1 //===-- GDBRemoteRegisterContext.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "GDBRemoteRegisterContext.h"
10 
11 #include "lldb/Target/ExecutionContext.h"
12 #include "lldb/Target/Target.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/RegisterValue.h"
16 #include "lldb/Utility/Scalar.h"
17 #include "lldb/Utility/StreamString.h"
18 #include "ProcessGDBRemote.h"
19 #include "ProcessGDBRemoteLog.h"
20 #include "ThreadGDBRemote.h"
21 #include "Utility/ARM_DWARF_Registers.h"
22 #include "Utility/ARM_ehframe_Registers.h"
23 #include "lldb/Utility/StringExtractorGDBRemote.h"
24 
25 #include <memory>
26 
27 using namespace lldb;
28 using namespace lldb_private;
29 using namespace lldb_private::process_gdb_remote;
30 
31 // GDBRemoteRegisterContext constructor
32 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
33     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
34     GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once,
35     bool write_all_at_once)
36     : RegisterContext(thread, concrete_frame_idx),
37       m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(),
38       m_read_all_at_once(read_all_at_once),
39       m_write_all_at_once(write_all_at_once) {
40   // Resize our vector of bools to contain one bool for every register. We will
41   // use these boolean values to know when a register value is valid in
42   // m_reg_data.
43   m_reg_valid.resize(m_reg_info_sp->GetNumRegisters());
44 
45   // Make a heap based buffer that is big enough to store all registers
46   DataBufferSP reg_data_sp(
47       new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0));
48   m_reg_data.SetData(reg_data_sp);
49   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
50 }
51 
52 // Destructor
53 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
54 
55 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
56   SetAllRegisterValid(false);
57 }
58 
59 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
60   std::vector<bool>::iterator pos, end = m_reg_valid.end();
61   for (pos = m_reg_valid.begin(); pos != end; ++pos)
62     *pos = b;
63 }
64 
65 size_t GDBRemoteRegisterContext::GetRegisterCount() {
66   return m_reg_info_sp->GetNumRegisters();
67 }
68 
69 const RegisterInfo *
70 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
71   RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfoAtIndex(reg);
72 
73   if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
74     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
75     uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
76     reg_info->byte_size = reg_size;
77   }
78   return reg_info;
79 }
80 
81 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
82   return m_reg_info_sp->GetNumRegisterSets();
83 }
84 
85 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
86   return m_reg_info_sp->GetRegisterSet(reg_set);
87 }
88 
89 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
90                                             RegisterValue &value) {
91   // Read the register
92   if (ReadRegisterBytes(reg_info, m_reg_data)) {
93     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
94     if (m_reg_valid[reg] == false)
95       return false;
96     const bool partial_data_ok = false;
97     Status error(value.SetValueFromData(
98         reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
99     return error.Success();
100   }
101   return false;
102 }
103 
104 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
105     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
106   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
107   if (reg_info == nullptr)
108     return false;
109 
110   // Invalidate if needed
111   InvalidateIfNeeded(false);
112 
113   const size_t reg_byte_size = reg_info->byte_size;
114   memcpy(const_cast<uint8_t *>(
115              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
116          data.data(), std::min(data.size(), reg_byte_size));
117   bool success = data.size() >= reg_byte_size;
118   if (success) {
119     SetRegisterIsValid(reg, true);
120   } else if (data.size() > 0) {
121     // Only set register is valid to false if we copied some bytes, else leave
122     // it as it was.
123     SetRegisterIsValid(reg, false);
124   }
125   return success;
126 }
127 
128 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
129                                                        uint64_t new_reg_val) {
130   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
131   if (reg_info == nullptr)
132     return false;
133 
134   // Early in process startup, we can get a thread that has an invalid byte
135   // order because the process hasn't been completely set up yet (see the ctor
136   // where the byte order is setfrom the process).  If that's the case, we
137   // can't set the value here.
