1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "GDBRemoteRegisterContext.h"
11 
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #include "lldb/Target/ExecutionContext.h"
21 #include "lldb/Target/Target.h"
22 #include "lldb/Utility/Utils.h"
23 // Project includes
24 #include "Utility/StringExtractorGDBRemote.h"
25 #include "ProcessGDBRemote.h"
26 #include "ProcessGDBRemoteLog.h"
27 #include "ThreadGDBRemote.h"
28 #include "Utility/ARM_DWARF_Registers.h"
29 #include "Utility/ARM_ehframe_Registers.h"
30 
31 using namespace lldb;
32 using namespace lldb_private;
33 using namespace lldb_private::process_gdb_remote;
34 
35 //----------------------------------------------------------------------
36 // GDBRemoteRegisterContext constructor
37 //----------------------------------------------------------------------
38 GDBRemoteRegisterContext::GDBRemoteRegisterContext
39 (
40     ThreadGDBRemote &thread,
41     uint32_t concrete_frame_idx,
42     GDBRemoteDynamicRegisterInfo &reg_info,
43     bool read_all_at_once
44 ) :
45     RegisterContext (thread, concrete_frame_idx),
46     m_reg_info (reg_info),
47     m_reg_valid (),
48     m_reg_data (),
49     m_read_all_at_once (read_all_at_once)
50 {
51     // Resize our vector of bools to contain one bool for every register.
52     // We will use these boolean values to know when a register value
53     // is valid in m_reg_data.
54     m_reg_valid.resize (reg_info.GetNumRegisters());
55 
56     // Make a heap based buffer that is big enough to store all registers
57     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
58     m_reg_data.SetData (reg_data_sp);
59     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
60 }
61 
62 //----------------------------------------------------------------------
63 // Destructor
64 //----------------------------------------------------------------------
65 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
66 {
67 }
68 
69 void
70 GDBRemoteRegisterContext::InvalidateAllRegisters ()
71 {
72     SetAllRegisterValid (false);
73 }
74 
75 void
76 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
77 {
78     std::vector<bool>::iterator pos, end = m_reg_valid.end();
79     for (pos = m_reg_valid.begin(); pos != end; ++pos)
80         *pos = b;
81 }
82 
83 size_t
84 GDBRemoteRegisterContext::GetRegisterCount ()
85 {
86     return m_reg_info.GetNumRegisters ();
87 }
88 
89 const RegisterInfo *
90 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
91 {
92     return m_reg_info.GetRegisterInfoAtIndex (reg);
93 }
94 
95 size_t
96 GDBRemoteRegisterContext::GetRegisterSetCount ()
97 {
98     return m_reg_info.GetNumRegisterSets ();
99 }
100 
101 
102 
103 const RegisterSet *
104 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
105 {
106     return m_reg_info.GetRegisterSet (reg_set);
107 }
108 
109 
110 
111 bool
112 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
113 {
114     // Read the register
115     if (ReadRegisterBytes (reg_info, m_reg_data))
116     {
117         const bool partial_data_ok = false;
118         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
119         return error.Success();
120     }
121     return false;
122 }
123 
124 bool
125 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
126 {
127     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
128     if (reg_info == NULL)
129         return false;
130 
131     // Invalidate if needed
132     InvalidateIfNeeded(false);
133 
134     const uint32_t reg_byte_size = reg_info->byte_size;
135     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
136     bool success = bytes_copied == reg_byte_size;
137     if (success)
138     {
139         SetRegisterIsValid(reg, true);
140     }
141     else if (bytes_copied > 0)
142     {
143         // Only set register is valid to false if we copied some bytes, else
144         // leave it as it was.
145         SetRegisterIsValid(reg, false);
146     }
147     return success;
148 }
149 
150 bool
151 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, uint64_t new_reg_val)
152 {
153     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
154     if (reg_info == NULL)
155         return false;
156 
157     // Early in process startup, we can get a thread that has an invalid byte order
158     // because the process hasn't been completely set up yet (see the ctor where the
159     // byte order is setfrom the process).  If that's the case, we can't set the
160     // value here.
