1 //===-- GDBRemoteRegisterContext.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "GDBRemoteRegisterContext.h" 10 11 #include "lldb/Target/ExecutionContext.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/RegisterValue.h" 16 #include "lldb/Utility/Scalar.h" 17 #include "lldb/Utility/StreamString.h" 18 #include "ProcessGDBRemote.h" 19 #include "ProcessGDBRemoteLog.h" 20 #include "ThreadGDBRemote.h" 21 #include "Utility/ARM_DWARF_Registers.h" 22 #include "Utility/ARM_ehframe_Registers.h" 23 #include "lldb/Utility/StringExtractorGDBRemote.h" 24 25 #include <memory> 26 27 using namespace lldb; 28 using namespace lldb_private; 29 using namespace lldb_private::process_gdb_remote; 30 31 // GDBRemoteRegisterContext constructor 32 GDBRemoteRegisterContext::GDBRemoteRegisterContext( 33 ThreadGDBRemote &thread, uint32_t concrete_frame_idx, 34 GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once, 35 bool write_all_at_once) 36 : RegisterContext(thread, concrete_frame_idx), 37 m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(), 38 m_read_all_at_once(read_all_at_once), 39 m_write_all_at_once(write_all_at_once) { 40 // Resize our vector of bools to contain one bool for every register. We will 41 // use these boolean values to know when a register value is valid in 42 // m_reg_data. 43 m_reg_valid.resize(m_reg_info_sp->GetNumRegisters()); 44 45 // Make a heap based buffer that is big enough to store all registers 46 DataBufferSP reg_data_sp( 47 new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0)); 48 m_reg_data.SetData(reg_data_sp); 49 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 50 } 51 52 // Destructor 53 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {} 54 55 void GDBRemoteRegisterContext::InvalidateAllRegisters() { 56 SetAllRegisterValid(false); 57 } 58 59 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { 60 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 61 for (pos = m_reg_valid.begin(); pos != end; ++pos) 62 *pos = b; 63 } 64 65 size_t GDBRemoteRegisterContext::GetRegisterCount() { 66 return m_reg_info_sp->GetNumRegisters(); 67 } 68 69 const RegisterInfo * 70 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { 71 RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfoAtIndex(reg); 72 73 if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { 74 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 75 uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info); 76 reg_info->byte_size = reg_size; 77 } 78 return reg_info; 79 } 80 81 size_t GDBRemoteRegisterContext::GetRegisterSetCount() { 82 return m_reg_info_sp->GetNumRegisterSets(); 83 } 84 85 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { 86 return m_reg_info_sp->GetRegisterSet(reg_set); 87 } 88 89 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, 90 RegisterValue &value) { 91 // Read the register 92 if (ReadRegisterBytes(reg_info, m_reg_data)) { 93 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 94 if (m_reg_valid[reg] == false) 95 return false; 96 const bool partial_data_ok = false; 97 Status error(value.SetValueFromData( 98 reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 99 return error.Success(); 100 } 101 return false; 102 } 103 104 bool GDBRemoteRegisterContext::PrivateSetRegisterValue( 105 uint32_t reg, llvm::ArrayRef<uint8_t> data) { 106 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 107 if (reg_info == nullptr) 108 return false; 109 110 // Invalidate if needed 111 InvalidateIfNeeded(false); 112 113 const size_t reg_byte_size = reg_info->byte_size; 114 memcpy(const_cast<uint8_t *>( 115 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), 116 data.data(), std::min(data.size(), reg_byte_size)); 117 bool success = data.size() >= reg_byte_size; 118 if (success) { 119 SetRegisterIsValid(reg, true); 120 } else if (data.size() > 0) { 121 // Only set register is valid to false if we copied some bytes, else leave 122 // it as it was. 123 SetRegisterIsValid(reg, false); 124 } 125 return success; 126 } 127 128 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, 129 uint64_t new_reg_val) { 130 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 131 if (reg_info == nullptr) 132 return false; 133 134 // Early in process startup, we can get a thread that has an invalid byte 135 // order because the process hasn't been completely set up yet (see the ctor 136 // where the byte order is setfrom the process). If that's the case, we 137 // can't set the value here. 138 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { 139 return false; 140 } 141 142 // Invalidate if needed 143 InvalidateIfNeeded(false); 144 145 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); 146 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); 147 148 // If our register context and our register info disagree, which should never 149 // happen, don't overwrite past the end of the buffer. 