1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #include "lldb/Target/ExecutionContext.h" 21 // Project includes 22 #include "Utility/StringExtractorGDBRemote.h" 23 #include "ProcessGDBRemote.h" 24 #include "ProcessGDBRemoteLog.h" 25 #include "ThreadGDBRemote.h" 26 #include "Utility/ARM_GCC_Registers.h" 27 #include "Utility/ARM_DWARF_Registers.h" 28 29 using namespace lldb; 30 using namespace lldb_private; 31 32 //---------------------------------------------------------------------- 33 // GDBRemoteRegisterContext constructor 34 //---------------------------------------------------------------------- 35 GDBRemoteRegisterContext::GDBRemoteRegisterContext 36 ( 37 ThreadGDBRemote &thread, 38 uint32_t concrete_frame_idx, 39 GDBRemoteDynamicRegisterInfo ®_info, 40 bool read_all_at_once 41 ) : 42 RegisterContext (thread, concrete_frame_idx), 43 m_reg_info (reg_info), 44 m_reg_valid (), 45 m_reg_data (), 46 m_read_all_at_once (read_all_at_once) 47 { 48 // Resize our vector of bools to contain one bool for every register. 49 // We will use these boolean values to know when a register value 50 // is valid in m_reg_data. 51 m_reg_valid.resize (reg_info.GetNumRegisters()); 52 53 // Make a heap based buffer that is big enough to store all registers 54 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 55 m_reg_data.SetData (reg_data_sp); 56 57 } 58 59 //---------------------------------------------------------------------- 60 // Destructor 61 //---------------------------------------------------------------------- 62 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 63 { 64 } 65 66 void 67 GDBRemoteRegisterContext::InvalidateAllRegisters () 68 { 69 SetAllRegisterValid (false); 70 } 71 72 void 73 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 74 { 75 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 76 for (pos = m_reg_valid.begin(); pos != end; ++pos) 77 *pos = b; 78 } 79 80 size_t 81 GDBRemoteRegisterContext::GetRegisterCount () 82 { 83 return m_reg_info.GetNumRegisters (); 84 } 85 86 const RegisterInfo * 87 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg) 88 { 89 return m_reg_info.GetRegisterInfoAtIndex (reg); 90 } 91 92 size_t 93 GDBRemoteRegisterContext::GetRegisterSetCount () 94 { 95 return m_reg_info.GetNumRegisterSets (); 96 } 97 98 99 100 const RegisterSet * 101 GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set) 102 { 103 return m_reg_info.GetRegisterSet (reg_set); 104 } 105 106 107 108 bool 109 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 110 { 111 // Read the register 112 if (ReadRegisterBytes (reg_info, m_reg_data)) 113 { 114 const bool partial_data_ok = false; 115 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 116 return error.Success(); 117 } 118 return false; 119 } 120 121 bool 122 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 123 { 124 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 125 if (reg_info == NULL) 126 return false; 127 128 // Invalidate if needed 129 InvalidateIfNeeded(false); 130 131 const uint32_t reg_byte_size = reg_info->byte_size; 132 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 133 bool success = bytes_copied == reg_byte_size; 134 if (success) 135 { 136 m_reg_valid[reg] = true; 137 } 138 else if (bytes_copied > 0) 139 { 140 // Only set register is valid to false if we copied some bytes, else 141 // leave it as it was. 142 m_reg_valid[reg] = false; 143 } 144 return success; 145 } 146 147 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 148 bool 149 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, 150 GDBRemoteCommunicationClient &gdb_comm) 151 { 152 char packet[64]; 153 StringExtractorGDBRemote response; 154 int packet_len = 0; 155 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 156 if (gdb_comm.GetThreadSuffixSupported()) 157 packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4llx;", reg, m_thread.GetID()); 158 else 159 packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg); 160 assert (packet_len < (sizeof(packet) - 1)); 161 if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) 162 return PrivateSetRegisterValue (reg, response); 163 164 return false; 165 } 166 bool 167 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 168 { 169 ExecutionContext exe_ctx (CalculateThread()); 170 171 Process *process = exe_ctx.GetProcessPtr(); 172 Thread *thread = exe_ctx.GetThreadPtr(); 173 if (process == NULL || thread == NULL) 174 return false; 175 176 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 177 178 InvalidateIfNeeded(false); 179 180 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 181 182 if (!m_reg_valid[reg]) 183 { 184 Mutex::Locker locker; 185 if (gdb_comm.GetSequenceMutex (locker)) 186 { 187 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 188 ProcessSP process_sp (m_thread.GetProcess()); 189 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID())) 190 { 191 char packet[64]; 192 StringExtractorGDBRemote response; 193 int packet_len = 0; 194 if (m_read_all_at_once) 195 { 196 // Get all registers in one packet 197 if (thread_suffix_supported) 198 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx;", m_thread.GetID()); 199 else 200 packet_len = ::snprintf (packet, sizeof(packet), "g"); 201 assert (packet_len < (sizeof(packet) - 1)); 202 if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) 203 { 204 if (response.IsNormalResponse()) 205 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 206 SetAllRegisterValid (true); 207 } 208 } 209 else if (!reg_info->value_regs) 210 { 211 // Get each register individually 212 GetPrimordialRegister(reg_info, gdb_comm); 213 } 214 else 215 { 216 // Process this composite register request by delegating to the constituent 217 // primordial registers. 218 219 // Index of the primordial register. 