1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "GDBRemoteRegisterContext.h" 10 11 #include "lldb/Target/ExecutionContext.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/RegisterValue.h" 16 #include "lldb/Utility/Scalar.h" 17 #include "lldb/Utility/StreamString.h" 18 #include "ProcessGDBRemote.h" 19 #include "ProcessGDBRemoteLog.h" 20 #include "ThreadGDBRemote.h" 21 #include "Utility/ARM_DWARF_Registers.h" 22 #include "Utility/ARM_ehframe_Registers.h" 23 #include "lldb/Utility/StringExtractorGDBRemote.h" 24 25 using namespace lldb; 26 using namespace lldb_private; 27 using namespace lldb_private::process_gdb_remote; 28 29 //---------------------------------------------------------------------- 30 // GDBRemoteRegisterContext constructor 31 //---------------------------------------------------------------------- 32 GDBRemoteRegisterContext::GDBRemoteRegisterContext( 33 ThreadGDBRemote &thread, uint32_t concrete_frame_idx, 34 GDBRemoteDynamicRegisterInfo ®_info, bool read_all_at_once) 35 : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info), 36 m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) { 37 // Resize our vector of bools to contain one bool for every register. We will 38 // use these boolean values to know when a register value is valid in 39 // m_reg_data. 40 m_reg_valid.resize(reg_info.GetNumRegisters()); 41 42 // Make a heap based buffer that is big enough to store all registers 43 DataBufferSP reg_data_sp( 44 new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0)); 45 m_reg_data.SetData(reg_data_sp); 46 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 47 } 48 49 //---------------------------------------------------------------------- 50 // Destructor 51 //---------------------------------------------------------------------- 52 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {} 53 54 void GDBRemoteRegisterContext::InvalidateAllRegisters() { 55 SetAllRegisterValid(false); 56 } 57 58 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { 59 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 60 for (pos = m_reg_valid.begin(); pos != end; ++pos) 61 *pos = b; 62 } 63 64 size_t GDBRemoteRegisterContext::GetRegisterCount() { 65 return m_reg_info.GetNumRegisters(); 66 } 67 68 const RegisterInfo * 69 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { 70 RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg); 71 72 if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { 73 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 74 uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info); 75 reg_info->byte_size = reg_size; 76 } 77 return reg_info; 78 } 79 80 size_t GDBRemoteRegisterContext::GetRegisterSetCount() { 81 return m_reg_info.GetNumRegisterSets(); 82 } 83 84 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { 85 return m_reg_info.GetRegisterSet(reg_set); 86 } 87 88 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, 89 RegisterValue &value) { 90 // Read the register 91 if (ReadRegisterBytes(reg_info, m_reg_data)) { 92 const bool partial_data_ok = false; 93 Status error(value.SetValueFromData( 94 reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 95 return error.Success(); 96 } 97 return false; 98 } 99 100 bool GDBRemoteRegisterContext::PrivateSetRegisterValue( 101 uint32_t reg, llvm::ArrayRef<uint8_t> data) { 102 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 103 if (reg_info == NULL) 104 return false; 105 106 // Invalidate if needed 107 InvalidateIfNeeded(false); 108 109 const size_t reg_byte_size = reg_info->byte_size; 110 memcpy(const_cast<uint8_t *>( 111 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), 112 data.data(), std::min(data.size(), reg_byte_size)); 113 bool success = data.size() >= reg_byte_size; 114 if (success) { 115 SetRegisterIsValid(reg, true); 116 } else if (data.size() > 0) { 117 // Only set register is valid to false if we copied some bytes, else leave 118 // it as it was. 119 SetRegisterIsValid(reg, false); 120 } 121 return success; 122 } 123 124 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, 125 uint64_t new_reg_val) { 126 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 127 if (reg_info == NULL) 128 return false; 129 130 // Early in process startup, we can get a thread that has an invalid byte 131 // order because the process hasn't been completely set up yet (see the ctor 132 // where the byte order is setfrom the process). If that's the case, we 133 // can't set the value here. 134 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { 135 return false; 136 } 137 138 // Invalidate if needed 139 InvalidateIfNeeded(false); 140 141 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); 142 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); 143 144 // If our register context and our register info disagree, which should never 145 // happen, don't overwrite past the end of the buffer. 