150 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 151 return false; 152 153 // Grab a pointer to where we are going to put this register 154 uint8_t *dst = const_cast<uint8_t *>( 155 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 156 157 if (dst == nullptr) 158 return false; 159 160 if (data.CopyByteOrderedData(0, // src offset 161 reg_info->byte_size, // src length 162 dst, // dst 163 reg_info->byte_size, // dst length 164 m_reg_data.GetByteOrder())) // dst byte order 165 { 166 SetRegisterIsValid(reg, true); 167 return true; 168 } 169 return false; 170 } 171 172 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 173 bool GDBRemoteRegisterContext::GetPrimordialRegister( 174 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 175 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; 176 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; 177 178 if (DataBufferSP buffer_sp = 179 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) 180 return PrivateSetRegisterValue( 181 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(), 182 buffer_sp->GetByteSize())); 183 return false; 184 } 185 186 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info, 187 DataExtractor &data) { 188 ExecutionContext exe_ctx(CalculateThread()); 189 190 Process *process = exe_ctx.GetProcessPtr(); 191 Thread *thread = exe_ctx.GetThreadPtr(); 192 if (process == nullptr || thread == nullptr) 193 return false; 194 195 GDBRemoteCommunicationClient &gdb_comm( 196 ((ProcessGDBRemote *)process)->GetGDBRemote()); 197 198 InvalidateIfNeeded(false); 199 200 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 201 202 if (!GetRegisterIsValid(reg)) { 203 if (m_read_all_at_once) { 204 if (DataBufferSP buffer_sp = 205 gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { 206 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()), 207 buffer_sp->GetBytes(), 208 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); 209 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { 210 SetAllRegisterValid(true); 211 return true; 212 } else if (buffer_sp->GetByteSize() > 0) { 213 const int regcount = m_reg_info_sp->GetNumRegisters(); 214 for (int i = 0; i < regcount; i++) { 215 struct RegisterInfo *reginfo = 216 m_reg_info_sp->GetRegisterInfoAtIndex(i); 217 if (reginfo->byte_offset + reginfo->byte_size <= 218 buffer_sp->GetByteSize()) { 219 m_reg_valid[i] = true; 220 } else { 221 m_reg_valid[i] = false; 222 } 223 } 224 return true; 225 } else { 226 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 227 GDBR_LOG_PACKETS)); 228 LLDB_LOGF( 229 log, 230 "error: GDBRemoteRegisterContext::ReadRegisterBytes tried " 231 "to read the " 232 "entire register context at once, expected at least %" PRId64 233 " bytes " 234 "but only got %" PRId64 " bytes.", 235 m_reg_data.GetByteSize(), buffer_sp->GetByteSize()); 236 } 237 } 238 return false; 239 } 240 if (reg_info->value_regs) { 241 // Process this composite register request by delegating to the 242 // constituent primordial registers. 243 244 // Index of the primordial register. 245 bool success = true; 246 for (uint32_t idx = 0; success; ++idx) { 247 const uint32_t prim_reg = reg_info->value_regs[idx]; 248 if (prim_reg == LLDB_INVALID_REGNUM) 249 break; 250 // We have a valid primordial register as our constituent. Grab the 251 // corresponding register info. 252 const RegisterInfo *prim_reg_info = 253 GetRegisterInfo(eRegisterKindProcessPlugin, prim_reg); 254 if (prim_reg_info == nullptr) 255 success = false; 256 else { 257 // Read the containing register if it hasn't already been read 258 if (!GetRegisterIsValid(prim_reg)) 259 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 260 } 261 } 262 263 if (success) { 264 // If we reach this point, all primordial register requests have 265 // succeeded. Validate this composite register. 266 SetRegisterIsValid(reg_info, true); 267 } 268 } else { 269 // Get each register individually 270 GetPrimordialRegister(reg_info, gdb_comm); 271 } 272 273 // Make sure we got a valid register value after reading it 274 if (!GetRegisterIsValid(reg)) 275 return false; 276 } 277 278 if (&data != &m_reg_data) { 279 assert(m_reg_data.GetByteSize() >= 280 reg_info->byte_offset + reg_info->byte_size); 281 // If our register context and our register info disagree, which should 282 // never happen, don't read past the end of the buffer. 283 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 284 return false; 285 286 // If we aren't extracting into our own buffer (which only happens when 287 // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then 288 // we transfer bytes from our buffer into the data buffer that was passed 289 // in 290 291 data.SetByteOrder(m_reg_data.GetByteOrder()); 292 data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size); 293 } 294 return true; 295 } 296 297 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, 298 const RegisterValue &value) { 299 DataExtractor data; 300 if (value.GetData(data)) 301 return WriteRegisterBytes(reg_info, data, 0); 302 return false; 303 } 304 305 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 306 bool GDBRemoteRegisterContext::SetPrimordialRegister( 307 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 