220 uint32_t prim_reg_idx; 221 bool success = true; 222 for (uint32_t idx = 0; 223 (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM; 224 ++idx) 225 { 226 // We have a valid primordial regsiter as our constituent. 227 // Grab the corresponding register info. 228 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx); 229 if (!GetPrimordialRegister(prim_reg_info, gdb_comm)) 230 { 231 success = false; 232 // Some failure occurred. Let's break out of the for loop. 233 break; 234 } 235 } 236 if (success) 237 { 238 // If we reach this point, all primordial register requests have succeeded. 239 // Validate this composite register. 240 m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = true; 241 } 242 } 243 } 244 } 245 else 246 { 247 LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 248 #if LLDB_CONFIGURATION_DEBUG 249 StreamString strm; 250 gdb_comm.DumpHistory(strm); 251 Host::SetCrashDescription (strm.GetData()); 252 assert (!"Didn't get sequence mutex for read register."); 253 #else 254 if (log) 255 { 256 if (log->GetVerbose()) 257 { 258 StreamString strm; 259 gdb_comm.DumpHistory(strm); 260 log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData()); 261 } 262 else 263 { 264 log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name); 265 } 266 } 267 #endif 268 } 269 270 // Make sure we got a valid register value after reading it 271 if (!m_reg_valid[reg]) 272 return false; 273 } 274 275 if (&data != &m_reg_data) 276 { 277 // If we aren't extracting into our own buffer (which 278 // only happens when this function is called from 279 // ReadRegisterValue(uint32_t, Scalar&)) then 280 // we transfer bytes from our buffer into the data 281 // buffer that was passed in 282 data.SetByteOrder (m_reg_data.GetByteOrder()); 283 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 284 } 285 return true; 286 } 287 288 289 bool 290 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 291 const RegisterValue &value) 292 { 293 DataExtractor data; 294 if (value.GetData (data)) 295 return WriteRegisterBytes (reg_info, data, 0); 296 return false; 297 } 298 299 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 300 bool 301 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, 302 GDBRemoteCommunicationClient &gdb_comm) 303 { 304 StreamString packet; 305 StringExtractorGDBRemote response; 306 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 307 packet.Printf ("P%x=", reg); 308 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 309 reg_info->byte_size, 310 lldb::endian::InlHostByteOrder(), 311 lldb::endian::InlHostByteOrder()); 312 313 if (gdb_comm.GetThreadSuffixSupported()) 314 packet.Printf (";thread:%4.4llx;", m_thread.GetID()); 315 316 // Invalidate just this register 317 m_reg_valid[reg] = false; 318 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 319 packet.GetString().size(), 320 response, 321 false)) 322 { 323 if (response.IsOKResponse()) 324 return true; 325 } 326 return false; 327 } 328 bool 329 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 330 { 331 ExecutionContext exe_ctx (CalculateThread()); 332 333 Process *process = exe_ctx.GetProcessPtr(); 334 Thread *thread = exe_ctx.GetThreadPtr(); 335 if (process == NULL || thread == NULL) 336 return false; 337 338 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 339 // FIXME: This check isn't right because IsRunning checks the Public state, but this 340 // is work you need to do - for instance in ShouldStop & friends - before the public 341 // state has been changed. 342 // if (gdb_comm.IsRunning()) 343 // return false; 344 345 // Grab a pointer to where we are going to put this register 346 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 347 348 if (dst == NULL) 349 return false; 350 351 352 if (data.CopyByteOrderedData (data_offset, // src offset 353 reg_info->byte_size, // src length 354 dst, // dst 355 reg_info->byte_size, // dst length 356 m_reg_data.GetByteOrder())) // dst byte order 357 { 358 Mutex::Locker locker; 359 if (gdb_comm.GetSequenceMutex (locker)) 360 { 361 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 362 ProcessSP process_sp (m_thread.GetProcess()); 363 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID())) 364 { 365 StreamString packet; 366 StringExtractorGDBRemote response; 367 if (m_read_all_at_once) 368 { 369 // Set all registers in one packet 370 packet.PutChar ('G'); 371 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 372 m_reg_data.GetByteSize(), 373 lldb::endian::InlHostByteOrder(), 374 lldb::endian::InlHostByteOrder()); 375 376 if (thread_suffix_supported) 377 packet.Printf (";thread:%4.4llx;", m_thread.GetID()); 378 379 // Invalidate all register values 380 InvalidateIfNeeded (true); 381 382 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 383 packet.GetString().size(), 384 response, 385 false)) 386 { 387 SetAllRegisterValid (false); 388 if (response.IsOKResponse()) 389 { 390 return true; 391 } 392 } 393 } 394 else if (!reg_info->value_regs) 395 { 396 // Set each register individually 397 return SetPrimordialRegister(reg_info, gdb_comm); 398 } 399 else 400 { 401 // Process this composite register request by delegating to the constituent 402 // primordial registers. 403 404 // Invalidate this composite register first. 405 m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = false; 406 407 // Index of the primordial register. 408 uint32_t prim_reg_idx; 409 // For loop index. 410 uint32_t idx; 411 412 // Invalidate the invalidate_regs, if present. 413 if (reg_info->invalidate_regs) 414 { 415 for (idx = 0; 416 (prim_reg_idx = reg_info->invalidate_regs[idx]) != LLDB_INVALID_REGNUM; 417 ++idx) 418 { 419 // Grab the invalidate register info. 420 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx); 421 m_reg_valid[prim_reg_info->kinds[eRegisterKindLLDB]] = false; 422 } 423 } 424 425 bool success = true; 426 for (idx = 0; 427 (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM; 428 ++idx) 429 { 430 // We have a valid primordial regsiter as our constituent. 