138   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
139     return false;
140   }
141 
142   // Invalidate if needed
143   InvalidateIfNeeded(false);
144 
145   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
146   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
147 
148   // If our register context and our register info disagree, which should never
149   // happen, don't overwrite past the end of the buffer.
150   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
151     return false;
152 
153   // Grab a pointer to where we are going to put this register
154   uint8_t *dst = const_cast<uint8_t *>(
155       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
156 
157   if (dst == nullptr)
158     return false;
159 
160   if (data.CopyByteOrderedData(0,                          // src offset
161                                reg_info->byte_size,        // src length
162                                dst,                        // dst
163                                reg_info->byte_size,        // dst length
164                                m_reg_data.GetByteOrder())) // dst byte order
165   {
166     SetRegisterIsValid(reg, true);
167     return true;
168   }
169   return false;
170 }
171 
172 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
173 bool GDBRemoteRegisterContext::GetPrimordialRegister(
174     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
175   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
176   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
177 
178   if (DataBufferSP buffer_sp =
179           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
180     return PrivateSetRegisterValue(
181         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
182                                           buffer_sp->GetByteSize()));
183   return false;
184 }
185 
186 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
187                                                  DataExtractor &data) {
188   ExecutionContext exe_ctx(CalculateThread());
189 
190   Process *process = exe_ctx.GetProcessPtr();
191   Thread *thread = exe_ctx.GetThreadPtr();
192   if (process == nullptr || thread == nullptr)
193     return false;
194 
195   GDBRemoteCommunicationClient &gdb_comm(
196       ((ProcessGDBRemote *)process)->GetGDBRemote());
197 
198   InvalidateIfNeeded(false);
199 
200   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
201 
202   if (!GetRegisterIsValid(reg)) {
203     if (m_read_all_at_once) {
204       if (DataBufferSP buffer_sp =
205               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
206         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
207                buffer_sp->GetBytes(),
208                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
209         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
210           SetAllRegisterValid(true);
211           return true;
212         } else if (buffer_sp->GetByteSize() > 0) {
213           const int regcount = m_reg_info_sp->GetNumRegisters();
214           for (int i = 0; i < regcount; i++) {
215             struct RegisterInfo *reginfo =
216                 m_reg_info_sp->GetRegisterInfoAtIndex(i);
217             if (reginfo->byte_offset + reginfo->byte_size <=
218                 buffer_sp->GetByteSize()) {
219               m_reg_valid[i] = true;
220             } else {
221               m_reg_valid[i] = false;
222             }
223           }
224           return true;
225         } else {
226           Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
227                                                                 GDBR_LOG_PACKETS));
228           LLDB_LOGF(
229               log,
230               "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
231               "to read the "
232               "entire register context at once, expected at least %" PRId64
233               " bytes "
234               "but only got %" PRId64 " bytes.",
235               m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
236         }
237       }
238       return false;
239     }
240     if (reg_info->value_regs) {
241       // Process this composite register request by delegating to the
242       // constituent primordial registers.
243 
244       // Index of the primordial register.
245       bool success = true;
246       for (uint32_t idx = 0; success; ++idx) {
247         const uint32_t prim_reg = reg_info->value_regs[idx];
248         if (prim_reg == LLDB_INVALID_REGNUM)
249           break;
250         // We have a valid primordial register as our constituent. Grab the
251         // corresponding register info.
252         const RegisterInfo *prim_reg_info =
253             GetRegisterInfo(eRegisterKindProcessPlugin, prim_reg);
254         if (prim_reg_info == nullptr)
255           success = false;
256         else {
257           // Read the containing register if it hasn't already been read
258           if (!GetRegisterIsValid(prim_reg))
259             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
260         }
261       }
262 
263       if (success) {
264         // If we reach this point, all primordial register requests have
265         // succeeded. Validate this composite register.