146 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 147 return false; 148 149 // Grab a pointer to where we are going to put this register 150 uint8_t *dst = const_cast<uint8_t *>( 151 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 152 153 if (dst == NULL) 154 return false; 155 156 if (data.CopyByteOrderedData(0, // src offset 157 reg_info->byte_size, // src length 158 dst, // dst 159 reg_info->byte_size, // dst length 160 m_reg_data.GetByteOrder())) // dst byte order 161 { 162 SetRegisterIsValid(reg, true); 163 return true; 164 } 165 return false; 166 } 167 168 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 169 bool GDBRemoteRegisterContext::GetPrimordialRegister( 170 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 171 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; 172 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; 173 174 if (DataBufferSP buffer_sp = 175 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) 176 return PrivateSetRegisterValue( 177 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(), 178 buffer_sp->GetByteSize())); 179 return false; 180 } 181 182 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info, 183 DataExtractor &data) { 184 ExecutionContext exe_ctx(CalculateThread()); 185 186 Process *process = exe_ctx.GetProcessPtr(); 187 Thread *thread = exe_ctx.GetThreadPtr(); 188 if (process == NULL || thread == NULL) 189 return false; 190 191 GDBRemoteCommunicationClient &gdb_comm( 192 ((ProcessGDBRemote *)process)->GetGDBRemote()); 193 194 InvalidateIfNeeded(false); 195 196 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 197 198 if (!GetRegisterIsValid(reg)) { 199 if (m_read_all_at_once) { 200 if (DataBufferSP buffer_sp = 201 gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { 202 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()), 203 buffer_sp->GetBytes(), 204 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); 205 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { 206 SetAllRegisterValid(true); 207 return true; 208 } 209 } 210 return false; 211 } 212 if (reg_info->value_regs) { 213 // Process this composite register request by delegating to the 214 // constituent primordial registers. 215 216 // Index of the primordial register. 217 bool success = true; 218 for (uint32_t idx = 0; success; ++idx) { 219 const uint32_t prim_reg = reg_info->value_regs[idx]; 220 if (prim_reg == LLDB_INVALID_REGNUM) 221 break; 222 // We have a valid primordial register as our constituent. Grab the 223 // corresponding register info. 224 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 225 if (prim_reg_info == NULL) 226 success = false; 227 else { 228 // Read the containing register if it hasn't already been read 229 if (!GetRegisterIsValid(prim_reg)) 230 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 231 } 232 } 233 234 if (success) { 235 // If we reach this point, all primordial register requests have 236 // succeeded. Validate this composite register. 237 SetRegisterIsValid(reg_info, true); 238 } 239 } else { 240 // Get each register individually 241 GetPrimordialRegister(reg_info, gdb_comm); 242 } 243 244 // Make sure we got a valid register value after reading it 245 if (!GetRegisterIsValid(reg)) 246 return false; 247 } 248 249 if (&data != &m_reg_data) { 250 #if defined(LLDB_CONFIGURATION_DEBUG) 251 assert(m_reg_data.GetByteSize() >= 252 reg_info->byte_offset + reg_info->byte_size); 253 #endif 254 // If our register context and our register info disagree, which should 255 // never happen, don't read past the end of the buffer. 256 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 257 return false; 258 259 // If we aren't extracting into our own buffer (which only happens when 260 // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then 261 // we transfer bytes from our buffer into the data buffer that was passed 262 // in 263 264 data.SetByteOrder(m_reg_data.GetByteOrder()); 265 data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size); 266 } 267 return true; 268 } 269 270 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, 271 const RegisterValue &value) { 272 DataExtractor data; 273 if (value.GetData(data)) 274 return WriteRegisterBytes(reg_info, data, 0); 275 return false; 276 } 277 278 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 279 bool GDBRemoteRegisterContext::SetPrimordialRegister( 280 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 281 StreamString packet; 282 StringExtractorGDBRemote response; 283 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 284 // Invalidate just this register 285 SetRegisterIsValid(reg, false); 286 287 return gdb_comm.WriteRegister( 288 m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], 289 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 290 reg_info->byte_size}); 291 } 292 293 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, 294 DataExtractor &data, 295 uint32_t data_offset) { 296 ExecutionContext exe_ctx(CalculateThread()); 297 298 Process *process = exe_ctx.GetProcessPtr(); 299 Thread *thread = exe_ctx.GetThreadPtr(); 300 if (process == NULL || thread == NULL) 301 return false; 302 303 GDBRemoteCommunicationClient &gdb_comm( 304 ((ProcessGDBRemote *)process)->GetGDBRemote()); 305 306 #if defined(LLDB_CONFIGURATION_DEBUG) 307 assert(m_reg_data.GetByteSize() >= 308 reg_info->byte_offset + reg_info->byte_size); 309 #endif 310 311 // If our register context and our register info disagree, which should never 312 // happen, don't overwrite past the end of the buffer. 