431 // Grab the corresponding register info. 432 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx); 433 if (!SetPrimordialRegister(prim_reg_info, gdb_comm)) 434 { 435 success = false; 436 // Some failure occurred. Let's break out of the for loop. 437 break; 438 } 439 } 440 return success; 441 } 442 } 443 } 444 else 445 { 446 LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 447 #if LLDB_CONFIGURATION_DEBUG 448 StreamString strm; 449 gdb_comm.DumpHistory(strm); 450 Host::SetCrashDescription (strm.GetData()); 451 assert (!"Didn't get sequence mutex for write register."); 452 #else 453 if (log) 454 { 455 if (log->GetVerbose()) 456 { 457 StreamString strm; 458 gdb_comm.DumpHistory(strm); 459 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 460 } 461 else 462 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 463 } 464 #endif 465 } 466 } 467 return false; 468 } 469 470 471 bool 472 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 473 { 474 ExecutionContext exe_ctx (CalculateThread()); 475 476 Process *process = exe_ctx.GetProcessPtr(); 477 Thread *thread = exe_ctx.GetThreadPtr(); 478 if (process == NULL || thread == NULL) 479 return false; 480 481 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 482 483 StringExtractorGDBRemote response; 484 485 Mutex::Locker locker; 486 if (gdb_comm.GetSequenceMutex (locker)) 487 { 488 char packet[32]; 489 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 490 ProcessSP process_sp (m_thread.GetProcess()); 491 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID())) 492 { 493 int packet_len = 0; 494 if (thread_suffix_supported) 495 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx", m_thread.GetID()); 496 else 497 packet_len = ::snprintf (packet, sizeof(packet), "g"); 498 assert (packet_len < (sizeof(packet) - 1)); 499 500 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false)) 501 { 502 if (response.IsErrorResponse()) 503 return false; 504 505 std::string &response_str = response.GetStringRef(); 506 if (isxdigit(response_str[0])) 507 { 508 response_str.insert(0, 1, 'G'); 509 if (thread_suffix_supported) 510 { 511 char thread_id_cstr[64]; 512 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4llx;", m_thread.GetID()); 513 response_str.append (thread_id_cstr); 514 } 515 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 516 return true; 517 } 518 } 519 } 520 } 521 else 522 { 523 LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 524 #if LLDB_CONFIGURATION_DEBUG 525 StreamString strm; 526 gdb_comm.DumpHistory(strm); 527 Host::SetCrashDescription (strm.GetData()); 528 assert (!"Didn't get sequence mutex for read all registers."); 529 #else 530 if (log) 531 { 532 if (log->GetVerbose()) 533 { 534 StreamString strm; 535 gdb_comm.DumpHistory(strm); 536 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 537 } 538 else 539 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 540 } 541 #endif 542 } 543 544 data_sp.reset(); 545 return false; 546 } 547 548 bool 549 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 550 { 551 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 552 return false; 553 554 ExecutionContext exe_ctx (CalculateThread()); 555 556 Process *process = exe_ctx.GetProcessPtr(); 557 Thread *thread = exe_ctx.GetThreadPtr(); 558 if (process == NULL || thread == NULL) 559 return false; 560 561 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 562 563 StringExtractorGDBRemote response; 564 Mutex::Locker locker; 565 if (gdb_comm.GetSequenceMutex (locker)) 566 { 567 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 568 ProcessSP process_sp (m_thread.GetProcess()); 569 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID())) 570 { 571 // The data_sp contains the entire G response packet including the 572 // G, and if the thread suffix is supported, it has the thread suffix 573 // as well. 574 const char *G_packet = (const char *)data_sp->GetBytes(); 575 size_t G_packet_len = data_sp->GetByteSize(); 576 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 577 G_packet_len, 578 response, 579 false)) 580 { 581 if (response.IsOKResponse()) 582 return true; 583 else if (response.IsErrorResponse()) 584 { 585 uint32_t num_restored = 0; 586 // We need to manually go through all of the registers and 587 // restore them manually 588 589 response.GetStringRef().assign (G_packet, G_packet_len); 590 response.SetFilePos(1); // Skip the leading 'G' 591 DataBufferHeap buffer (m_reg_data.GetByteSize(), 0); 592 DataExtractor restore_data (buffer.GetBytes(), 593 buffer.GetByteSize(), 594 m_reg_data.GetByteOrder(), 595 m_reg_data.GetAddressByteSize()); 596 597 const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(), 598 restore_data.GetByteSize(), 599 '\xcc'); 600 601 if (bytes_extracted < restore_data.GetByteSize()) 602 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 603 604 //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data) 605 const RegisterInfo *reg_info; 606 // We have to march the offset of each register along in the 607 // buffer to make sure we get the right offset. 608 uint32_t reg_byte_offset = 0; 609 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size) 610 { 611 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 612 613 // Skip composite registers. 614 if (reg_info->value_regs) 615 continue; 616 617 // Only write down the registers that need to be written 618 // if we are going to be doing registers individually. 