308 StreamString packet; 309 StringExtractorGDBRemote response; 310 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 311 // Invalidate just this register 312 SetRegisterIsValid(reg, false); 313 314 return gdb_comm.WriteRegister( 315 m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], 316 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 317 reg_info->byte_size}); 318 } 319 320 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, 321 DataExtractor &data, 322 uint32_t data_offset) { 323 ExecutionContext exe_ctx(CalculateThread()); 324 325 Process *process = exe_ctx.GetProcessPtr(); 326 Thread *thread = exe_ctx.GetThreadPtr(); 327 if (process == nullptr || thread == nullptr) 328 return false; 329 330 GDBRemoteCommunicationClient &gdb_comm( 331 ((ProcessGDBRemote *)process)->GetGDBRemote()); 332 333 assert(m_reg_data.GetByteSize() >= 334 reg_info->byte_offset + reg_info->byte_size); 335 336 // If our register context and our register info disagree, which should never 337 // happen, don't overwrite past the end of the buffer. 338 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 339 return false; 340 341 // Grab a pointer to where we are going to put this register 342 uint8_t *dst = const_cast<uint8_t *>( 343 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 344 345 if (dst == nullptr) 346 return false; 347 348 // Code below is specific to AArch64 target in SVE state 349 // If vector granule (vg) register is being written then thread's 350 // register context reconfiguration is triggered on success. 351 bool do_reconfigure_arm64_sve = false; 352 const ArchSpec &arch = process->GetTarget().GetArchitecture(); 353 if (arch.IsValid() && arch.GetTriple().isAArch64()) 354 if (strcmp(reg_info->name, "vg") == 0) 355 do_reconfigure_arm64_sve = true; 356 357 if (data.CopyByteOrderedData(data_offset, // src offset 358 reg_info->byte_size, // src length 359 dst, // dst 360 reg_info->byte_size, // dst length 361 m_reg_data.GetByteOrder())) // dst byte order 362 { 363 GDBRemoteClientBase::Lock lock(gdb_comm, false); 364 if (lock) { 365 if (m_write_all_at_once) { 366 // Invalidate all register values 367 InvalidateIfNeeded(true); 368 369 // Set all registers in one packet 370 if (gdb_comm.WriteAllRegisters( 371 m_thread.GetProtocolID(), 372 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) 373 374 { 375 SetAllRegisterValid(false); 376 377 if (do_reconfigure_arm64_sve) 378 AArch64SVEReconfigure(); 379 380 return true; 381 } 382 } else { 383 bool success = true; 384 385 if (reg_info->value_regs) { 386 // This register is part of another register. In this case we read 387 // the actual register data for any "value_regs", and once all that 388 // data is read, we will have enough data in our register context 389 // bytes for the value of this register 390 391 // Invalidate this composite register first. 392 393 for (uint32_t idx = 0; success; ++idx) { 394 const uint32_t reg = reg_info->value_regs[idx]; 395 if (reg == LLDB_INVALID_REGNUM) 396 break; 397 // We have a valid primordial register as our constituent. Grab the 398 // corresponding register info. 399 const RegisterInfo *value_reg_info = 400 GetRegisterInfo(eRegisterKindProcessPlugin, reg); 401 if (value_reg_info == nullptr) 402 success = false; 403 else 404 success = SetPrimordialRegister(value_reg_info, gdb_comm); 405 } 406 } else { 407 // This is an actual register, write it 408 success = SetPrimordialRegister(reg_info, gdb_comm); 409 410 if (success && do_reconfigure_arm64_sve) 411 AArch64SVEReconfigure(); 412 } 413 414 // Check if writing this register will invalidate any other register 415 // values? If so, invalidate them 416 if (reg_info->invalidate_regs) { 417 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 418 reg != LLDB_INVALID_REGNUM; 419 reg = reg_info->invalidate_regs[++idx]) 420 SetRegisterIsValid(ConvertRegisterKindToRegisterNumber( 421 eRegisterKindProcessPlugin, reg), 422 false); 423 } 424 425 return success; 426 } 427 } else { 428 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 429 GDBR_LOG_PACKETS)); 430 if (log) { 431 if (log->GetVerbose()) { 432 StreamString strm; 433 gdb_comm.DumpHistory(strm); 434 LLDB_LOGF(log, 435 "error: failed to get packet sequence mutex, not sending " 436 "write register for \"%s\":\n%s", 437 reg_info->name, strm.GetData()); 438 } else 439 LLDB_LOGF(log, 440 "error: failed to get packet sequence mutex, not sending " 441 "write register for \"%s\"", 442 reg_info->name); 443 } 444 } 445 } 446 return false; 447 } 448 449 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 450 RegisterCheckpoint ®_checkpoint) { 451 ExecutionContext exe_ctx(CalculateThread()); 452 453 Process *process = exe_ctx.GetProcessPtr(); 454 Thread *thread = exe_ctx.GetThreadPtr(); 455 if (process == nullptr || thread == nullptr) 456 return false; 457 458 GDBRemoteCommunicationClient &gdb_comm( 459 ((ProcessGDBRemote *)process)->GetGDBRemote()); 460 461 uint32_t save_id = 0; 462 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { 463 