info.GetNumRegisters (); 90 } 91 92 const RegisterInfo * 93 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) 94 { 95 return m_reg_info.GetRegisterInfoAtIndex (reg); 96 } 97 98 size_t 99 GDBRemoteRegisterContext::GetRegisterSetCount () 100 { 101 return m_reg_info.GetNumRegisterSets (); 102 } 103 104 105 106 const RegisterSet * 107 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) 108 { 109 return m_reg_info.GetRegisterSet (reg_set); 110 } 111 112 113 114 bool 115 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 116 { 117 // Read the register 118 if (ReadRegisterBytes (reg_info, m_reg_data)) 119 { 120 const bool partial_data_ok = false; 121 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 122 return error.Success(); 123 } 124 return false; 125 } 126 127 bool 128 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 129 { 130 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 131 if (reg_info == NULL) 132 return false; 133 134 // Invalidate if needed 135 InvalidateIfNeeded(false); 136 137 const uint32_t reg_byte_size = reg_info->byte_size; 138 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 139 bool success = bytes_copied == reg_byte_size; 140 if (success) 141 { 142 SetRegisterIsValid(reg, true); 143 } 144 else if (bytes_copied > 0) 145 { 146 // Only set register is valid to false if we copied some bytes, else 147 // leave it as it was. 148 SetRegisterIsValid(reg, false); 149 } 150 return success; 151 } 152 153 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 154 bool 155 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info, 156 GDBRemoteCommunicationClient &gdb_comm) 157 { 158 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 159 StringExtractorGDBRemote response; 160 if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), reg, response)) 161 return PrivateSetRegisterValue (reg, response); 162 return false; 163 } 164 165 bool 166 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 167 { 168 ExecutionContext exe_ctx (CalculateThread()); 169 170 Process *process = exe_ctx.GetProcessPtr(); 171 Thread *thread = exe_ctx.GetThreadPtr(); 172 if (process == NULL || thread == NULL) 173 return false; 174 175 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 176 177 InvalidateIfNeeded(false); 178 179 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 180 181 if (!GetRegisterIsValid(reg)) 182 { 183 if (m_read_all_at_once) 184 { 185 StringExtractorGDBRemote response; 186 if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response)) 187 return false; 188 if (response.IsNormalResponse()) 189 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 190 SetAllRegisterValid (true); 191 } 192 else if (reg_info->value_regs) 193 { 194 // Process this composite register request by delegating to the constituent 195 // primordial registers. 196 197 // Index of the primordial register. 198 bool success = true; 199 for (uint32_t idx = 0; success; ++idx) 200 { 201 const uint32_t prim_reg = reg_info->value_regs[idx]; 202 if (prim_reg == LLDB_INVALID_REGNUM) 203 break; 204 // We have a valid primordial register as our constituent. 205 // Grab the corresponding register info. 206 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 207 if (prim_reg_info == NULL) 208 success = false; 209 else 210 { 211 // Read the containing register if it hasn't already been read 212 if (!GetRegisterIsValid(prim_reg)) 213 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 214 } 215 } 216 217 if (success) 218 { 219 // If we reach this point, all primordial register requests have succeeded. 220 // Validate this composite register. 221 SetRegisterIsValid (reg_info, true); 222 } 223 } 224 else 225 { 226 // Get each register individually 227 GetPrimordialRegister(reg_info, gdb_comm); 228 } 229 230 // Make sure we got a valid register value after reading it 231 if (!GetRegisterIsValid(reg)) 232 return false; 233 } 234 235 if (&data != &m_reg_data) 236 { 237 #if defined (LLDB_CONFIGURATION_DEBUG) 238 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 239 #endif 240 // If our register context and our register info disagree, which should never happen, don't 241 // read past the end of the buffer. 242 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 243 return false; 244 245 // If we aren't extracting into our own buffer (which 246 // only happens when this function is called from 247 // ReadRegisterValue(uint32_t, Scalar&)) then 248 // we transfer bytes from our buffer into the data 249 // buffer that was passed in 250 251 data.SetByteOrder (m_reg_data.GetByteOrder()); 252 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 253 } 254 return true; 255 } 256 257 bool 258 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 259 const RegisterValue &value) 260 { 261 DataExtractor data; 262 if (value.GetData (data)) 263 return WriteRegisterBytes (reg_info, data, 0); 264 return false; 265 } 266 267 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 268 bool 269 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info, 270 GDBRemoteCommunicationClient &gdb_comm) 271 { 272 StreamString packet; 273 StringExtractorGDBRemote response; 274 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 275 packet.Printf ("P%x=", reg); 276 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 277 reg_info->byte_size, 278 lldb::endian::InlHostByteOrder(), 279 lldb::endian::InlHostByteOrder()); 280 281 if (gdb_comm.GetThreadSuffixSupported()) 282 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 283 284 // Invalidate just this register 285 SetRegisterIsValid(reg, false); 286 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 287 packet.GetString().size(), 288 response, 289 false) == GDBRemoteCommunication::PacketResult::Success) 290 { 291 if (response.IsOKResponse()) 292 return true; 293 } 294 return false; 295 } 296 297 void 298 GDBRemoteRegisterContext::SyncThreadState(Process *process) 299 { 300 // NB. We assume our caller has locked the sequence mutex. 