619 bool write_reg = true; 620 const uint32_t reg_byte_size = reg_info->byte_size; 621 622 const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size); 623 if (restore_src) 624 { 625 if (m_reg_valid[reg]) 626 { 627 const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size); 628 if (current_src) 629 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 630 } 631 632 if (write_reg) 633 { 634 StreamString packet; 635 packet.Printf ("P%x=", reg); 636 packet.PutBytesAsRawHex8 (restore_src, 637 reg_byte_size, 638 lldb::endian::InlHostByteOrder(), 639 lldb::endian::InlHostByteOrder()); 640 641 if (thread_suffix_supported) 642 packet.Printf (";thread:%4.4llx;", m_thread.GetID()); 643 644 m_reg_valid[reg] = false; 645 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 646 packet.GetString().size(), 647 response, 648 false)) 649 { 650 if (response.IsOKResponse()) 651 ++num_restored; 652 } 653 } 654 } 655 } 656 return num_restored > 0; 657 } 658 } 659 } 660 } 661 else 662 { 663 LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 664 #if LLDB_CONFIGURATION_DEBUG 665 StreamString strm; 666 gdb_comm.DumpHistory(strm); 667 Host::SetCrashDescription (strm.GetData()); 668 assert (!"Didn't get sequence mutex for write all registers."); 669 #else 670 if (log) 671 { 672 if (log->GetVerbose()) 673 { 674 StreamString strm; 675 gdb_comm.DumpHistory(strm); 676 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 677 } 678 else 679 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 680 } 681 #endif 682 } 683 return false; 684 } 685 686 687 uint32_t 688 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num) 689 { 690 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 691 } 692 693 void 694 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters() 695 { 696 // For Advanced SIMD and VFP register mapping. 697 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 698 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 699 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 700 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 701 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 702 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 703 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 704 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 705 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 706 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 707 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 708 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 709 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 710 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 711 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 712 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 713 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 714 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 715 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 716 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 717 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 718 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 719 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 720 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 721 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 722 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 723 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 724 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 725 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 726 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 727 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 728 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 729 730 static RegisterInfo g_register_infos[] = { 731 // NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB VALUE REGS INVALIDATE REGS 732 // ====== ====== === === ============= ============ =================== =================== ====================== === ==== ========== =============== 733 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 734 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 735 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 736 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 737 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 738 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 739 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 740 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 741 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 742 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 743 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 744 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 745 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 746 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 747 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 748 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 749 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 750 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 751 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 752 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 753 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 754 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 755 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 756 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 757 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 758 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 759 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 760 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 761 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 762 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 763 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 764 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 765 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 766 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 767 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 768 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 769 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 770 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 771 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 