266         SetRegisterIsValid(reg_info, true);
267       }
268     } else {
269       // Get each register individually
270       GetPrimordialRegister(reg_info, gdb_comm);
271     }
272 
273     // Make sure we got a valid register value after reading it
274     if (!GetRegisterIsValid(reg))
275       return false;
276   }
277 
278   if (&data != &m_reg_data) {
279     assert(m_reg_data.GetByteSize() >=
280            reg_info->byte_offset + reg_info->byte_size);
281     // If our register context and our register info disagree, which should
282     // never happen, don't read past the end of the buffer.
283     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
284       return false;
285 
286     // If we aren't extracting into our own buffer (which only happens when
287     // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
288     // we transfer bytes from our buffer into the data buffer that was passed
289     // in
290 
291     data.SetByteOrder(m_reg_data.GetByteOrder());
292     data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
293   }
294   return true;
295 }
296 
297 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
298                                              const RegisterValue &value) {
299   DataExtractor data;
300   if (value.GetData(data))
301     return WriteRegisterBytes(reg_info, data, 0);
302   return false;
303 }
304 
305 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
306 bool GDBRemoteRegisterContext::SetPrimordialRegister(
307     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
308   StreamString packet;
309   StringExtractorGDBRemote response;
310   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
311   // Invalidate just this register
312   SetRegisterIsValid(reg, false);
313 
314   return gdb_comm.WriteRegister(
315       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
316       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
317        reg_info->byte_size});
318 }
319 
320 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
321                                                   DataExtractor &data,
322                                                   uint32_t data_offset) {
323   ExecutionContext exe_ctx(CalculateThread());
324 
325   Process *process = exe_ctx.GetProcessPtr();
326   Thread *thread = exe_ctx.GetThreadPtr();
327   if (process == nullptr || thread == nullptr)
328     return false;
329 
330   GDBRemoteCommunicationClient &gdb_comm(
331       ((ProcessGDBRemote *)process)->GetGDBRemote());
332 
333   assert(m_reg_data.GetByteSize() >=
334          reg_info->byte_offset + reg_info->byte_size);
335 
336   // If our register context and our register info disagree, which should never
337   // happen, don't overwrite past the end of the buffer.
338   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
339     return false;
340 
341   // Grab a pointer to where we are going to put this register
342   uint8_t *dst = const_cast<uint8_t *>(
343       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
344 
345   if (dst == nullptr)
346     return false;
347 
348   // Code below is specific to AArch64 target in SVE state
349   // If vector granule (vg) register is being written then thread's
350   // register context reconfiguration is triggered on success.
351   bool do_reconfigure_arm64_sve = false;
352   const ArchSpec &arch = process->GetTarget().GetArchitecture();
353   if (arch.IsValid() && arch.GetTriple().isAArch64())
354     if (strcmp(reg_info->name, "vg") == 0)
355       do_reconfigure_arm64_sve = true;
356 
357   if (data.CopyByteOrderedData(data_offset,                // src offset
358                                reg_info->byte_size,        // src length
359                                dst,                        // dst
360                                reg_info->byte_size,        // dst length
361                                m_reg_data.GetByteOrder())) // dst byte order
362   {
363     GDBRemoteClientBase::Lock lock(gdb_comm, false);
364     if (lock) {
365       if (m_write_all_at_once) {
366         // Invalidate all register values
367         InvalidateIfNeeded(true);
368 
369         // Set all registers in one packet
370         if (gdb_comm.WriteAllRegisters(
371                 m_thread.GetProtocolID(),
372                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
373 
374         {
375           SetAllRegisterValid(false);
376 
377           if (do_reconfigure_arm64_sve)
378             AArch64SVEReconfigure();
379 
380           return true;
381         }
382       } else {
383         bool success = true;
384 
385         if (reg_info->value_regs) {
386           // This register is part of another register. In this case we read
387           // the actual register data for any "value_regs", and once all that
388           // data is read, we will have enough data in our register context
389           // bytes for the value of this register
390 
391           // Invalidate this composite register first.
392 
393           for (uint32_t idx = 0; success; ++idx) {
394             const uint32_t reg = reg_info->value_regs[idx];
395             if (reg == LLDB_INVALID_REGNUM)
396               break;
397             // We have a valid primordial register as our constituent. Grab the
398             // corresponding register info.