301 302 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); 303 if (!gdb_comm.GetSyncThreadStateSupported()) 304 return; 305 306 StreamString packet; 307 StringExtractorGDBRemote response; 308 packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 309 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 310 packet.GetString().size(), 311 response, 312 false) == GDBRemoteCommunication::PacketResult::Success) 313 { 314 if (response.IsOKResponse()) 315 InvalidateAllRegisters(); 316 } 317 } 318 319 bool 320 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 321 { 322 ExecutionContext exe_ctx (CalculateThread()); 323 324 Process *process = exe_ctx.GetProcessPtr(); 325 Thread *thread = exe_ctx.GetThreadPtr(); 326 if (process == NULL || thread == NULL) 327 return false; 328 329 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 330 // FIXME: This check isn't right because IsRunning checks the Public state, but this 331 // is work you need to do - for instance in ShouldStop & friends - before the public 332 // state has been changed. 333 // if (gdb_comm.IsRunning()) 334 // return false; 335 336 337 #if defined (LLDB_CONFIGURATION_DEBUG) 338 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 339 #endif 340 341 // If our register context and our register info disagree, which should never happen, don't 342 // overwrite past the end of the buffer. 343 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 344 return false; 345 346 // Grab a pointer to where we are going to put this register 347 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 348 349 if (dst == NULL) 350 return false; 351 352 353 if (data.CopyByteOrderedData (data_offset, // src offset 354 reg_info->byte_size, // src length 355 dst, // dst 356 reg_info->byte_size, // dst length 357 m_reg_data.GetByteOrder())) // dst byte order 358 { 359 Mutex::Locker locker; 360 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) 361 { 362 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 363 ProcessSP process_sp (m_thread.GetProcess()); 364 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 365 { 366 StreamString packet; 367 StringExtractorGDBRemote response; 368 369 if (m_read_all_at_once) 370 { 371 // Set all registers in one packet 372 packet.PutChar ('G'); 373 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 374 m_reg_data.GetByteSize(), 375 lldb::endian::InlHostByteOrder(), 376 lldb::endian::InlHostByteOrder()); 377 378 if (thread_suffix_supported) 379 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 380 381 // Invalidate all register values 382 InvalidateIfNeeded (true); 383 384 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 385 packet.GetString().size(), 386 response, 387 false) == GDBRemoteCommunication::PacketResult::Success) 388 { 389 SetAllRegisterValid (false); 390 if (response.IsOKResponse()) 391 { 392 return true; 393 } 394 } 395 } 396 else 397 { 398 bool success = true; 399 400 if (reg_info->value_regs) 401 { 402 // This register is part of another register. In this case we read the actual 403 // register data for any "value_regs", and once all that data is read, we will 404 // have enough data in our register context bytes for the value of this register 405 406 // Invalidate this composite register first. 407 408 for (uint32_t idx = 0; success; ++idx) 409 { 410 const uint32_t reg = reg_info->value_regs[idx]; 411 if (reg == LLDB_INVALID_REGNUM) 412 break; 413 // We have a valid primordial register as our constituent. 414 // Grab the corresponding register info. 415 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 416 if (value_reg_info == NULL) 417 success = false; 418 else 419 success = SetPrimordialRegister(value_reg_info, gdb_comm); 420 } 421 } 422 else 423 { 424 // This is an actual register, write it 425 success = SetPrimordialRegister(reg_info, gdb_comm); 426 } 427 428 // Check if writing this register will invalidate any other register values? 429 // If so, invalidate them 430 if (reg_info->invalidate_regs) 431 { 432 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 433 reg != LLDB_INVALID_REGNUM; 434 reg = reg_info->invalidate_regs[++idx]) 435 { 436 SetRegisterIsValid(reg, false); 437 } 438 } 439 440 return success; 441 } 442 } 443 } 444 else 445 { 446 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 447 if (log) 448 { 449 if (log->GetVerbose()) 450 { 451 StreamString strm; 452 gdb_comm.DumpHistory(strm); 453 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 454 } 455 else 456 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 457 } 458 } 459 } 460 return false; 461 } 462 463 bool 464 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint ®_checkpoint) 465 { 466 ExecutionContext exe_ctx (CalculateThread()); 467 468 Process *process = exe_ctx.GetProcessPtr(); 469 Thread *thread = exe_ctx.GetThreadPtr(); 470 if (process == NULL || thread == NULL) 471 return false; 472 473 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 474 475 uint32_t save_id = 0; 476 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) 477 { 478 reg_checkpoint.SetID(save_id); 479 reg_checkpoint.GetData().reset(); 480 return true; 481 } 482 else 483 { 484 reg_checkpoint.SetID(0); // Invalid save ID is zero 485 return ReadAllRegisterValues(reg_checkpoint.GetData()); 486 } 487 } 488 489 bool 490 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint ®_checkpoint) 491 { 492 uint32_t save_id = reg_checkpoint.GetID(); 493 if (save_id != 0) 494 { 495 ExecutionContext exe_ctx (CalculateThread()); 496 497 Process *process = exe_ctx.GetProcessPtr(); 498 Thread *thread = exe_ctx.GetThreadPtr(); 499 if (process == NULL || thread == NULL) 500 return false; 501 502 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 503 504 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 505 } 506 else 507 { 508 return WriteAllRegisterValues(reg_checkpoint.GetData()); 509 } 510 } 511 512 bool 513 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 514 { 515 ExecutionContext exe_ctx (CalculateThread()); 516 517 Process *process = exe_ctx.GetProcessPtr(); 518 Thread *thread = exe_ctx.GetThreadPtr(); 519 if (process == NULL || thread == NULL) 520 return false; 521 522 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 523 524 StringExtractorGDBRemote response; 525 526 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 527 528 Mutex::Locker locker; 529 