772 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 773 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 774 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 775 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 776 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 777 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 778 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 779 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 780 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 781 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 782 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 783 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 784 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 785 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 786 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 787 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 788 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 789 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 790 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 791 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 792 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 793 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 794 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 795 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 796 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 797 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 798 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 799 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 800 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 801 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 802 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 803 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 804 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 805 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 806 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 807 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 808 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 809 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 810 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 811 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 812 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 813 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 814 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 815 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 816 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 817 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 818 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 819 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 820 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 821 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 822 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 823 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 824 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 825 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 826 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 827 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 828 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 829 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 830 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 831 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 832 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 833 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 834 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 835 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 836 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 837 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 838 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 839 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 840 }; 841 842 static const uint32_t num_registers = sizeof (g_register_infos)/sizeof (RegisterInfo); 843 static ConstString gpr_reg_set ("General Purpose Registers"); 844 static ConstString sfp_reg_set ("Software Floating Point Registers"); 845 static ConstString vfp_reg_set ("Floating Point Registers"); 846 uint32_t i; 847 // Calculate the offsets of the registers 848 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 849 // "primordial" registers is important. This enables us to calculate the offset of the composite 850 // register by using the offset of its first primordial register. For example, to calculate the 851 // offset of q0, use s0's offset. 852 if (g_register_infos[2].byte_offset == 0) 853 { 854 uint32_t byte_offset = 0; 855 for (i=0; i<num_registers; ++i) 856 { 857 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 858 // byte_offset for the next register. Otherwise, we have a composite register whose 859 // offset can be calculated by consulting the offset of its first primordial register. 860 if (!g_register_infos[i].value_regs) 861 { 862 g_register_infos[i].byte_offset = byte_offset; 863 byte_offset += g_register_infos[i].byte_size; 864 } 865 else 866 { 867 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 868 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 869 } 870 } 871 } 872 for (i=0; i<num_registers; ++i) 873 { 874 ConstString name; 875 ConstString alt_name; 876 if (g_register_infos[i].name && g_register_infos[i].name[0]) 877 name.SetCString(g_register_infos[i].name); 878 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 879 alt_name.SetCString(g_register_infos[i].alt_name); 880 881 if (i <= 15 || i == 25) 882 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 883 else if (i <= 24) 884 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 885 else 886 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 887 } 888 } 889 890