399             const RegisterInfo *value_reg_info =
400                 GetRegisterInfo(eRegisterKindProcessPlugin, reg);
401             if (value_reg_info == nullptr)
402               success = false;
403             else
404               success = SetPrimordialRegister(value_reg_info, gdb_comm);
405           }
406         } else {
407           // This is an actual register, write it
408           success = SetPrimordialRegister(reg_info, gdb_comm);
409 
410           if (success && do_reconfigure_arm64_sve)
411             AArch64SVEReconfigure();
412         }
413 
414         // Check if writing this register will invalidate any other register
415         // values? If so, invalidate them
416         if (reg_info->invalidate_regs) {
417           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
418                reg != LLDB_INVALID_REGNUM;
419                reg = reg_info->invalidate_regs[++idx])
420             SetRegisterIsValid(ConvertRegisterKindToRegisterNumber(
421                                    eRegisterKindProcessPlugin, reg),
422                                false);
423         }
424 
425         return success;
426       }
427     } else {
428       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
429                                                              GDBR_LOG_PACKETS));
430       if (log) {
431         if (log->GetVerbose()) {
432           StreamString strm;
433           gdb_comm.DumpHistory(strm);
434           LLDB_LOGF(log,
435                     "error: failed to get packet sequence mutex, not sending "
436                     "write register for \"%s\":\n%s",
437                     reg_info->name, strm.GetData());
438         } else
439           LLDB_LOGF(log,
440                     "error: failed to get packet sequence mutex, not sending "
441                     "write register for \"%s\"",
442                     reg_info->name);
443       }
444     }
445   }
446   return false;
447 }
448 
449 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
450     RegisterCheckpoint &reg_checkpoint) {
451   ExecutionContext exe_ctx(CalculateThread());
452 
453   Process *process = exe_ctx.GetProcessPtr();
454   Thread *thread = exe_ctx.GetThreadPtr();
455   if (process == nullptr || thread == nullptr)
456     return false;
457 
458   GDBRemoteCommunicationClient &gdb_comm(
459       ((ProcessGDBRemote *)process)->GetGDBRemote());
460 
461   uint32_t save_id = 0;
462   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
463     reg_checkpoint.SetID(save_id);
464     reg_checkpoint.GetData().reset();
465     return true;
466   } else {
467     reg_checkpoint.SetID(0); // Invalid save ID is zero
468     return ReadAllRegisterValues(reg_checkpoint.GetData());
469   }
470 }
471 
472 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
473     const RegisterCheckpoint &reg_checkpoint) {
474   uint32_t save_id = reg_checkpoint.GetID();
475   if (save_id != 0) {
476     ExecutionContext exe_ctx(CalculateThread());
477 
478     Process *process = exe_ctx.GetProcessPtr();
479     Thread *thread = exe_ctx.GetThreadPtr();
480     if (process == nullptr || thread == nullptr)
481       return false;
482 
483     GDBRemoteCommunicationClient &gdb_comm(
484         ((ProcessGDBRemote *)process)->GetGDBRemote());
485 
486     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
487   } else {
488     return WriteAllRegisterValues(reg_checkpoint.GetData());
489   }
490 }
491 
492 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
493     lldb::DataBufferSP &data_sp) {
494   ExecutionContext exe_ctx(CalculateThread());
495 
496   Process *process = exe_ctx.GetProcessPtr();
497   Thread *thread = exe_ctx.GetThreadPtr();
498   if (process == nullptr || thread == nullptr)
499     return false;
500 
501   GDBRemoteCommunicationClient &gdb_comm(
502       ((ProcessGDBRemote *)process)->GetGDBRemote());
503 
504   const bool use_g_packet =
505       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
506 
507   GDBRemoteClientBase::Lock lock(gdb_comm, false);
508   if (lock) {
509     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
510       InvalidateAllRegisters();
511 
512     if (use_g_packet &&
513         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
514       return true;
515 
516     // We're going to read each register
517     // individually and store them as binary data in a buffer.