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) 530 { 531 SyncThreadState(process); 532 533 char packet[32]; 534 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 535 ProcessSP process_sp (m_thread.GetProcess()); 536 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 537 { 538 int packet_len = 0; 539 if (thread_suffix_supported) 540 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 541 else 542 packet_len = ::snprintf (packet, sizeof(packet), "g"); 543 assert (packet_len < ((int)sizeof(packet) - 1)); 544 545 if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 546 { 547 int packet_len = 0; 548 if (thread_suffix_supported) 549 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 550 else 551 packet_len = ::snprintf (packet, sizeof(packet), "g"); 552 assert (packet_len < ((int)sizeof(packet) - 1)); 553 554 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 555 { 556 if (response.IsErrorResponse()) 557 return false; 558 559 std::string &response_str = response.GetStringRef(); 560 if (isxdigit(response_str[0])) 561 { 562 response_str.insert(0, 1, 'G'); 563 if (thread_suffix_supported) 564 { 565 char thread_id_cstr[64]; 566 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 567 response_str.append (thread_id_cstr); 568 } 569 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 570 return true; 571 } 572 } 573 } 574 else 575 { 576 // For the use_g_packet == false case, we're going to read each register 577 // individually and store them as binary data in a buffer instead of as ascii 578 // characters. 579 const RegisterInfo *reg_info; 580 581 // data_sp will take ownership of this DataBufferHeap pointer soon. 582 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0)); 583 584 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 585 { 586 if (reg_info->value_regs) // skip registers that are slices of real registers 587 continue; 588 ReadRegisterBytes (reg_info, m_reg_data); 589 // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer 590 } 591 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 592 593 data_sp = reg_ctx; 594 return true; 595 } 596 } 597 } 598 else 599 { 600 601 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 602 if (log) 603 { 604 if (log->GetVerbose()) 605 { 606 StreamString strm; 607 gdb_comm.DumpHistory(strm); 608 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 609 } 610 else 611 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 612 } 613 } 614 615 data_sp.reset(); 616 return false; 617 } 618 619 bool 620 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 621 { 622 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 623 return false; 624 625 ExecutionContext exe_ctx (CalculateThread()); 626 627 Process *process = exe_ctx.GetProcessPtr(); 628 Thread *thread = exe_ctx.GetThreadPtr(); 629 if (process == NULL || thread == NULL) 630 return false; 631 632 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 633 634 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 635 636 StringExtractorGDBRemote response; 637 Mutex::Locker locker; 638 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) 639 { 640 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 641 ProcessSP process_sp (m_thread.GetProcess()); 642 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 643 { 644 // The data_sp contains the entire G response packet including the 645 // G, and if the thread suffix is supported, it has the thread suffix 646 // as well. 647 const char *G_packet = (const char *)data_sp->GetBytes(); 648 size_t G_packet_len = data_sp->GetByteSize(); 649 if (use_g_packet 650 && gdb_comm.SendPacketAndWaitForResponse (G_packet, 651 G_packet_len, 652 response, 653 false) == GDBRemoteCommunication::PacketResult::Success) 654 { 655 // The data_sp contains the entire G response packet including the 656 // G, and if the thread suffix is supported, it has the thread suffix 657 // as well. 658 const char *G_packet = (const char *)data_sp->GetBytes(); 659 size_t G_packet_len = data_sp->GetByteSize(); 660 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 661 G_packet_len, 662 response, 663 false) == GDBRemoteCommunication::PacketResult::Success) 664 { 665 if (response.IsOKResponse()) 666 return true; 667 else if (response.IsErrorResponse()) 668 { 669 uint32_t num_restored = 0; 670 // We need to manually go through all of the registers and 671 // restore them manually 672 673 response.GetStringRef().assign (G_packet, G_packet_len); 674 response.SetFilePos(1); // Skip the leading 'G' 675 676 // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier. 677 // This means buffer will be a little more than 2x larger than necessary but we resize 678 // it down once we've extracted all hex ascii chars from the packet. 679 DataBufferHeap buffer (G_packet_len, 0); 680 681 const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(), 682 buffer.GetByteSize(), 683 '\xcc'); 684 685 DataExtractor restore_data (buffer.GetBytes(), 686 buffer.GetByteSize(), 687 m_reg_data.GetByteOrder(), 688 m_reg_data.GetAddressByteSize()); 689 690 if (bytes_extracted < restore_data.GetByteSize()) 691 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 692 693 const RegisterInfo *reg_info; 694 695 // The g packet contents may either include the slice registers (registers defined in 696 // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers 697 // should NOT be in the g packet, but some implementations may incorrectly include them. 698 // 699 // If the slice registers are included in the packet, we must step over the slice registers 700 // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect. 701 // If the slice registers are not included, then using the byte_offset values into the 702 // data buffer is the best way to find individual register values. 