161     if (m_reg_data.GetByteOrder() == eByteOrderInvalid)
162     {
163         return false;
164     }
165 
166     // Invalidate if needed
167     InvalidateIfNeeded (false);
168 
169     DataBufferSP buffer_sp (new DataBufferHeap (&new_reg_val, sizeof (new_reg_val)));
170     DataExtractor data (buffer_sp, endian::InlHostByteOrder(), sizeof (void*));
171 
172     // If our register context and our register info disagree, which should never happen, don't
173     // overwrite past the end of the buffer.
174     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
175         return false;
176 
177     // Grab a pointer to where we are going to put this register
178     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
179 
180     if (dst == NULL)
181         return false;
182 
183 
184     if (data.CopyByteOrderedData (0,                            // src offset
185                                   reg_info->byte_size,          // src length
186                                   dst,                          // dst
187                                   reg_info->byte_size,          // dst length
188                                   m_reg_data.GetByteOrder()))   // dst byte order
189     {
190         SetRegisterIsValid (reg, true);
191         return true;
192     }
193     return false;
194 }
195 
196 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
197 bool
198 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info,
199                                                 GDBRemoteCommunicationClient &gdb_comm)
200 {
201     const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
202     const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
203     StringExtractorGDBRemote response;
204     if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg, response))
205         return PrivateSetRegisterValue (lldb_reg, response);
206     return false;
207 }
208 
209 bool
210 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
211 {
212     ExecutionContext exe_ctx (CalculateThread());
213 
214     Process *process = exe_ctx.GetProcessPtr();
215     Thread *thread = exe_ctx.GetThreadPtr();
216     if (process == NULL || thread == NULL)
217         return false;
218 
219     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
220 
221     InvalidateIfNeeded(false);
222 
223     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
224 
225     if (!GetRegisterIsValid(reg))
226     {
227         if (m_read_all_at_once)
228         {
229             StringExtractorGDBRemote response;
230             if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
231                 return false;
232             if (response.IsNormalResponse())
233                 if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())),
234                                          m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
235                     SetAllRegisterValid (true);
236         }
237         else if (reg_info->value_regs)
238         {
239             // Process this composite register request by delegating to the constituent
240             // primordial registers.
241 
242             // Index of the primordial register.
243             bool success = true;
244             for (uint32_t idx = 0; success; ++idx)
245             {
246                 const uint32_t prim_reg = reg_info->value_regs[idx];
247                 if (prim_reg == LLDB_INVALID_REGNUM)
248                     break;
249                 // We have a valid primordial register as our constituent.
250                 // Grab the corresponding register info.
251                 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
252                 if (prim_reg_info == NULL)
253                     success = false;
254                 else
255                 {
256                     // Read the containing register if it hasn't already been read
257                     if (!GetRegisterIsValid(prim_reg))
258                         success = GetPrimordialRegister(prim_reg_info, gdb_comm);
259                 }
260             }
261 
262             if (success)
263             {
264                 // If we reach this point, all primordial register requests have succeeded.
265                 // Validate this composite register.
266                 SetRegisterIsValid (reg_info, true);
267             }
268         }
269         else
270         {
271             // Get each register individually
272             GetPrimordialRegister(reg_info, gdb_comm);
273         }
274 
275         // Make sure we got a valid register value after reading it
276         if (!GetRegisterIsValid(reg))
277             return false;
278     }
279 
280     if (&data != &m_reg_data)
281     {
282 #if defined (LLDB_CONFIGURATION_DEBUG)
283         assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
284 #endif
285         // If our register context and our register info disagree, which should never happen, don't
286         // read past the end of the buffer.
287         if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
288             return false;
289 
290         // If we aren't extracting into our own buffer (which
291         // only happens when this function is called from
292         // ReadRegisterValue(uint32_t, Scalar&)) then
293         // we transfer bytes from our buffer into the data
294         // buffer that was passed in
295 
296         data.SetByteOrder (m_reg_data.GetByteOrder());
297         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
298     }
299     return true;
300 }
301 
302 bool
303 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
304                                          const RegisterValue &value)
305 {
306     DataExtractor data;
307     if (value.GetData (data))
308         return WriteRegisterBytes (reg_info, data, 0);
309     return false;
310 }
311 
312 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
313 bool
314 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info,
315                                                 GDBRemoteCommunicationClient &gdb_comm)
316 {
317     StreamString packet;
318     StringExtractorGDBRemote response;
319     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
320     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
321     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
322                               reg_info->byte_size,
323                               endian::InlHostByteOrder(),
324                               endian::InlHostByteOrder());
325 
326     if (gdb_comm.GetThreadSuffixSupported())
327         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
328 
329     // Invalidate just this register
330     SetRegisterIsValid(reg, false);
331     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
332                                               packet.GetString().size(),
333                                               response,
334                                               false) == GDBRemoteCommunication::PacketResult::Success)
335     {
336         if (response.IsOKResponse())
337             return true;
338     }
339     return false;
340 }
341 
342 void
343 GDBRemoteRegisterContext::SyncThreadState(Process *process)
344 {
345     // NB.  We assume our caller has locked the sequence mutex.