reg_checkpoint.SetID(save_id); 464 reg_checkpoint.GetData().reset(); 465 return true; 466 } else { 467 reg_checkpoint.SetID(0); // Invalid save ID is zero 468 return ReadAllRegisterValues(reg_checkpoint.GetData()); 469 } 470 } 471 472 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 473 const RegisterCheckpoint ®_checkpoint) { 474 uint32_t save_id = reg_checkpoint.GetID(); 475 if (save_id != 0) { 476 ExecutionContext exe_ctx(CalculateThread()); 477 478 Process *process = exe_ctx.GetProcessPtr(); 479 Thread *thread = exe_ctx.GetThreadPtr(); 480 if (process == nullptr || thread == nullptr) 481 return false; 482 483 GDBRemoteCommunicationClient &gdb_comm( 484 ((ProcessGDBRemote *)process)->GetGDBRemote()); 485 486 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 487 } else { 488 return WriteAllRegisterValues(reg_checkpoint.GetData()); 489 } 490 } 491 492 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 493 lldb::DataBufferSP &data_sp) { 494 ExecutionContext exe_ctx(CalculateThread()); 495 496 Process *process = exe_ctx.GetProcessPtr(); 497 Thread *thread = exe_ctx.GetThreadPtr(); 498 if (process == nullptr || thread == nullptr) 499 return false; 500 501 GDBRemoteCommunicationClient &gdb_comm( 502 ((ProcessGDBRemote *)process)->GetGDBRemote()); 503 504 const bool use_g_packet = 505 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 506 507 GDBRemoteClientBase::Lock lock(gdb_comm, false); 508 if (lock) { 509 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) 510 InvalidateAllRegisters(); 511 512 if (use_g_packet && 513 (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID()))) 514 return true; 515 516 // We're going to read each register 517 // individually and store them as binary data in a buffer. 518 const RegisterInfo *reg_info; 519 520 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; 521 i++) { 522 if (reg_info 523 ->value_regs) // skip registers that are slices of real registers 524 continue; 525 ReadRegisterBytes(reg_info, m_reg_data); 526 // ReadRegisterBytes saves the contents of the register in to the 527 // m_reg_data buffer 528 } 529 data_sp = std::make_shared<DataBufferHeap>( 530 m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize()); 531 return true; 532 } else { 533 534 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 535 GDBR_LOG_PACKETS)); 536 if (log) { 537 if (log->GetVerbose()) { 538 StreamString strm; 539 gdb_comm.DumpHistory(strm); 540 LLDB_LOGF(log, 541 "error: failed to get packet sequence mutex, not sending " 542 "read all registers:\n%s", 543 strm.GetData()); 544 } else 545 LLDB_LOGF(log, 546 "error: failed to get packet sequence mutex, not sending " 547 "read all registers"); 548 } 549 } 550 551 data_sp.reset(); 552 return false; 553 } 554 555 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 556 const lldb::DataBufferSP &data_sp) { 557 if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0) 558 return false; 559 560 ExecutionContext exe_ctx(CalculateThread()); 561 562 Process *process = exe_ctx.GetProcessPtr(); 563 Thread *thread = exe_ctx.GetThreadPtr(); 564 if (process == nullptr || thread == nullptr) 565 return false; 566 567 GDBRemoteCommunicationClient &gdb_comm( 568 ((ProcessGDBRemote *)process)->GetGDBRemote()); 569 570 const bool use_g_packet = 571 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 572 573 GDBRemoteClientBase::Lock lock(gdb_comm, false); 574 if (lock) { 575 // The data_sp contains the G response packet. 576 if (use_g_packet) { 577 if (gdb_comm.WriteAllRegisters( 578 m_thread.GetProtocolID(), 579 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) 580 return true; 581 582 uint32_t num_restored = 0; 583 // We need to manually go through all of the registers and restore them 584 // manually 585 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), 586 m_reg_data.GetAddressByteSize()); 587 588 const RegisterInfo *reg_info; 589 590 // The g packet contents may either include the slice registers 591 // (registers defined in terms of other registers, e.g. eax is a subset 592 // of rax) or not. The slice registers should NOT be in the g packet, 593 // but some implementations may incorrectly include them. 594 // 595 // If the slice registers are included in the packet, we must step over 596 // the slice registers when parsing the packet -- relying on the 597 // RegisterInfo byte_offset field would be incorrect. If the slice 598 // registers are not included, then using the byte_offset values into the 599 // data buffer is the best way to find individual register values. 