703 704 uint64_t size_including_slice_registers = 0; 705 uint64_t size_not_including_slice_registers = 0; 706 uint64_t size_by_highest_offset = 0; 707 708 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx) 709 { 710 size_including_slice_registers += reg_info->byte_size; 711 if (reg_info->value_regs == NULL) 712 size_not_including_slice_registers += reg_info->byte_size; 713 if (reg_info->byte_offset >= size_by_highest_offset) 714 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 715 } 716 717 bool use_byte_offset_into_buffer; 718 if (size_by_highest_offset == restore_data.GetByteSize()) 719 { 720 // The size of the packet agrees with the highest offset: + size in the register file 721 use_byte_offset_into_buffer = true; 722 } 723 else if (size_not_including_slice_registers == restore_data.GetByteSize()) 724 { 725 // The size of the packet is the same as concatenating all of the registers sequentially, 726 // skipping the slice registers 727 use_byte_offset_into_buffer = true; 728 } 729 else if (size_including_slice_registers == restore_data.GetByteSize()) 730 { 731 // The slice registers are present in the packet (when they shouldn't be). 732 // Don't try to use the RegisterInfo byte_offset into the restore_data, it will 733 // point to the wrong place. 734 use_byte_offset_into_buffer = false; 735 } 736 else { 737 // None of our expected sizes match the actual g packet data we're looking at. 738 // The most conservative approach here is to use the running total byte offset. 739 use_byte_offset_into_buffer = false; 740 } 741 742 // In case our register definitions don't include the correct offsets, 743 // keep track of the size of each reg & compute offset based on that. 744 uint32_t running_byte_offset = 0; 745 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size) 746 { 747 // Skip composite aka slice registers (e.g. eax is a slice of rax). 748 if (reg_info->value_regs) 749 continue; 750 751 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 752 753 uint32_t register_offset; 754 if (use_byte_offset_into_buffer) 755 { 756 register_offset = reg_info->byte_offset; 757 } 758 else 759 { 760 register_offset = running_byte_offset; 761 } 762 763 // Only write down the registers that need to be written 764 // if we are going to be doing registers individually. 765 bool write_reg = true; 766 const uint32_t reg_byte_size = reg_info->byte_size; 767 768 const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size); 769 if (restore_src) 770 { 771 StreamString packet; 772 packet.Printf ("P%x=", reg); 773 packet.PutBytesAsRawHex8 (restore_src, 774 reg_byte_size, 775 lldb::endian::InlHostByteOrder(), 776 lldb::endian::InlHostByteOrder()); 777 778 if (thread_suffix_supported) 779 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 780 781 SetRegisterIsValid(reg, false); 782 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 783 packet.GetString().size(), 784 response, 785 false) == GDBRemoteCommunication::PacketResult::Success) 786 { 787 const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size); 788 if (current_src) 789 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 790 } 791 792 if (write_reg) 793 { 794 StreamString packet; 795 packet.Printf ("P%x=", reg); 796 packet.PutBytesAsRawHex8 (restore_src, 797 reg_byte_size, 798 lldb::endian::InlHostByteOrder(), 799 lldb::endian::InlHostByteOrder()); 800 801 if (thread_suffix_supported) 802 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 803 804 SetRegisterIsValid(reg, false); 805 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 806 packet.GetString().size(), 807 response, 808 false) == GDBRemoteCommunication::PacketResult::Success) 809 { 810 if (response.IsOKResponse()) 811 ++num_restored; 812 } 813 } 814 } 815 } 816 return num_restored > 0; 817 } 818 } 819 } 820 else 821 { 822 // For the use_g_packet == false case, we're going to write each register 823 // individually. The data buffer is binary data in this case, instead of 824 // ascii characters. 825 826 bool arm64_debugserver = false; 827 if (m_thread.GetProcess().get()) 828 { 829 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 830 if (arch.IsValid() 831 && arch.GetMachine() == llvm::Triple::aarch64 832 && arch.GetTriple().getVendor() == llvm::Triple::Apple 833 && arch.GetTriple().getOS() == llvm::Triple::IOS) 834 { 835 arm64_debugserver = true; 836 } 837 } 838 uint32_t num_restored = 0; 839 const RegisterInfo *reg_info; 840 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 841 { 842 if (reg_info->value_regs) // skip registers that are slices of real registers 843 continue; 844 // Skip the fpsr and fpcr floating point status/control register writing to 845 // work around a bug in an older version of debugserver that would lead to 846 // register context corruption when writing fpsr/fpcr. 847 if (arm64_debugserver && 848 (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0)) 849 { 850 continue; 851 } 852 StreamString packet; 853 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindLLDB]); 854 packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder()); 855 if (thread_suffix_supported) 856 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 857 858 SetRegisterIsValid(reg_info, false); 859 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 860 packet.GetString().size(), 861 response, 862 false) == GDBRemoteCommunication::PacketResult::Success) 863 { 864 if (response.IsOKResponse()) 865 ++num_restored; 866 } 867 } 868 return num_restored > 0; 869 } 870 } 871 } 872 else 873 { 874 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 875 if (log) 876 { 877 if (log->GetVerbose()) 878 { 879 StreamString strm; 880 gdb_comm.DumpHistory(strm); 881 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 882 } 883 else 884 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 885 } 886 } 887 return false; 888 } 889 890 891 uint32_t 892 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) 893 { 894 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 895 } 896 897 898 void 899 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) 900 { 901 // For Advanced SIMD and VFP register mapping. 