1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #include "lldb/Target/ExecutionContext.h" 21 #include "lldb/Target/Target.h" 22 #include "lldb/Utility/Utils.h" 23 // Project includes 24 #include "Utility/StringExtractorGDBRemote.h" 25 #include "ProcessGDBRemote.h" 26 #include "ProcessGDBRemoteLog.h" 27 #include "ThreadGDBRemote.h" 28 #include "Utility/ARM_DWARF_Registers.h" 29 #include "Utility/ARM_ehframe_Registers.h" 30 31 using namespace lldb; 32 using namespace lldb_private; 33 using namespace lldb_private::process_gdb_remote; 34 35 //---------------------------------------------------------------------- 36 // GDBRemoteRegisterContext constructor 37 //---------------------------------------------------------------------- 38 GDBRemoteRegisterContext::GDBRemoteRegisterContext 39 ( 40 ThreadGDBRemote &thread, 41 uint32_t concrete_frame_idx, 42 GDBRemoteDynamicRegisterInfo ®_info, 43 bool read_all_at_once 44 ) : 45 RegisterContext (thread, concrete_frame_idx), 46 m_reg_info (reg_info), 47 m_reg_valid (), 48 m_reg_data (), 49 m_read_all_at_once (read_all_at_once) 50 { 51 // Resize our vector of bools to contain one bool for every register. 52 // We will use these boolean values to know when a register value 53 // is valid in m_reg_data. 54 m_reg_valid.resize (reg_info.GetNumRegisters()); 55 56 // Make a heap based buffer that is big enough to store all registers 57 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 58 m_reg_data.SetData (reg_data_sp); 59 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 60 } 61 62 //---------------------------------------------------------------------- 63 // Destructor 64 //---------------------------------------------------------------------- 65 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 66 { 67 } 68 69 void 70 GDBRemoteRegisterContext::InvalidateAllRegisters () 71 { 72 SetAllRegisterValid (false); 73 } 74 75 void 76 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 77 { 78 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 79 for (pos = m_reg_valid.begin(); pos != end; ++pos) 80 *pos = b; 81 } 82 83 size_t 84 GDBRemoteRegisterContext::GetRegisterCount () 85 { 86 return m_reg_info.GetNumRegisters (); 87 } 88 89 const RegisterInfo * 90 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) 91 { 92 return m_reg_info.GetRegisterInfoAtIndex (reg); 93 } 94 95 size_t 96 GDBRemoteRegisterContext::GetRegisterSetCount () 97 { 98 return m_reg_info.GetNumRegisterSets (); 99 } 100 101 102 103 const RegisterSet * 104 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) 105 { 106 return m_reg_info.GetRegisterSet (reg_set); 107 } 108 109 110 111 bool 112 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 113 { 114 // Read the register 115 if (ReadRegisterBytes (reg_info, m_reg_data)) 116 { 117 const bool partial_data_ok = false; 118 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 119 return error.Success(); 120 } 121 return false; 122 } 123 124 bool 125 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 126 { 127 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 128 if (reg_info == NULL) 129 return false; 130 131 // Invalidate if needed 132 InvalidateIfNeeded(false); 133 134 const uint32_t reg_byte_size = reg_info->byte_size; 135 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 136 bool success = bytes_copied == reg_byte_size; 137 if (success) 138 { 139 SetRegisterIsValid(reg, true); 140 } 141 else if (bytes_copied > 0) 142 { 143 // Only set register is valid to false if we copied some bytes, else 144 // leave it as it was. 145 SetRegisterIsValid(reg, false); 146 } 147 return success; 148 } 149 150 bool 151 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, uint64_t new_reg_val) 152 { 153 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 154 if (reg_info == NULL) 155 return false; 156 157 // Early in process startup, we can get a thread that has an invalid byte order 158 // because the process hasn't been completely set up yet (see the ctor where the 159 // byte order is setfrom the process). If that's the case, we can't set the 160 // value here. 161 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) 162 { 163 return false; 164 } 165 166 // Invalidate if needed 167 InvalidateIfNeeded (false); 168 169 DataBufferSP buffer_sp (new DataBufferHeap (&new_reg_val, sizeof (new_reg_val))); 170 DataExtractor data (buffer_sp, endian::InlHostByteOrder(), sizeof (void*)); 171 172 // If our register context and our register info disagree, which should never happen, don't 173 // overwrite past the end of the buffer. 174 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 175 return false; 176 177 // Grab a pointer to where we are going to put this register 178 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 179 180 if (dst == NULL) 181 return false; 182 183 184 if (data.CopyByteOrderedData (0, // src offset 185 reg_info->byte_size, // src length 186 dst, // dst 187 reg_info->byte_size, // dst length 188 m_reg_data.GetByteOrder())) // dst byte order 189 { 190 SetRegisterIsValid (reg, true); 191 return true; 192 } 193 return false; 194 } 195 196 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 197 bool 198 GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info, 199 GDBRemoteCommunicationClient &gdb_comm) 200 { 201 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; 202 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; 203 StringExtractorGDBRemote response; 204 if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg, response)) 205 return PrivateSetRegisterValue (lldb_reg, response); 206 return false; 207 } 208 209 bool 210 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 211 { 212 ExecutionContext exe_ctx (CalculateThread()); 213 214 Process *process = exe_ctx.GetProcessPtr(); 215 Thread *thread = exe_ctx.GetThreadPtr(); 216 if (process == NULL || thread == NULL) 217 return false; 218 219 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 220 221 InvalidateIfNeeded(false); 222 223 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 224 225 if (!GetRegisterIsValid(reg)) 226 { 227 if (m_read_all_at_once) 228 { 229 StringExtractorGDBRemote response; 230 if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response)) 231 return false; 232 if (response.IsNormalResponse()) 233 if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())), 234 m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 235 SetAllRegisterValid (true); 236 } 237 else if (reg_info->value_regs) 238 { 239 // Process this composite register request by delegating to the constituent 240 // primordial registers. 