346 
347     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
348     if (!gdb_comm.GetSyncThreadStateSupported())
349         return;
350 
351     StreamString packet;
352     StringExtractorGDBRemote response;
353     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
354     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
355                                               packet.GetString().size(),
356                                               response,
357                                               false) == GDBRemoteCommunication::PacketResult::Success)
358     {
359         if (response.IsOKResponse())
360             InvalidateAllRegisters();
361     }
362 }
363 
364 bool
365 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
366 {
367     ExecutionContext exe_ctx (CalculateThread());
368 
369     Process *process = exe_ctx.GetProcessPtr();
370     Thread *thread = exe_ctx.GetThreadPtr();
371     if (process == NULL || thread == NULL)
372         return false;
373 
374     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
375 // FIXME: This check isn't right because IsRunning checks the Public state, but this
376 // is work you need to do - for instance in ShouldStop & friends - before the public
377 // state has been changed.
378 //    if (gdb_comm.IsRunning())
379 //        return false;
380 
381 
382 #if defined (LLDB_CONFIGURATION_DEBUG)
383     assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
384 #endif
385 
386     // If our register context and our register info disagree, which should never happen, don't
387     // overwrite past the end of the buffer.
388     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
389         return false;
390 
391     // Grab a pointer to where we are going to put this register
392     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
393 
394     if (dst == NULL)
395         return false;
396 
397 
398     if (data.CopyByteOrderedData (data_offset,                  // src offset
399                                   reg_info->byte_size,          // src length
400                                   dst,                          // dst
401                                   reg_info->byte_size,          // dst length
402                                   m_reg_data.GetByteOrder()))   // dst byte order
403     {
404         Mutex::Locker locker;
405         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
406         {
407             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
408             ProcessSP process_sp (m_thread.GetProcess());
409             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
410             {
411                 StreamString packet;
412                 StringExtractorGDBRemote response;
413 
414                 if (m_read_all_at_once)
415                 {
416                     // Set all registers in one packet
417                     packet.PutChar ('G');
418                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
419                                               m_reg_data.GetByteSize(),
420                                               endian::InlHostByteOrder(),
421                                               endian::InlHostByteOrder());
422 
423                     if (thread_suffix_supported)
424                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
425 
426                     // Invalidate all register values
427                     InvalidateIfNeeded (true);
428 
429                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
430                                                               packet.GetString().size(),
431                                                               response,
432                                                               false) == GDBRemoteCommunication::PacketResult::Success)
433                     {
434                         SetAllRegisterValid (false);
435                         if (response.IsOKResponse())
436                         {
437                             return true;
438                         }
439                     }
440                 }
441                 else
442                 {
443                     bool success = true;
444 
445                     if (reg_info->value_regs)
446                     {
447                         // This register is part of another register. In this case we read the actual
448                         // register data for any "value_regs", and once all that data is read, we will
449                         // have enough data in our register context bytes for the value of this register
450 
451                         // Invalidate this composite register first.
452 
453                         for (uint32_t idx = 0; success; ++idx)
454                         {
455                             const uint32_t reg = reg_info->value_regs[idx];
456                             if (reg == LLDB_INVALID_REGNUM)
457                                 break;
458                             // We have a valid primordial register as our constituent.
459                             // Grab the corresponding register info.
460                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
461                             if (value_reg_info == NULL)
462                                 success = false;
463                             else
464                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
465                         }
466                     }
467                     else
468                     {
469                         // This is an actual register, write it
470                         success = SetPrimordialRegister(reg_info, gdb_comm);
471                     }
472 
473                     // Check if writing this register will invalidate any other register values?