518     const RegisterInfo *reg_info;
519 
520     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
521          i++) {
522       if (reg_info
523               ->value_regs) // skip registers that are slices of real registers
524         continue;
525       ReadRegisterBytes(reg_info, m_reg_data);
526       // ReadRegisterBytes saves the contents of the register in to the
527       // m_reg_data buffer
528     }
529     data_sp = std::make_shared<DataBufferHeap>(
530         m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize());
531     return true;
532   } else {
533 
534     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
535                                                            GDBR_LOG_PACKETS));
536     if (log) {
537       if (log->GetVerbose()) {
538         StreamString strm;
539         gdb_comm.DumpHistory(strm);
540         LLDB_LOGF(log,
541                   "error: failed to get packet sequence mutex, not sending "
542                   "read all registers:\n%s",
543                   strm.GetData());
544       } else
545         LLDB_LOGF(log,
546                   "error: failed to get packet sequence mutex, not sending "
547                   "read all registers");
548     }
549   }
550 
551   data_sp.reset();
552   return false;
553 }
554 
555 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
556     const lldb::DataBufferSP &data_sp) {
557   if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
558     return false;
559 
560   ExecutionContext exe_ctx(CalculateThread());
561 
562   Process *process = exe_ctx.GetProcessPtr();
563   Thread *thread = exe_ctx.GetThreadPtr();
564   if (process == nullptr || thread == nullptr)
565     return false;
566 
567   GDBRemoteCommunicationClient &gdb_comm(
568       ((ProcessGDBRemote *)process)->GetGDBRemote());
569 
570   const bool use_g_packet =
571       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
572 
573   GDBRemoteClientBase::Lock lock(gdb_comm, false);
574   if (lock) {
575     // The data_sp contains the G response packet.
576     if (use_g_packet) {
577       if (gdb_comm.WriteAllRegisters(
578               m_thread.GetProtocolID(),
579               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
580         return true;
581 
582       uint32_t num_restored = 0;
583       // We need to manually go through all of the registers and restore them
584       // manually
585       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
586                                  m_reg_data.GetAddressByteSize());
587 
588       const RegisterInfo *reg_info;
589 
590       // The g packet contents may either include the slice registers
591       // (registers defined in terms of other registers, e.g. eax is a subset
592       // of rax) or not.  The slice registers should NOT be in the g packet,
593       // but some implementations may incorrectly include them.
594       //
595       // If the slice registers are included in the packet, we must step over
596       // the slice registers when parsing the packet -- relying on the
597       // RegisterInfo byte_offset field would be incorrect. If the slice
598       // registers are not included, then using the byte_offset values into the
599       // data buffer is the best way to find individual register values.
600 
601       uint64_t size_including_slice_registers = 0;
602       uint64_t size_not_including_slice_registers = 0;
603       uint64_t size_by_highest_offset = 0;
604 
605       for (uint32_t reg_idx = 0;
606            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
607         size_including_slice_registers += reg_info->byte_size;
608         if (reg_info->value_regs == nullptr)
609           size_not_including_slice_registers += reg_info->byte_size;
610         if (reg_info->byte_offset >= size_by_highest_offset)
611           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
612       }
613 
614       bool use_byte_offset_into_buffer;
615       if (size_by_highest_offset == restore_data.GetByteSize()) {
616         // The size of the packet agrees with the highest offset: + size in the
617         // register file
618         use_byte_offset_into_buffer = true;
619       } else if (size_not_including_slice_registers ==
620                  restore_data.GetByteSize()) {
621         // The size of the packet is the same as concatenating all of the
622         // registers sequentially, skipping the slice registers
623         use_byte_offset_into_buffer = true;
624       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
625         // The slice registers are present in the packet (when they shouldn't
626         // be). Don't try to use the RegisterInfo byte_offset into the
627         // restore_data, it will point to the wrong place.