313 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 314 return false; 315 316 // Grab a pointer to where we are going to put this register 317 uint8_t *dst = const_cast<uint8_t *>( 318 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 319 320 if (dst == NULL) 321 return false; 322 323 if (data.CopyByteOrderedData(data_offset, // src offset 324 reg_info->byte_size, // src length 325 dst, // dst 326 reg_info->byte_size, // dst length 327 m_reg_data.GetByteOrder())) // dst byte order 328 { 329 GDBRemoteClientBase::Lock lock(gdb_comm, false); 330 if (lock) { 331 if (m_read_all_at_once) { 332 // Invalidate all register values 333 InvalidateIfNeeded(true); 334 335 // Set all registers in one packet 336 if (gdb_comm.WriteAllRegisters( 337 m_thread.GetProtocolID(), 338 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) 339 340 { 341 SetAllRegisterValid(false); 342 return true; 343 } 344 } else { 345 bool success = true; 346 347 if (reg_info->value_regs) { 348 // This register is part of another register. In this case we read 349 // the actual register data for any "value_regs", and once all that 350 // data is read, we will have enough data in our register context 351 // bytes for the value of this register 352 353 // Invalidate this composite register first. 354 355 for (uint32_t idx = 0; success; ++idx) { 356 const uint32_t reg = reg_info->value_regs[idx]; 357 if (reg == LLDB_INVALID_REGNUM) 358 break; 359 // We have a valid primordial register as our constituent. Grab the 360 // corresponding register info. 361 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 362 if (value_reg_info == NULL) 363 success = false; 364 else 365 success = SetPrimordialRegister(value_reg_info, gdb_comm); 366 } 367 } else { 368 // This is an actual register, write it 369 success = SetPrimordialRegister(reg_info, gdb_comm); 370 } 371 372 // Check if writing this register will invalidate any other register 373 // values? If so, invalidate them 374 if (reg_info->invalidate_regs) { 375 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 376 reg != LLDB_INVALID_REGNUM; 377 reg = reg_info->invalidate_regs[++idx]) { 378 SetRegisterIsValid(reg, false); 379 } 380 } 381 382 return success; 383 } 384 } else { 385 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 386 GDBR_LOG_PACKETS)); 387 if (log) { 388 if (log->GetVerbose()) { 389 StreamString strm; 390 gdb_comm.DumpHistory(strm); 391 log->Printf("error: failed to get packet sequence mutex, not sending " 392 "write register for \"%s\":\n%s", 393 reg_info->name, strm.GetData()); 394 } else 395 log->Printf("error: failed to get packet sequence mutex, not sending " 396 "write register for \"%s\"", 397 reg_info->name); 398 } 399 } 400 } 401 return false; 402 } 403 404 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 405 RegisterCheckpoint ®_checkpoint) { 406 ExecutionContext exe_ctx(CalculateThread()); 407 408 Process *process = exe_ctx.GetProcessPtr(); 409 Thread *thread = exe_ctx.GetThreadPtr(); 410 if (process == NULL || thread == NULL) 411 return false; 412 413 GDBRemoteCommunicationClient &gdb_comm( 414 ((ProcessGDBRemote *)process)->GetGDBRemote()); 415 416 uint32_t save_id = 0; 417 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { 418 reg_checkpoint.SetID(save_id); 419 reg_checkpoint.GetData().reset(); 420 return true; 421 } else { 422 reg_checkpoint.SetID(0); // Invalid save ID is zero 423 return ReadAllRegisterValues(reg_checkpoint.GetData()); 424 } 425 } 426 427 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 428 const RegisterCheckpoint ®_checkpoint) { 429 uint32_t save_id = reg_checkpoint.GetID(); 430 if (save_id != 0) { 431 ExecutionContext exe_ctx(CalculateThread()); 432 433 Process *process = exe_ctx.GetProcessPtr(); 434 Thread *thread = exe_ctx.GetThreadPtr(); 435 if (process == NULL || thread == NULL) 436 return false; 437 438 GDBRemoteCommunicationClient &gdb_comm( 439 ((ProcessGDBRemote *)process)->GetGDBRemote()); 440 441 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 442 } else { 443 return WriteAllRegisterValues(reg_checkpoint.GetData()); 444 } 445 } 446 447 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 448 lldb::DataBufferSP &data_sp) { 449 ExecutionContext exe_ctx(CalculateThread()); 450 451 Process *process = exe_ctx.GetProcessPtr(); 452 Thread *thread = exe_ctx.GetThreadPtr(); 453 if (process == NULL || thread == NULL) 454 return false; 455 456 GDBRemoteCommunicationClient &gdb_comm( 457 ((ProcessGDBRemote *)process)->GetGDBRemote()); 458 459 const bool use_g_packet = 460 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 461 462 GDBRemoteClientBase::Lock lock(gdb_comm, false); 463 if (lock) { 464 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) 465 InvalidateAllRegisters(); 466 467 if (use_g_packet && 468 (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID()))) 469 return true; 470 471 // We're going to read each register 472 // individually and store them as binary data in a buffer. 