474                     // If so, invalidate them
475                     if (reg_info->invalidate_regs)
476                     {
477                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
478                              reg != LLDB_INVALID_REGNUM;
479                              reg = reg_info->invalidate_regs[++idx])
480                         {
481                             SetRegisterIsValid(reg, false);
482                         }
483                     }
484 
485                     return success;
486                 }
487             }
488         }
489         else
490         {
491             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
492             if (log)
493             {
494                 if (log->GetVerbose())
495                 {
496                     StreamString strm;
497                     gdb_comm.DumpHistory(strm);
498                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
499                 }
500                 else
501                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
502             }
503         }
504     }
505     return false;
506 }
507 
508 bool
509 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint &reg_checkpoint)
510 {
511     ExecutionContext exe_ctx (CalculateThread());
512 
513     Process *process = exe_ctx.GetProcessPtr();
514     Thread *thread = exe_ctx.GetThreadPtr();
515     if (process == NULL || thread == NULL)
516         return false;
517 
518     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
519 
520     uint32_t save_id = 0;
521     if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
522     {
523         reg_checkpoint.SetID(save_id);
524         reg_checkpoint.GetData().reset();
525         return true;
526     }
527     else
528     {
529         reg_checkpoint.SetID(0); // Invalid save ID is zero
530         return ReadAllRegisterValues(reg_checkpoint.GetData());
531     }
532 }
533 
534 bool
535 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint &reg_checkpoint)
536 {
537     uint32_t save_id = reg_checkpoint.GetID();
538     if (save_id != 0)
539     {
540         ExecutionContext exe_ctx (CalculateThread());
541 
542         Process *process = exe_ctx.GetProcessPtr();
543         Thread *thread = exe_ctx.GetThreadPtr();
544         if (process == NULL || thread == NULL)
545             return false;
546 
547         GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
548 
549         return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
550     }
551     else
552     {
553         return WriteAllRegisterValues(reg_checkpoint.GetData());
554     }
555 }
556 
557 bool
558 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
559 {
560     ExecutionContext exe_ctx (CalculateThread());
561 
562     Process *process = exe_ctx.GetProcessPtr();
563     Thread *thread = exe_ctx.GetThreadPtr();
564     if (process == NULL || thread == NULL)
565         return false;
566 
567     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
568 
569     StringExtractorGDBRemote response;
570 
571     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
572 
573     Mutex::Locker locker;
574     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
575     {
576         SyncThreadState(process);
577 
578         char packet[32];
579         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
580         ProcessSP process_sp (m_thread.GetProcess());
581         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
582         {
583             int packet_len = 0;
584             if (thread_suffix_supported)
585                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
586             else
587                 packet_len = ::snprintf (packet, sizeof(packet), "g");
588             assert (packet_len < ((int)sizeof(packet) - 1));
589 
590             if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
591             {
592                 int packet_len = 0;
593                 if (thread_suffix_supported)
594                     packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
595                 else
596                     packet_len = ::snprintf (packet, sizeof(packet), "g");
597                 assert (packet_len < ((int)sizeof(packet) - 1));
598 
599                 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
600                 {
601                     if (response.IsErrorResponse())
602                         return false;
603 
604                     std::string &response_str = response.GetStringRef();
605                     if (isxdigit(response_str[0]))
606                     {
607                         response_str.insert(0, 1, 'G');
608                         if (thread_suffix_supported)
609                         {
610                             char thread_id_cstr[64];
611                             ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
612                             response_str.append (thread_id_cstr);
613                         }
614                         data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
615                         return true;
616                     }
617                 }
618             }
619             else
620             {
621                 // For the use_g_packet == false case, we're going to read each register
622                 // individually and store them as binary data in a buffer instead of as ascii
623                 // characters.
624                 const RegisterInfo *reg_info;
625 
626                 // data_sp will take ownership of this DataBufferHeap pointer soon.