902 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 903 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 904 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 905 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 906 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 907 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 908 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 909 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 910 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 911 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 912 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 913 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 914 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 915 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 916 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 917 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 918 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 919 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 920 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 921 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 922 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 923 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 924 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 925 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 926 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 927 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 928 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 929 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 930 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 931 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 932 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 933 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 934 935 // This is our array of composite registers, with each element coming from the above register mappings. 936 static uint32_t *g_composites[] = { 937 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, 938 g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, 939 g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 940 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs 941 }; 942 943 static RegisterInfo g_register_infos[] = { 944 // NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB VALUE REGS INVALIDATE REGS 945 // ====== ====== === === ============= ============ =================== =================== ====================== === ==== ========== =============== 946 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 947 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 948 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 949 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 950 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 951 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 952 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 953 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 954 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 955 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 956 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 957 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 958 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 959 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 960 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 961 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 962 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 963 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 964 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 965 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 966 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 967 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 968 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 969 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 970 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 971 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 972 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 973 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 974 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 975 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 976 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 977 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 978 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 979 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 980 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 981 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 982 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 983 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 984 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 985 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 986 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 987 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 988 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 989 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 990 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 991 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 992 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 993 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 994 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 995 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 996 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 997 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 998 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 999 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 1000 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 1001 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 1002 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 1003 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 1004 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 1005 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 1006 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 1007 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 1008 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 1009 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 1010 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 1011 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 1012 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 1013 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 1014 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 1015 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 1016 