473 const RegisterInfo *reg_info; 474 475 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) { 476 if (reg_info 477 ->value_regs) // skip registers that are slices of real registers 478 continue; 479 ReadRegisterBytes(reg_info, m_reg_data); 480 // ReadRegisterBytes saves the contents of the register in to the 481 // m_reg_data buffer 482 } 483 data_sp.reset(new DataBufferHeap(m_reg_data.GetDataStart(), 484 m_reg_info.GetRegisterDataByteSize())); 485 return true; 486 } else { 487 488 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 489 GDBR_LOG_PACKETS)); 490 if (log) { 491 if (log->GetVerbose()) { 492 StreamString strm; 493 gdb_comm.DumpHistory(strm); 494 log->Printf("error: failed to get packet sequence mutex, not sending " 495 "read all registers:\n%s", 496 strm.GetData()); 497 } else 498 log->Printf("error: failed to get packet sequence mutex, not sending " 499 "read all registers"); 500 } 501 } 502 503 data_sp.reset(); 504 return false; 505 } 506 507 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 508 const lldb::DataBufferSP &data_sp) { 509 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 510 return false; 511 512 ExecutionContext exe_ctx(CalculateThread()); 513 514 Process *process = exe_ctx.GetProcessPtr(); 515 Thread *thread = exe_ctx.GetThreadPtr(); 516 if (process == NULL || thread == NULL) 517 return false; 518 519 GDBRemoteCommunicationClient &gdb_comm( 520 ((ProcessGDBRemote *)process)->GetGDBRemote()); 521 522 const bool use_g_packet = 523 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 524 525 GDBRemoteClientBase::Lock lock(gdb_comm, false); 526 if (lock) { 527 // The data_sp contains the G response packet. 528 if (use_g_packet) { 529 if (gdb_comm.WriteAllRegisters( 530 m_thread.GetProtocolID(), 531 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) 532 return true; 533 534 uint32_t num_restored = 0; 535 // We need to manually go through all of the registers and restore them 536 // manually 537 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), 538 m_reg_data.GetAddressByteSize()); 539 540 const RegisterInfo *reg_info; 541 542 // The g packet contents may either include the slice registers 543 // (registers defined in terms of other registers, e.g. eax is a subset 544 // of rax) or not. The slice registers should NOT be in the g packet, 545 // but some implementations may incorrectly include them. 546 // 547 // If the slice registers are included in the packet, we must step over 548 // the slice registers when parsing the packet -- relying on the 549 // RegisterInfo byte_offset field would be incorrect. If the slice 550 // registers are not included, then using the byte_offset values into the 551 // data buffer is the best way to find individual register values. 552 553 uint64_t size_including_slice_registers = 0; 554 uint64_t size_not_including_slice_registers = 0; 555 uint64_t size_by_highest_offset = 0; 556 557 for (uint32_t reg_idx = 0; 558 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) { 559 size_including_slice_registers += reg_info->byte_size; 560 if (reg_info->value_regs == NULL) 561 size_not_including_slice_registers += reg_info->byte_size; 562 if (reg_info->byte_offset >= size_by_highest_offset) 563 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 564 } 565 566 bool use_byte_offset_into_buffer; 567 if (size_by_highest_offset == restore_data.GetByteSize()) { 568 // The size of the packet agrees with the highest offset: + size in the 569 // register file 570 use_byte_offset_into_buffer = true; 571 } else if (size_not_including_slice_registers == 572 restore_data.GetByteSize()) { 573 // The size of the packet is the same as concatenating all of the 574 // registers sequentially, skipping the slice registers 575 use_byte_offset_into_buffer = true; 576 } else if (size_including_slice_registers == restore_data.GetByteSize()) { 577 // The slice registers are present in the packet (when they shouldn't 578 // be). Don't try to use the RegisterInfo byte_offset into the 579 // restore_data, it will point to the wrong place. 580 use_byte_offset_into_buffer = false; 581 } else { 582 // None of our expected sizes match the actual g packet data we're 583 // looking at. The most conservative approach here is to use the 584 // running total byte offset. 585 use_byte_offset_into_buffer = false; 586 } 587 588 // In case our register definitions don't include the correct offsets, 589 // keep track of the size of each reg & compute offset based on that. 590 uint32_t running_byte_offset = 0; 591 for (uint32_t reg_idx = 0; 592 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; 593 ++reg_idx, running_byte_offset += reg_info->byte_size) { 594 // Skip composite aka slice registers (e.g. eax is a slice of rax). 595 if (reg_info->value_regs) 596 continue; 597 598 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 599 600 uint32_t register_offset; 601 if (use_byte_offset_into_buffer) { 602 register_offset = reg_info->byte_offset; 603 } else { 604 register_offset = running_byte_offset; 605 } 606 607 const uint32_t reg_byte_size = reg_info->byte_size; 608 609 const uint8_t *restore_src = 610 restore_data.PeekData(register_offset, reg_byte_size); 611 if (restore_src) { 612 SetRegisterIsValid(reg, false); 613 if (gdb_comm.WriteRegister( 614 m_thread.GetProtocolID(), 615 reg_info->kinds[eRegisterKindProcessPlugin], 616 {restore_src, reg_byte_size})) 617 ++num_restored; 618 } 619 } 620 return num_restored > 0; 621 } else { 622 // For the use_g_packet == false case, we're going to write each register 623 // individually. The data buffer is binary data in this case, instead of 624 // ascii characters. 