627                 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));
628 
629                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
630                 {
631                     if (reg_info->value_regs) // skip registers that are slices of real registers
632                         continue;
633                     ReadRegisterBytes (reg_info, m_reg_data);
634                     // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
635                 }
636                 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
637 
638                 data_sp = reg_ctx;
639                 return true;
640             }
641         }
642     }
643     else
644     {
645 
646         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
647         if (log)
648         {
649             if (log->GetVerbose())
650             {
651                 StreamString strm;
652                 gdb_comm.DumpHistory(strm);
653                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
654             }
655             else
656                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
657         }
658     }
659 
660     data_sp.reset();
661     return false;
662 }
663 
664 bool
665 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
666 {
667     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
668         return false;
669 
670     ExecutionContext exe_ctx (CalculateThread());
671 
672     Process *process = exe_ctx.GetProcessPtr();
673     Thread *thread = exe_ctx.GetThreadPtr();
674     if (process == NULL || thread == NULL)
675         return false;
676 
677     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
678 
679     const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
680 
681     StringExtractorGDBRemote response;
682     Mutex::Locker locker;
683     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
684     {
685         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
686         ProcessSP process_sp (m_thread.GetProcess());
687         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
688         {
689             // The data_sp contains the entire G response packet including the
690             // G, and if the thread suffix is supported, it has the thread suffix
691             // as well.
692             const char *G_packet = (const char *)data_sp->GetBytes();
693             size_t G_packet_len = data_sp->GetByteSize();
694             if (use_g_packet
695                 && gdb_comm.SendPacketAndWaitForResponse (G_packet,
696                                                           G_packet_len,
697                                                           response,
698                                                           false) == GDBRemoteCommunication::PacketResult::Success)
699             {
700                 // The data_sp contains the entire G response packet including the
701                 // G, and if the thread suffix is supported, it has the thread suffix
702                 // as well.
703                 const char *G_packet = (const char *)data_sp->GetBytes();
704                 size_t G_packet_len = data_sp->GetByteSize();
705                 if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
706                                                            G_packet_len,
707                                                            response,
708                                                            false) == GDBRemoteCommunication::PacketResult::Success)
709                 {
710                     if (response.IsOKResponse())
711                         return true;
712                     else if (response.IsErrorResponse())
713                     {
714                         uint32_t num_restored = 0;
715                         // We need to manually go through all of the registers and
716                         // restore them manually
717 
718                         response.GetStringRef().assign (G_packet, G_packet_len);
719                         response.SetFilePos(1); // Skip the leading 'G'
720 
721                         // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier.
722                         // This means buffer will be a little more than 2x larger than necessary but we resize
723                         // it down once we've extracted all hex ascii chars from the packet.
724                         DataBufferHeap buffer (G_packet_len, 0);
725 
726                         const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(),
727                                                                                buffer.GetByteSize(),
728                                                                                '\xcc');
729 
730                         DataExtractor restore_data (buffer.GetBytes(),
731                                                     buffer.GetByteSize(),
732                                                     m_reg_data.GetByteOrder(),
733                                                     m_reg_data.GetAddressByteSize());
734 
735                         if (bytes_extracted < restore_data.GetByteSize())
736                             restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
737 
738                         const RegisterInfo *reg_info;
739 
740                         // The g packet contents may either include the slice registers (registers defined in
741                         // terms of other registers, e.g. eax is a subset of rax) or not.  The slice registers
742                         // should NOT be in the g packet, but some implementations may incorrectly include them.
743                         //
744                         // If the slice registers are included in the packet, we must step over the slice registers
745                         // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
746                         // If the slice registers are not included, then using the byte_offset values into the
747                         // data buffer is the best way to find individual register values.
748 
749                         uint64_t size_including_slice_registers = 0;
750                         uint64_t size_not_including_slice_registers = 0;
751                         uint64_t size_by_highest_offset = 0;
752 
753                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
754                         {
755                             size_including_slice_registers += reg_info->byte_size;
756                             if (reg_info->value_regs == NULL)
757                                 size_not_including_slice_registers += reg_info->byte_size;
758                             if (reg_info->byte_offset >= size_by_highest_offset)
759                                 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
760                         }
761 
762                         bool use_byte_offset_into_buffer;
763                         if (size_by_highest_offset == restore_data.GetByteSize())
764                         {
765                             // The size of the packet agrees with the highest offset: + size in the register file
766                             use_byte_offset_into_buffer = true;
767                         }
768                         else if (size_not_including_slice_registers == restore_data.GetByteSize())
769                         {
770                             // The size of the packet is the same as concatenating all of the registers sequentially,
771                             // skipping the slice registers
772                             use_byte_offset_into_buffer = true;
773                         }
774                         else if (size_including_slice_registers == restore_data.GetByteSize())
775                         {
776                             // The slice registers are present in the packet (when they shouldn't be).