628         use_byte_offset_into_buffer = false;
629       } else {
630         // None of our expected sizes match the actual g packet data we're
631         // looking at. The most conservative approach here is to use the
632         // running total byte offset.
633         use_byte_offset_into_buffer = false;
634       }
635 
636       // In case our register definitions don't include the correct offsets,
637       // keep track of the size of each reg & compute offset based on that.
638       uint32_t running_byte_offset = 0;
639       for (uint32_t reg_idx = 0;
640            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
641            ++reg_idx, running_byte_offset += reg_info->byte_size) {
642         // Skip composite aka slice registers (e.g. eax is a slice of rax).
643         if (reg_info->value_regs)
644           continue;
645 
646         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
647 
648         uint32_t register_offset;
649         if (use_byte_offset_into_buffer) {
650           register_offset = reg_info->byte_offset;
651         } else {
652           register_offset = running_byte_offset;
653         }
654 
655         const uint32_t reg_byte_size = reg_info->byte_size;
656 
657         const uint8_t *restore_src =
658             restore_data.PeekData(register_offset, reg_byte_size);
659         if (restore_src) {
660           SetRegisterIsValid(reg, false);
661           if (gdb_comm.WriteRegister(
662                   m_thread.GetProtocolID(),
663                   reg_info->kinds[eRegisterKindProcessPlugin],
664                   {restore_src, reg_byte_size}))
665             ++num_restored;
666         }
667       }
668       return num_restored > 0;
669     } else {
670       // For the use_g_packet == false case, we're going to write each register
671       // individually.  The data buffer is binary data in this case, instead of
672       // ascii characters.
673 
674       bool arm64_debugserver = false;
675       if (m_thread.GetProcess().get()) {
676         const ArchSpec &arch =
677             m_thread.GetProcess()->GetTarget().GetArchitecture();
678         if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 ||
679                                arch.GetMachine() == llvm::Triple::aarch64_32) &&
680             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
681             arch.GetTriple().getOS() == llvm::Triple::IOS) {
682           arm64_debugserver = true;
683         }
684       }
685       uint32_t num_restored = 0;
686       const RegisterInfo *reg_info;
687       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
688            i++) {
689         if (reg_info->value_regs) // skip registers that are slices of real
690                                   // registers
691           continue;
692         // Skip the fpsr and fpcr floating point status/control register
693         // writing to work around a bug in an older version of debugserver that
694         // would lead to register context corruption when writing fpsr/fpcr.
695         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
696                                   strcmp(reg_info->name, "fpcr") == 0)) {
697           continue;
698         }
699 
700         SetRegisterIsValid(reg_info, false);
701         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
702                                    reg_info->kinds[eRegisterKindProcessPlugin],
703                                    {data_sp->GetBytes() + reg_info->byte_offset,
704                                     reg_info->byte_size}))
705           ++num_restored;
706       }
707       return num_restored > 0;
708     }
709   } else {
710     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
711                                                            GDBR_LOG_PACKETS));
712     if (log) {
713       if (log->GetVerbose()) {
714         StreamString strm;
715         gdb_comm.DumpHistory(strm);
716         LLDB_LOGF(log,
717                   "error: failed to get packet sequence mutex, not sending "
718                   "write all registers:\n%s",
719                   strm.GetData());
720       } else
721         LLDB_LOGF(log,
722                   "error: failed to get packet sequence mutex, not sending "
723                   "write all registers");
724     }
725   }
726   return false;
727 }
728 
729 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
730     lldb::RegisterKind kind, uint32_t num) {
731   return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num);
732 }
733 
734 bool GDBRemoteRegisterContext::AArch64SVEReconfigure() {
735   if (!m_reg_info_sp)
736     return false;
737 
738   const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("vg");
739   if (!reg_info)
740     return false;
741 
742   uint64_t fail_value = LLDB_INVALID_ADDRESS;
743   uint32_t vg_reg_num = reg_info->kinds[eRegisterKindLLDB];
744   uint64_t vg_reg_value = ReadRegisterAsUnsigned(vg_reg_num, fail_value);
745 
746   if (vg_reg_value != fail_value && vg_reg_value <= 32) {
747     const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("p0");
748     if (!reg_info || vg_reg_value == reg_info->byte_size)
749       return false;
750 
751     if (m_reg_info_sp->UpdateARM64SVERegistersInfos(vg_reg_value)) {
752       // Make a heap based buffer that is big enough to store all registers
753       m_reg_data.SetData(std::make_shared<DataBufferHeap>(
754           m_reg_info_sp->GetRegisterDataByteSize(), 0));
755       m_reg_data.SetByteOrder(GetByteOrder());
756 
757       InvalidateAllRegisters();
758 
759       return true;
760     }
761   }
762 
763   return false;
764 }
765 
766 bool GDBRemoteDynamicRegisterInfo::UpdateARM64SVERegistersInfos(uint64_t vg) {
767   // SVE Z register size is vg x 8 bytes.