600 601 uint64_t size_including_slice_registers = 0; 602 uint64_t size_not_including_slice_registers = 0; 603 uint64_t size_by_highest_offset = 0; 604 605 for (uint32_t reg_idx = 0; 606 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) { 607 size_including_slice_registers += reg_info->byte_size; 608 if (reg_info->value_regs == nullptr) 609 size_not_including_slice_registers += reg_info->byte_size; 610 if (reg_info->byte_offset >= size_by_highest_offset) 611 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 612 } 613 614 bool use_byte_offset_into_buffer; 615 if (size_by_highest_offset == restore_data.GetByteSize()) { 616 // The size of the packet agrees with the highest offset: + size in the 617 // register file 618 use_byte_offset_into_buffer = true; 619 } else if (size_not_including_slice_registers == 620 restore_data.GetByteSize()) { 621 // The size of the packet is the same as concatenating all of the 622 // registers sequentially, skipping the slice registers 623 use_byte_offset_into_buffer = true; 624 } else if (size_including_slice_registers == restore_data.GetByteSize()) { 625 // The slice registers are present in the packet (when they shouldn't 626 // be). Don't try to use the RegisterInfo byte_offset into the 627 // restore_data, it will point to the wrong place. 628 use_byte_offset_into_buffer = false; 629 } else { 630 // None of our expected sizes match the actual g packet data we're 631 // looking at. The most conservative approach here is to use the 632 // running total byte offset. 633 use_byte_offset_into_buffer = false; 634 } 635 636 // In case our register definitions don't include the correct offsets, 637 // keep track of the size of each reg & compute offset based on that. 638 uint32_t running_byte_offset = 0; 639 for (uint32_t reg_idx = 0; 640 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; 641 ++reg_idx, running_byte_offset += reg_info->byte_size) { 642 // Skip composite aka slice registers (e.g. eax is a slice of rax). 643 if (reg_info->value_regs) 644 continue; 645 646 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 647 648 uint32_t register_offset; 649 if (use_byte_offset_into_buffer) { 650 register_offset = reg_info->byte_offset; 651 } else { 652 register_offset = running_byte_offset; 653 } 654 655 const uint32_t reg_byte_size = reg_info->byte_size; 656 657 const uint8_t *restore_src = 658 restore_data.PeekData(register_offset, reg_byte_size); 659 if (restore_src) { 660 SetRegisterIsValid(reg, false); 661 if (gdb_comm.WriteRegister( 662 m_thread.GetProtocolID(), 663 reg_info->kinds[eRegisterKindProcessPlugin], 664 {restore_src, reg_byte_size})) 665 ++num_restored; 666 } 667 } 668 return num_restored > 0; 669 } else { 670 // For the use_g_packet == false case, we're going to write each register 671 // individually. The data buffer is binary data in this case, instead of 672 // ascii characters. 673 674 bool arm64_debugserver = false; 675 if (m_thread.GetProcess().get()) { 676 const ArchSpec &arch = 677 m_thread.GetProcess()->GetTarget().GetArchitecture(); 678 if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 || 679 arch.GetMachine() == llvm::Triple::aarch64_32) && 680 arch.GetTriple().getVendor() == llvm::Triple::Apple && 681 arch.GetTriple().getOS() == llvm::Triple::IOS) { 682 arm64_debugserver = true; 683 } 684 } 685 uint32_t num_restored = 0; 686 const RegisterInfo *reg_info; 687 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; 688 i++) { 689 if (reg_info->value_regs) // skip registers that are slices of real 690 // registers 691 continue; 692 // Skip the fpsr and fpcr floating point status/control register 693 // writing to work around a bug in an older version of debugserver that 694 // would lead to register context corruption when writing fpsr/fpcr. 695 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || 696 strcmp(reg_info->name, "fpcr") == 0)) { 697 continue; 698 } 699 700 SetRegisterIsValid(reg_info, false); 701 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), 702 reg_info->kinds[eRegisterKindProcessPlugin], 703 {data_sp->GetBytes() + reg_info->byte_offset, 704 reg_info->byte_size})) 705 ++num_restored; 706 } 707 return num_restored > 0; 708 } 709 } else { 710 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 711 GDBR_LOG_PACKETS)); 712 if (log) { 713 if (log->GetVerbose()) { 714 StreamString strm; 715 gdb_comm.DumpHistory(strm); 716 LLDB_LOGF(log, 717 "error: failed to get packet sequence mutex, not sending " 718 "write all registers:\n%s", 719 strm.GetData()); 720 } else 721 LLDB_LOGF(log, 722 "error: failed to get packet sequence mutex, not sending " 723 "write all registers"); 724 } 725 } 726 return false; 727 } 728 729 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( 730 lldb::RegisterKind kind, uint32_t num) { 731 return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num); 732 } 733 734 bool GDBRemoteRegisterContext::AArch64SVEReconfigure() { 735 if (!m_reg_info_sp) 736 return false; 737 738 const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("vg"); 739 if (!reg_info) 740 return false; 741 742 uint64_t fail_value = LLDB_INVALID_ADDRESS; 743 uint32_t vg_reg_num = reg_info->kinds[eRegisterKindLLDB]; 744 uint64_t vg_reg_value = ReadRegisterAsUnsigned(vg_reg_num, fail_value); 745 746 if (vg_reg_value != fail_value && vg_reg_value <= 32) { 747 const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("p0"); 748 if (!reg_info || vg_reg_value == reg_info->byte_size) 749 return false; 750 751 if (m_reg_info_sp->UpdateARM64SVERegistersInfos(vg_reg_value)) { 752 // Make a heap based buffer that is big enough to store all registers 753 m_reg_data.SetData(std::make_shared<DataBufferHeap>( 754 m_reg_info_sp->GetRegisterDataByteSize(), 0)); 755 m_reg_data.SetByteOrder(GetByteOrder()); 756 757 InvalidateAllRegisters(); 758 759 return true; 760 } 761 } 762 763 return false; 764 } 765 766 bool GDBRemoteDynamicRegisterInfo::UpdateARM64SVERegistersInfos(uint64_t vg) { 767 // SVE Z register size is vg x 8 bytes. 