777                             // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
778                             // point to the wrong place.
779                             use_byte_offset_into_buffer = false;
780                         }
781                         else {
782                             // None of our expected sizes match the actual g packet data we're looking at.
783                             // The most conservative approach here is to use the running total byte offset.
784                             use_byte_offset_into_buffer = false;
785                         }
786 
787                         // In case our register definitions don't include the correct offsets,
788                         // keep track of the size of each reg & compute offset based on that.
789                         uint32_t running_byte_offset = 0;
790                         for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
791                         {
792                             // Skip composite aka slice registers (e.g. eax is a slice of rax).
793                             if (reg_info->value_regs)
794                                 continue;
795 
796                             const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
797 
798                             uint32_t register_offset;
799                             if (use_byte_offset_into_buffer)
800                             {
801                                 register_offset = reg_info->byte_offset;
802                             }
803                             else
804                             {
805                                 register_offset = running_byte_offset;
806                             }
807 
808                             // Only write down the registers that need to be written
809                             // if we are going to be doing registers individually.
810                             bool write_reg = true;
811                             const uint32_t reg_byte_size = reg_info->byte_size;
812 
813                             const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
814                             if (restore_src)
815                             {
816                                 StreamString packet;
817                                 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
818                                 packet.PutBytesAsRawHex8 (restore_src,
819                                                           reg_byte_size,
820                                                           endian::InlHostByteOrder(),
821                                                           endian::InlHostByteOrder());
822 
823                                 if (thread_suffix_supported)
824                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
825 
826                                 SetRegisterIsValid(reg, false);
827                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
828                                                                           packet.GetString().size(),
829                                                                           response,
830                                                                           false) == GDBRemoteCommunication::PacketResult::Success)
831                                 {
832                                     const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
833                                     if (current_src)
834                                         write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
835                                 }
836 
837                                 if (write_reg)
838                                 {
839                                     StreamString packet;
840                                     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
841                                     packet.PutBytesAsRawHex8 (restore_src,
842                                                               reg_byte_size,
843                                                               endian::InlHostByteOrder(),
844                                                               endian::InlHostByteOrder());
845 
846                                     if (thread_suffix_supported)
847                                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
848 
849                                     SetRegisterIsValid(reg, false);
850                                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
851                                                                               packet.GetString().size(),
852                                                                               response,
853                                                                               false) == GDBRemoteCommunication::PacketResult::Success)
854                                     {
855                                         if (response.IsOKResponse())
856                                             ++num_restored;
857                                     }
858                                 }
859                             }
860                         }
861                         return num_restored > 0;
862                     }
863                 }
864             }
865             else
866             {
867                 // For the use_g_packet == false case, we're going to write each register
868                 // individually.  The data buffer is binary data in this case, instead of
869                 // ascii characters.
870 
871                 bool arm64_debugserver = false;
872                 if (m_thread.GetProcess().get())
873                 {
874                     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
875                     if (arch.IsValid()
876                         && arch.GetMachine() == llvm::Triple::aarch64
877                         && arch.GetTriple().getVendor() == llvm::Triple::Apple
878                         && arch.GetTriple().getOS() == llvm::Triple::IOS)
879                     {
880                         arm64_debugserver = true;
881                     }
882                 }
883                 uint32_t num_restored = 0;
884                 const RegisterInfo *reg_info;
885                 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
886                 {
887                     if (reg_info->value_regs) // skip registers that are slices of real registers
888                         continue;
889                     // Skip the fpsr and fpcr floating point status/control register writing to
890                     // work around a bug in an older version of debugserver that would lead to
891                     // register context corruption when writing fpsr/fpcr.
892                     if (arm64_debugserver &&
893                         (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
894                     {
895                         continue;
896                     }
897                     StreamString packet;
898                     packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
899                     packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder());
900                     if (thread_suffix_supported)
901                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
902 
903                     SetRegisterIsValid(reg_info, false);
904                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
905                                                               packet.GetString().size(),
906                                                               response,
907                                                               false) == GDBRemoteCommunication::PacketResult::Success)
908                     {
909                         if (response.IsOKResponse())
910                             ++num_restored;
911                     }
912                 }
913                 return num_restored > 0;
914             }
915         }
916     }
917     else
918     {
919         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
920         if (log)
921         {
922             if (log->GetVerbose())
923             {
924                 StreamString strm;
925                 gdb_comm.DumpHistory(strm);
926                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
927             }
928             else
929                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
930         }
931     }
932     return false;
933 }
934 
935 
936 uint32_t
937 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
938 {
939     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
940 }
941 
942 
943 void
944 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
945 {
946     // For Advanced SIMD and VFP register mapping.