625 626 bool arm64_debugserver = false; 627 if (m_thread.GetProcess().get()) { 628 const ArchSpec &arch = 629 m_thread.GetProcess()->GetTarget().GetArchitecture(); 630 if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 && 631 arch.GetTriple().getVendor() == llvm::Triple::Apple && 632 arch.GetTriple().getOS() == llvm::Triple::IOS) { 633 arm64_debugserver = true; 634 } 635 } 636 uint32_t num_restored = 0; 637 const RegisterInfo *reg_info; 638 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; 639 i++) { 640 if (reg_info->value_regs) // skip registers that are slices of real 641 // registers 642 continue; 643 // Skip the fpsr and fpcr floating point status/control register 644 // writing to work around a bug in an older version of debugserver that 645 // would lead to register context corruption when writing fpsr/fpcr. 646 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || 647 strcmp(reg_info->name, "fpcr") == 0)) { 648 continue; 649 } 650 651 SetRegisterIsValid(reg_info, false); 652 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), 653 reg_info->kinds[eRegisterKindProcessPlugin], 654 {data_sp->GetBytes() + reg_info->byte_offset, 655 reg_info->byte_size})) 656 ++num_restored; 657 } 658 return num_restored > 0; 659 } 660 } else { 661 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 662 GDBR_LOG_PACKETS)); 663 if (log) { 664 if (log->GetVerbose()) { 665 StreamString strm; 666 gdb_comm.DumpHistory(strm); 667 log->Printf("error: failed to get packet sequence mutex, not sending " 668 "write all registers:\n%s", 669 strm.GetData()); 670 } else 671 log->Printf("error: failed to get packet sequence mutex, not sending " 672 "write all registers"); 673 } 674 } 675 return false; 676 } 677 678 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( 679 lldb::RegisterKind kind, uint32_t num) { 680 return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num); 681 } 682 683 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { 684 // For Advanced SIMD and VFP register mapping. 685 static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1) 686 static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3) 687 static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5) 688 static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7) 689 static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9) 690 static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11) 691 static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13) 692 static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15) 693 static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17) 694 static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19) 695 static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21) 696 static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23) 697 static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25) 698 static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27) 699 static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29) 700 static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31) 701 static uint32_t g_q0_regs[] = { 702 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3) 703 static uint32_t g_q1_regs[] = { 704 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7) 705 static uint32_t g_q2_regs[] = { 706 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11) 707 static uint32_t g_q3_regs[] = { 708 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15) 709 static uint32_t g_q4_regs[] = { 710 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19) 711 static uint32_t g_q5_regs[] = { 712 46, 47, 48, 49, 713 LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23) 714 static uint32_t g_q6_regs[] = { 715 50, 51, 52, 53, 716 LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27) 717 static uint32_t g_q7_regs[] = { 718 54, 55, 56, 57, 719 LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31) 720 static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17) 721 static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19) 722 static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21) 723 static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23) 724 static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25) 725 static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27) 726 static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29) 727 static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31) 728 729 // This is our array of composite registers, with each element coming from 730 // the above register mappings. 