768   uint32_t z_reg_byte_size = vg * 8;
769 
770   // SVE vector length has changed, accordingly set size of Z, P and FFR
771   // registers. Also invalidate register offsets it will be recalculated
772   // after SVE register size update.
773   for (auto &reg : m_regs) {
774     if (reg.value_regs == nullptr) {
775       if (reg.name[0] == 'z' && isdigit(reg.name[1]))
776         reg.byte_size = z_reg_byte_size;
777       else if (reg.name[0] == 'p' && isdigit(reg.name[1]))
778         reg.byte_size = vg;
779       else if (strcmp(reg.name, "ffr") == 0)
780         reg.byte_size = vg;
781     }
782     reg.byte_offset = LLDB_INVALID_INDEX32;
783   }
784 
785   // Re-calculate register offsets
786   ConfigureOffsets();
787   return true;
788 }
789 
790 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
791   // For Advanced SIMD and VFP register mapping.
792   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
793   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
794   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
795   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
796   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
797   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
798   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
799   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
800   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
801   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
802   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
803   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
804   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
805   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
806   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
807   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
808   static uint32_t g_q0_regs[] = {
809       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
810   static uint32_t g_q1_regs[] = {
811       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
812   static uint32_t g_q2_regs[] = {
813       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
814   static uint32_t g_q3_regs[] = {
815       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
816   static uint32_t g_q4_regs[] = {
817       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
818   static uint32_t g_q5_regs[] = {
819       46, 47, 48, 49,
820       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
821   static uint32_t g_q6_regs[] = {
822       50, 51, 52, 53,
823       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
824   static uint32_t g_q7_regs[] = {
825       54, 55, 56, 57,
826       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
827   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
828   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
829   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
830   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
831   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
832   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
833   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
834   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
835 
836   // This is our array of composite registers, with each element coming from
837   // the above register mappings.
838   static uint32_t *g_composites[] = {
839       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
840       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
841       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
842       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
843       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
844       g_q14_regs, g_q15_regs};
845 
846   // clang-format off
847     static RegisterInfo g_register_infos[] = {
848 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
849 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
850     { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
851     { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
852     { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
853     { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
854     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
855     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
856     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
857     { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
858     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
859     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
860     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
861     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
862     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
863     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
864     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
865     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
866     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
867     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
868     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
869     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
870     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
871     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
872     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
873     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
874     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
875     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
876     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
877     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
878     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
879     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
880     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
881     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
882     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
883     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
884     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
885     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
886     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
887     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
888     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
889     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
890     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
891     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
892     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
893     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
894     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
895     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
896     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
897     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
898     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
899     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
900     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
901     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
902     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
903     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
904     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
905     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
906     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
907     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
908     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
909     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
910     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
911     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
912     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
913     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
914     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
915     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
916     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
917     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
918     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
919     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
920     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
921     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
922     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
923     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
924     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
925     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
926     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
927     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
928     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
929     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
930     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
931     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
932     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
933     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
934     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
935     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
936     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
937     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
938     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
939     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
940     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
941     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
942     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
943     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
944     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
945     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
946     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
947     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
948     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
949     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
950     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
951     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
952     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
953     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
954     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
955     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
956     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
957     };
958   // clang-format on
959 
960   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
961   static ConstString gpr_reg_set("General Purpose Registers");
962   static ConstString sfp_reg_set("Software Floating Point Registers");
963   static ConstString vfp_reg_set("Floating Point Registers");
964   size_t i;
965   if (from_scratch) {
966     // Calculate the offsets of the registers
967     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
968     // which comes after the "primordial" registers is important.  This enables
969     // us to calculate the offset of the composite register by using the offset
970     // of its first primordial register.  For example, to calculate the offset
971     // of q0, use s0's offset.