947     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
948     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
949     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
950     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
951     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
952     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
953     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
954     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
955     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
956     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
957     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
958     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
959     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
960     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
961     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
962     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
963     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
964     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
965     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
966     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
967     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
968     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
969     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
970     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
971     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
972     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
973     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
974     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
975     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
976     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
977     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
978     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
979 
980     // This is our array of composite registers, with each element coming from the above register mappings.
981     static uint32_t *g_composites[] = {
982         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
983         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
984         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
985         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
986     };
987 
988     static RegisterInfo g_register_infos[] = {
989 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB      VALUE REGS    INVALIDATE REGS
990 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  =============   ====      ==========    ===============
991     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },        NULL,              NULL},
992     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },        NULL,              NULL},
993     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },        NULL,              NULL},
994     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },        NULL,              NULL},
995     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },        NULL,              NULL},
996     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },        NULL,              NULL},
997     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },        NULL,              NULL},
998     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },        NULL,              NULL},
999     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },        NULL,              NULL},
1000     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },        NULL,              NULL},
1001     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },        NULL,              NULL},
1002     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },        NULL,              NULL},
1003     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },        NULL,              NULL},
1004     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },        NULL,              NULL},
1005     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },        NULL,              NULL},
1006     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },        NULL,              NULL},
1007     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },        NULL,              NULL},
1008     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },        NULL,              NULL},
1009     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },        NULL,              NULL},
1010     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },        NULL,              NULL},
1011     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },        NULL,              NULL},
1012     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },        NULL,              NULL},
1013     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },        NULL,              NULL},
1014     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },        NULL,              NULL},
1015     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },        NULL,              NULL},
1016     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },        NULL,              NULL},
1017     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },        NULL,              NULL},
1018     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },        NULL,              NULL},
1019     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },        NULL,              NULL},
1020     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },        NULL,              NULL},
1021     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },        NULL,              NULL},
1022     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },        NULL,              NULL},
1023     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },        NULL,              NULL},
1024     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },        NULL,              NULL},
1025     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },        NULL,              NULL},
1026     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },        NULL,              NULL},
1027     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },        NULL,              NULL},
1028     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },        NULL,              NULL},
1029     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },        NULL,              NULL},
1030     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },        NULL,              NULL},
1031     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },        NULL,              NULL},
1032     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },        NULL,              NULL},
1033     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },        NULL,              NULL},
1034     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },        NULL,              NULL},
1035     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },        NULL,              NULL},
1036     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },        NULL,              NULL},
1037     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },        NULL,              NULL},
1038     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },        NULL,              NULL},
1039     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },        NULL,              NULL},
1040     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },        NULL,              NULL},
1041     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },        NULL,              NULL},
1042     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },        NULL,              NULL},
1043     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },        NULL,              NULL},
1044     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },        NULL,              NULL},
1045     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },        NULL,              NULL},
1046     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },        NULL,              NULL},
1047     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },        NULL,              NULL},
1048     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },        NULL,              NULL},
1049     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },        NULL,              NULL},
1050     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },        NULL,              NULL},
1051     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },        NULL,              NULL},
1052     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },        NULL,              NULL},
1053     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },        NULL,              NULL},
1054     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },        NULL,              NULL},
1055     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },        NULL,              NULL},
1056     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },        NULL,              NULL},
1057     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },        NULL,              NULL},
1058     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },        NULL,              NULL},
1059     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },        NULL,              NULL},
1060     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },        NULL,              NULL},
1061     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },        NULL,              NULL},
1062     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },        NULL,              NULL},
1063     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },        NULL,              NULL},
1064     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },        NULL,              NULL},
1065     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },        NULL,              NULL},
1066     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,              NULL},
1067     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,              NULL},
1068     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,              NULL},
1069     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,              NULL},
1070     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,              NULL},
1071     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,              NULL},
1072     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,              NULL},
1073     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,              NULL},
1074     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,              NULL},
1075     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,              NULL},
1076     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,              NULL},
1077     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,              NULL},
1078     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,              NULL},
1079     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,              NULL},
1080     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,              NULL},
1081     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,              NULL},
1082     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,              NULL},
1083     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,              NULL},
1084     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,              NULL},
1085     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,              NULL},
1086     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,              NULL},
1087     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,              NULL},
1088     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,              NULL},
1089     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,              NULL},
1090     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,              NULL},
1091     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,              NULL},
1092     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,              NULL},
1093     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,              NULL},
1094     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,              NULL},
1095     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,              NULL},
1096     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,              NULL},
1097     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,              NULL}
1098     };
1099 
1100     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
1101     static ConstString gpr_reg_set ("General Purpose Registers");
1102     static ConstString sfp_reg_set ("Software Floating Point Registers");
1103     static ConstString vfp_reg_set ("Floating Point Registers");
1104     size_t i;
1105     if (from_scratch)
1106     {
1107         // Calculate the offsets of the registers
1108         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
1109         // "primordial" registers is important.  This enables us to calculate the offset of the composite
1110         // register by using the offset of its first primordial register.  For example, to calculate the
1111         // offset of q0, use s0's offset.