731 static uint32_t *g_composites[] = { 732 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, 733 g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, 734 g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, 735 g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 736 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, 737 g_q14_regs, g_q15_regs}; 738 739 // clang-format off 740 static RegisterInfo g_register_infos[] = { 741 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN 742 // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ======== 743 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 }, 744 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 }, 745 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 }, 746 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 }, 747 { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 }, 748 { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 }, 749 { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 }, 750 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 }, 751 { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 }, 752 { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 }, 753 { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 }, 754 { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 }, 755 { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 }, 756 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 }, 757 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 }, 758 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 }, 759 { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 }, 760 { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 }, 761 { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 }, 762 { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 }, 763 { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 }, 764 { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 }, 765 { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 }, 766 { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 }, 767 { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 }, 768 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 }, 769 { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 }, 770 { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 }, 771 { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 }, 772 { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 }, 773 { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 }, 774 { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 }, 775 { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 }, 776 { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 }, 777 { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 }, 778 { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 }, 779 { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 }, 780 { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 }, 781 { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 }, 782 { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 }, 783 { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 }, 784 { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 }, 785 { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 }, 786 { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 }, 787 { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 }, 788 { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 }, 789 { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 }, 790 { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 }, 791 { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 }, 792 { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 }, 793 { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 }, 794 { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 }, 795 { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 }, 796 { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 }, 797 { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 }, 798 { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 }, 799 { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 }, 800 { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 }, 801 { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 }, 802 { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 }, 803 { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 }, 804 { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 }, 805 { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 }, 806 { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 }, 807 { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 }, 808 { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 }, 809 { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 }, 810 { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 }, 811 { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 }, 812 { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 }, 813 { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 }, 814 { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 }, 815 { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 }, 816 { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 }, 817 { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 }, 818 { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 }, 819 { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 }, 820 { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 }, 821 { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 }, 822 { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 }, 823 { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 }, 824 { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 }, 825 { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 }, 826 { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 }, 827 { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 }, 828 { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 }, 829 { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 }, 830 { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 }, 831 { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 }, 832 { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 }, 833 { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 }, 834 { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 }, 835 { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 }, 836 { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 }, 837 { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 }, 838 { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 }, 839 { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 }, 840 { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 }, 841 { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 }, 842 { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 }, 843 { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 }, 844 { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 }, 845 { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 }, 846 { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 }, 847 { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 }, 848 { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 }, 849 { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 } 850 }; 851 // clang-format on 852 853 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 854 static ConstString gpr_reg_set("General Purpose Registers"); 855 static ConstString sfp_reg_set("Software Floating Point Registers"); 856 static ConstString vfp_reg_set("Floating Point Registers"); 857 size_t i; 858 if (from_scratch) { 859 // Calculate the offsets of the registers 860 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) 861 // which comes after the "primordial" registers is important. This enables 862 // us to calculate the offset of the composite register by using the offset 863 // of its first primordial register. For example, to calculate the offset 864 // of q0, use s0's offset. 865 if (g_register_infos[2].byte_offset == 0) { 866 uint32_t byte_offset = 0; 867 for (i = 0; i < num_registers; ++i) { 868 // For primordial registers, increment the byte_offset by the byte_size 869 // to arrive at the byte_offset for the next register. Otherwise, we 870 // have a composite register whose offset can be calculated by 871 // consulting the offset of its first primordial register. 872 if (!g_register_infos[i].value_regs) { 873 g_register_infos[i].byte_offset = byte_offset; 874 byte_offset += g_register_infos[i].byte_size; 875 } else { 876 const uint32_t first_primordial_reg = 877 g_register_infos[i].value_regs[0]; 878 g_register_infos[i].byte_offset = 879 g_register_infos[first_primordial_reg].byte_offset; 880 } 881 } 882 } 883 for (i = 0; i < num_registers; ++i) { 884 ConstString name; 885 ConstString alt_name; 886 if (g_register_infos[i].name && g_register_infos[i].name[0]) 887 name.SetCString(g_register_infos[i].name); 888 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 889 alt_name.SetCString(g_register_infos[i].alt_name); 890 891 if (i <= 15 || i == 25) 892 AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set); 893 else if (i <= 24) 894 AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set); 895 else 896 AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set); 897 } 898 } else { 899 // Add composite registers to our primordial registers, then. 900 const size_t num_composites = llvm::array_lengthof(g_composites); 901 const size_t num_dynamic_regs = GetNumRegisters(); 902 const size_t num_common_regs = num_registers - num_composites; 903 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 904 905 // First we need to validate that all registers that we already have match 906 // the non composite regs. If so, then we can add the registers, else we 907 // need to bail 908 bool match = true; 909 if (num_dynamic_regs == num_common_regs) { 910 for (i = 0; match && i < num_dynamic_regs; ++i) { 911 // Make sure all register names match 912 if (m_regs[i].name && g_register_infos[i].name) { 913 if (strcmp(m_regs[i].name, g_register_infos[i].name)) { 914 match = false; 915 break; 916 } 917 } 918 919 // Make sure all register byte sizes match 920 if (m_regs[i].byte_size != g_register_infos[i].byte_size) { 921 match = false; 922 break; 923 } 924 } 925 } else { 926 // Wrong number of registers. 927 match = false; 928 } 929 // If "match" is true, then we can add extra registers. 930 if (match) { 931 for (i = 0; i < num_composites; ++i) { 932 ConstString name; 933 ConstString alt_name; 934 const uint32_t first_primordial_reg = 935 g_comp_register_infos[i].value_regs[0]; 936 const char *reg_name = g_register_infos[first_primordial_reg].name; 937 if (reg_name && reg_name[0]) { 938 for (uint32_t j = 0; j < num_dynamic_regs; ++j) { 939 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 940 // Find a matching primordial register info entry. 941 if (reg_info && reg_info->name && 942 ::strcasecmp(reg_info->name, reg_name) == 0) { 943 // The name matches the existing primordial entry. Find and 944 // assign the offset, and then add this composite register entry. 945 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 946 name.SetCString(g_comp_register_infos[i].name); 947 AddRegister(g_comp_register_infos[i], name, alt_name, 948 vfp_reg_set); 949 } 950 } 951 } 952 } 953 } 954 } 955 } 956