768 uint32_t z_reg_byte_size = vg * 8; 769 770 // SVE vector length has changed, accordingly set size of Z, P and FFR 771 // registers. Also invalidate register offsets it will be recalculated 772 // after SVE register size update. 773 for (auto ® : m_regs) { 774 if (reg.value_regs == nullptr) { 775 if (reg.name[0] == 'z' && isdigit(reg.name[1])) 776 reg.byte_size = z_reg_byte_size; 777 else if (reg.name[0] == 'p' && isdigit(reg.name[1])) 778 reg.byte_size = vg; 779 else if (strcmp(reg.name, "ffr") == 0) 780 reg.byte_size = vg; 781 } 782 reg.byte_offset = LLDB_INVALID_INDEX32; 783 } 784 785 // Re-calculate register offsets 786 ConfigureOffsets(); 787 return true; 788 } 789 790 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { 791 // For Advanced SIMD and VFP register mapping. 792 static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1) 793 static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3) 794 static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5) 795 static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7) 796 static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9) 797 static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11) 798 static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13) 799 static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15) 800 static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17) 801 static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19) 802 static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21) 803 static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23) 804 static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25) 805 static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27) 806 static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29) 807 static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31) 808 static uint32_t g_q0_regs[] = { 809 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3) 810 static uint32_t g_q1_regs[] = { 811 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7) 812 static uint32_t g_q2_regs[] = { 813 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11) 814 static uint32_t g_q3_regs[] = { 815 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15) 816 static uint32_t g_q4_regs[] = { 817 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19) 818 static uint32_t g_q5_regs[] = { 819 46, 47, 48, 49, 820 LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23) 821 static uint32_t g_q6_regs[] = { 822 50, 51, 52, 53, 823 LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27) 824 static uint32_t g_q7_regs[] = { 825 54, 55, 56, 57, 826 LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31) 827 static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17) 828 static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19) 829 static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21) 830 static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23) 831 static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25) 832 static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27) 833 static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29) 834 static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31) 835 836 // This is our array of composite registers, with each element coming from 837 // the above register mappings. 838 static uint32_t *g_composites[] = { 839 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, 840 g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, 841 g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, 842 g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 843 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, 844 g_q14_regs, g_q15_regs}; 845 846 // clang-format off 847 static RegisterInfo g_register_infos[] = { 848 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN 849 // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ======== 850 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 }, 851 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 }, 852 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 }, 853 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 }, 854 { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 }, 855 { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 }, 856 { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 }, 857 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 }, 858 { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 }, 859 { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 }, 860 { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 }, 861 { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 }, 862 { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 }, 863 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 }, 864 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 }, 865 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 }, 866 { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 }, 867 { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 }, 868 { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 }, 869 { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 }, 870 { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 }, 871 { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 }, 872 { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 }, 873 { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 }, 874 { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 }, 875 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 }, 876 { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 }, 877 { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 }, 878 { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 }, 879 { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 }, 880 { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 }, 881 { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 }, 882 { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 }, 883 { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 }, 884 { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 }, 885 { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 }, 886 { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 }, 887 { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 }, 888 { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 }, 889 { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 }, 890 { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 }, 891 { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 }, 892 { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 }, 893 { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 }, 894 { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 }, 895 { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 }, 896 { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 }, 897 { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 }, 898 { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 }, 899 { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 }, 900 { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 }, 901 { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 }, 902 { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 }, 903 { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 }, 904 { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 }, 905 { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 }, 906 { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 }, 907 { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 }, 908 { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 }, 909 { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 }, 910 { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 }, 911 { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 }, 912 { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 }, 913 { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 }, 914 { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 }, 915 { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 }, 916 { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 }, 917 { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 }, 918 { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 }, 919 { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 }, 920 { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 }, 921 { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 }, 922 { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 }, 923 { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 }, 924 { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 }, 925 { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 }, 926 { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 }, 927 { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 }, 928 { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 }, 929 { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 }, 930 { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 }, 931 { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 }, 932 { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 }, 933 { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 }, 934 { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 }, 935 { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 }, 936 { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 }, 937 { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 }, 938 { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 }, 939 { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 }, 940 { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 }, 941 { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 }, 942 { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 }, 943 { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 }, 944 { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 }, 945 { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 }, 946 { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 }, 947 { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 }, 948 { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 }, 949 { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 }, 950 { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 }, 951 { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 }, 952 { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 }, 953 { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 }, 954 { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 }, 955 { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 }, 956 { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 } 957 }; 958 // clang-format on 959 960 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 961 static ConstString gpr_reg_set("General Purpose Registers"); 962 static ConstString sfp_reg_set("Software Floating Point Registers"); 963 static ConstString vfp_reg_set("Floating Point Registers"); 964 size_t i; 965 if (from_scratch) { 966 // Calculate the offsets of the registers 967 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) 968 // which comes after the "primordial" registers is important. This enables 969 // us to calculate the offset of the composite register by using the offset 970 // of its first primordial register. For example, to calculate the offset 971 // of q0, use s0's offset. 972 if (g_register_infos[2].byte_offset == 0) { 973 uint32_t byte_offset = 0; 974 for (i = 0; i < num_registers; ++i) { 975 // For primordial registers, increment the byte_offset by the byte_size 976 // to arrive at the byte_offset for the next register. Otherwise, we 977 // have a composite register whose offset can be calculated by 978 // consulting the offset of its first primordial register. 979 if (!g_register_infos[i].value_regs) { 980 g_register_infos[i].byte_offset = byte_offset; 981 byte_offset += g_register_infos[i].byte_size; 982 } else { 983 const uint32_t first_primordial_reg = 984 g_register_infos[i].value_regs[0]; 985 g_register_infos[i].byte_offset = 986 g_register_infos[first_primordial_reg].byte_offset; 987 } 988 } 989 } 990 for (i = 0; i < num_registers; ++i) { 991 ConstString name; 992 ConstString alt_name; 993 if (g_register_infos[i].name && g_register_infos[i].name[0]) 994 name.SetCString(g_register_infos[i].name); 995 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 996 alt_name.SetCString(g_register_infos[i].alt_name); 997 998 if (i <= 15 || i == 25) 999 AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set); 1000 else if (i <= 24) 1001 AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set); 1002 else 1003 AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set); 1004 } 1005 } else { 1006 // Add composite registers to our primordial registers, then. 1007 const size_t num_composites = llvm::array_lengthof(g_composites); 1008 const size_t num_dynamic_regs = GetNumRegisters(); 1009 const size_t num_common_regs = num_registers - num_composites; 1010 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 1011 1012 // First we need to validate that all registers that we already have match 1013 // the non composite regs. If so, then we can add the registers, else we 1014 // need to bail 1015 bool match = true; 1016 if (num_dynamic_regs == num_common_regs) { 1017 for (i = 0; match && i < num_dynamic_regs; ++i) { 1018 // Make sure all register names match 1019 if (m_regs[i].name && g_register_infos[i].name) { 1020 if (strcmp(m_regs[i].name, g_register_infos[i].name)) { 1021 match = false; 1022 break; 1023 } 1024 } 1025 1026 // Make sure all register byte sizes match 1027 if (m_regs[i].byte_size != g_register_infos[i].byte_size) { 1028 match = false; 1029 break; 1030 } 1031 } 1032 } else { 1033 // Wrong number of registers. 1034 match = false; 1035 } 1036 // If "match" is true, then we can add extra registers. 1037 if (match) { 1038 for (i = 0; i < num_composites; ++i) { 1039 ConstString name; 1040 ConstString alt_name; 1041 const uint32_t first_primordial_reg = 1042 g_comp_register_infos[i].value_regs[0]; 1043 const char *reg_name = g_register_infos[first_primordial_reg].name; 1044 if (reg_name && reg_name[0]) { 1045 for (uint32_t j = 0; j < num_dynamic_regs; ++j) { 1046 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 1047 // Find a matching primordial register info entry. 1048 if (reg_info && reg_info->name && 1049 ::strcasecmp(reg_info->name, reg_name) == 0) { 1050 // The name matches the existing primordial entry. Find and 1051 // assign the offset, and then add this composite register entry. 1052 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 1053 name.SetCString(g_comp_register_infos[i].name); 1054 AddRegister(g_comp_register_infos[i], name, alt_name, 1055 vfp_reg_set); 1056 } 1057 } 1058 } 1059 } 1060 } 1061 } 1062 } 1063