1112         if (g_register_infos[2].byte_offset == 0)
1113         {
1114             uint32_t byte_offset = 0;
1115             for (i=0; i<num_registers; ++i)
1116             {
1117                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
1118                 // byte_offset for the next register.  Otherwise, we have a composite register whose
1119                 // offset can be calculated by consulting the offset of its first primordial register.
1120                 if (!g_register_infos[i].value_regs)
1121                 {
1122                     g_register_infos[i].byte_offset = byte_offset;
1123                     byte_offset += g_register_infos[i].byte_size;
1124                 }
1125                 else
1126                 {
1127                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
1128                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
1129                 }
1130             }
1131         }
1132         for (i=0; i<num_registers; ++i)
1133         {
1134             ConstString name;
1135             ConstString alt_name;
1136             if (g_register_infos[i].name && g_register_infos[i].name[0])
1137                 name.SetCString(g_register_infos[i].name);
1138             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1139                 alt_name.SetCString(g_register_infos[i].alt_name);
1140 
1141             if (i <= 15 || i == 25)
1142                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
1143             else if (i <= 24)
1144                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
1145             else
1146                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
1147         }
1148     }
1149     else
1150     {
1151         // Add composite registers to our primordial registers, then.
1152         const size_t num_composites = llvm::array_lengthof(g_composites);
1153         const size_t num_dynamic_regs = GetNumRegisters();
1154         const size_t num_common_regs = num_registers - num_composites;
1155         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1156 
1157         // First we need to validate that all registers that we already have match the non composite regs.
1158         // If so, then we can add the registers, else we need to bail
1159         bool match = true;
1160         if (num_dynamic_regs == num_common_regs)
1161         {
1162             for (i=0; match && i<num_dynamic_regs; ++i)
1163             {
1164                 // Make sure all register names match
1165                 if (m_regs[i].name && g_register_infos[i].name)
1166                 {
1167                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
1168                     {
1169                         match = false;
1170                         break;
1171                     }
1172                 }
1173 
1174                 // Make sure all register byte sizes match
1175                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
1176                 {
1177                     match = false;
1178                     break;
1179                 }
1180             }
1181         }
1182         else
1183         {
1184             // Wrong number of registers.
1185             match = false;
1186         }
1187         // If "match" is true, then we can add extra registers.
1188         if (match)
1189         {
1190             for (i=0; i<num_composites; ++i)
1191             {
1192                 ConstString name;
1193                 ConstString alt_name;
1194                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
1195                 const char *reg_name = g_register_infos[first_primordial_reg].name;
1196                 if (reg_name && reg_name[0])
1197                 {
1198                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
1199                     {
1200                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1201                         // Find a matching primordial register info entry.
1202                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
1203                         {
1204                             // The name matches the existing primordial entry.
1205                             // Find and assign the offset, and then add this composite register entry.
1206                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1207                             name.SetCString(g_comp_register_infos[i].name);
1208                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
1209                         }
1210                     }
1211                 }
1212             }
1213         }
1214     }
1215 }
1216