972     if (g_register_infos[2].byte_offset == 0) {
973       uint32_t byte_offset = 0;
974       for (i = 0; i < num_registers; ++i) {
975         // For primordial registers, increment the byte_offset by the byte_size
976         // to arrive at the byte_offset for the next register.  Otherwise, we
977         // have a composite register whose offset can be calculated by
978         // consulting the offset of its first primordial register.
979         if (!g_register_infos[i].value_regs) {
980           g_register_infos[i].byte_offset = byte_offset;
981           byte_offset += g_register_infos[i].byte_size;
982         } else {
983           const uint32_t first_primordial_reg =
984               g_register_infos[i].value_regs[0];
985           g_register_infos[i].byte_offset =
986               g_register_infos[first_primordial_reg].byte_offset;
987         }
988       }
989     }
990     for (i = 0; i < num_registers; ++i) {
991       ConstString name;
992       ConstString alt_name;
993       if (g_register_infos[i].name && g_register_infos[i].name[0])
994         name.SetCString(g_register_infos[i].name);
995       if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
996         alt_name.SetCString(g_register_infos[i].alt_name);
997 
998       if (i <= 15 || i == 25)
999         AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
1000       else if (i <= 24)
1001         AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
1002       else
1003         AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
1004     }
1005   } else {
1006     // Add composite registers to our primordial registers, then.
1007     const size_t num_composites = llvm::array_lengthof(g_composites);
1008     const size_t num_dynamic_regs = GetNumRegisters();
1009     const size_t num_common_regs = num_registers - num_composites;
1010     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1011 
1012     // First we need to validate that all registers that we already have match
1013     // the non composite regs. If so, then we can add the registers, else we
1014     // need to bail
1015     bool match = true;
1016     if (num_dynamic_regs == num_common_regs) {
1017       for (i = 0; match && i < num_dynamic_regs; ++i) {
1018         // Make sure all register names match
1019         if (m_regs[i].name && g_register_infos[i].name) {
1020           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
1021             match = false;
1022             break;
1023           }
1024         }
1025 
1026         // Make sure all register byte sizes match
1027         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
1028           match = false;
1029           break;
1030         }
1031       }
1032     } else {
1033       // Wrong number of registers.
1034       match = false;
1035     }
1036     // If "match" is true, then we can add extra registers.
1037     if (match) {
1038       for (i = 0; i < num_composites; ++i) {
1039         ConstString name;
1040         ConstString alt_name;
1041         const uint32_t first_primordial_reg =
1042             g_comp_register_infos[i].value_regs[0];
1043         const char *reg_name = g_register_infos[first_primordial_reg].name;
1044         if (reg_name && reg_name[0]) {
1045           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
1046             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1047             // Find a matching primordial register info entry.
1048             if (reg_info && reg_info->name &&
1049                 ::strcasecmp(reg_info->name, reg_name) == 0) {
1050               // The name matches the existing primordial entry. Find and
1051               // assign the offset, and then add this composite register entry.
1052               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1053               name.SetCString(g_comp_register_infos[i].name);
1054               AddRegister(g_comp_register_infos[i], name, alt_name,
1055                           vfp_reg_set);
1056             }
1057           }
1058         }
1059       }
1060     }
1061   }
1062 }
1063