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 1017 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 1018 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 1019 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 1020 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 1021 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 1022 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 1023 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 1024 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 1025 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 1026 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 1027 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 1028 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 1029 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 1030 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 1031 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 1032 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 1033 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 1034 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 1035 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 1036 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 1037 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 1038 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 1039 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 1040 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 1041 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 1042 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 1043 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 1044 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 1045 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 1046 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 1047 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 1048 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 1049 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 1050 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 1051 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 1052 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 1053 }; 1054 1055 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 1056 static ConstString gpr_reg_set ("General Purpose Registers"); 1057 static ConstString sfp_reg_set ("Software Floating Point Registers"); 1058 static ConstString vfp_reg_set ("Floating Point Registers"); 1059 size_t i; 1060 if (from_scratch) 1061 { 1062 // Calculate the offsets of the registers 1063 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 1064 // "primordial" registers is important. This enables us to calculate the offset of the composite 1065 // register by using the offset of its first primordial register. For example, to calculate the 1066 // offset of q0, use s0's offset. 1067 if (g_register_infos[2].byte_offset == 0) 1068 { 1069 uint32_t byte_offset = 0; 1070 for (i=0; i<num_registers; ++i) 1071 { 1072 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 1073 // byte_offset for the next register. Otherwise, we have a composite register whose 1074 // offset can be calculated by consulting the offset of its first primordial register. 1075 if (!g_register_infos[i].value_regs) 1076 { 1077 g_register_infos[i].byte_offset = byte_offset; 1078 byte_offset += g_register_infos[i].byte_size; 1079 } 1080 else 1081 { 1082 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 1083 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 1084 } 1085 } 1086 } 1087 for (i=0; i<num_registers; ++i) 1088 { 1089 ConstString name; 1090 ConstString alt_name; 1091 if (g_register_infos[i].name && g_register_infos[i].name[0]) 1092 name.SetCString(g_register_infos[i].name); 1093 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 1094 alt_name.SetCString(g_register_infos[i].alt_name); 1095 1096 if (i <= 15 || i == 25) 1097 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 1098 else if (i <= 24) 1099 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 1100 else 1101 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 1102 } 1103 } 1104 else 1105 { 1106 // Add composite registers to our primordial registers, then. 1107 const size_t num_composites = llvm::array_lengthof(g_composites); 1108 const size_t num_dynamic_regs = GetNumRegisters(); 1109 const size_t num_common_regs = num_registers - num_composites; 1110 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 1111 1112 // First we need to validate that all registers that we already have match the non composite regs. 1113 // If so, then we can add the registers, else we need to bail 1114 bool match = true; 1115 if (num_dynamic_regs == num_common_regs) 1116 { 1117 for (i=0; match && i<num_dynamic_regs; ++i) 1118 { 1119 // Make sure all register names match 1120 if (m_regs[i].name && g_register_infos[i].name) 1121 { 1122 if (strcmp(m_regs[i].name, g_register_infos[i].name)) 1123 { 1124 match = false; 1125 break; 1126 } 1127 } 1128 1129 // Make sure all register byte sizes match 1130 if (m_regs[i].byte_size != g_register_infos[i].byte_size) 1131 { 1132 match = false; 1133 break; 1134 } 1135 } 1136 } 1137 else 1138 { 1139 // Wrong number of registers. 1140 match = false; 1141 } 1142 // If "match" is true, then we can add extra registers. 1143 if (match) 1144 { 1145 for (i=0; i<num_composites; ++i) 1146 { 1147 ConstString name; 1148 ConstString alt_name; 1149 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; 1150 const char *reg_name = g_register_infos[first_primordial_reg].name; 1151 if (reg_name && reg_name[0]) 1152 { 1153 for (uint32_t j = 0; j < num_dynamic_regs; ++j) 1154 { 1155 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 1156 // Find a matching primordial register info entry. 1157 if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) 1158 { 1159 // The name matches the existing primordial entry. 1160 // Find and assign the offset, and then add this composite register entry. 1161 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 1162 name.SetCString(g_comp_register_infos[i].name); 1163 AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); 1164 } 1165 } 1166 } 1167 } 1168 } 1169 } 1170 } 1171