241 242 // Index of the primordial register. 243 bool success = true; 244 for (uint32_t idx = 0; success; ++idx) 245 { 246 const uint32_t prim_reg = reg_info->value_regs[idx]; 247 if (prim_reg == LLDB_INVALID_REGNUM) 248 break; 249 // We have a valid primordial register as our constituent. 250 // Grab the corresponding register info. 251 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 252 if (prim_reg_info == NULL) 253 success = false; 254 else 255 { 256 // Read the containing register if it hasn't already been read 257 if (!GetRegisterIsValid(prim_reg)) 258 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 259 } 260 } 261 262 if (success) 263 { 264 // If we reach this point, all primordial register requests have succeeded. 265 // Validate this composite register. 266 SetRegisterIsValid (reg_info, true); 267 } 268 } 269 else 270 { 271 // Get each register individually 272 GetPrimordialRegister(reg_info, gdb_comm); 273 } 274 275 // Make sure we got a valid register value after reading it 276 if (!GetRegisterIsValid(reg)) 277 return false; 278 } 279 280 if (&data != &m_reg_data) 281 { 282 #if defined (LLDB_CONFIGURATION_DEBUG) 283 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 284 #endif 285 // If our register context and our register info disagree, which should never happen, don't 286 // read past the end of the buffer. 287 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 288 return false; 289 290 // If we aren't extracting into our own buffer (which 291 // only happens when this function is called from 292 // ReadRegisterValue(uint32_t, Scalar&)) then 293 // we transfer bytes from our buffer into the data 294 // buffer that was passed in 295 296 data.SetByteOrder (m_reg_data.GetByteOrder()); 297 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 298 } 299 return true; 300 } 301 302 bool 303 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 304 const RegisterValue &value) 305 { 306 DataExtractor data; 307 if (value.GetData (data)) 308 return WriteRegisterBytes (reg_info, data, 0); 309 return false; 310 } 311 312 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 313 bool 314 GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info, 315 GDBRemoteCommunicationClient &gdb_comm) 316 { 317 StreamString packet; 318 StringExtractorGDBRemote response; 319 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 320 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); 321 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 322 reg_info->byte_size, 323 endian::InlHostByteOrder(), 324 endian::InlHostByteOrder()); 325 326 if (gdb_comm.GetThreadSuffixSupported()) 327 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 328 329 // Invalidate just this register 330 SetRegisterIsValid(reg, false); 331 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 332 packet.GetString().size(), 333 response, 334 false) == GDBRemoteCommunication::PacketResult::Success) 335 { 336 if (response.IsOKResponse()) 337 return true; 338 } 339 return false; 340 } 341 342 void 343 GDBRemoteRegisterContext::SyncThreadState(Process *process) 344 { 345 // NB. We assume our caller has locked the sequence mutex. 346 347 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); 348 if (!gdb_comm.GetSyncThreadStateSupported()) 349 return; 350 351 StreamString packet; 352 StringExtractorGDBRemote response; 353 packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 354 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 355 packet.GetString().size(), 356 response, 357 false) == GDBRemoteCommunication::PacketResult::Success) 358 { 359 if (response.IsOKResponse()) 360 InvalidateAllRegisters(); 361 } 362 } 363 364 bool 365 GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 366 { 367 ExecutionContext exe_ctx (CalculateThread()); 368 369 Process *process = exe_ctx.GetProcessPtr(); 370 Thread *thread = exe_ctx.GetThreadPtr(); 371 if (process == NULL || thread == NULL) 372 return false; 373 374 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 375 // FIXME: This check isn't right because IsRunning checks the Public state, but this 376 // is work you need to do - for instance in ShouldStop & friends - before the public 377 // state has been changed. 378 // if (gdb_comm.IsRunning()) 379 // return false; 380 381 382 #if defined (LLDB_CONFIGURATION_DEBUG) 383 assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); 384 #endif 385 386 // If our register context and our register info disagree, which should never happen, don't 387 // overwrite past the end of the buffer. 388 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 389 return false; 390 391 // Grab a pointer to where we are going to put this register 392 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 393 394 if (dst == NULL) 395 return false; 396 397 398 if (data.CopyByteOrderedData (data_offset, // src offset 399 reg_info->byte_size, // src length 400 dst, // dst 401 reg_info->byte_size, // dst length 402 m_reg_data.GetByteOrder())) // dst byte order 403 { 404 Mutex::Locker locker; 405 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) 406 { 407 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 408 ProcessSP process_sp (m_thread.GetProcess()); 409 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 410 { 411 StreamString packet; 412 StringExtractorGDBRemote response; 413 414 if (m_read_all_at_once) 415 { 416 // Set all registers in one packet 417 packet.PutChar ('G'); 418 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 419 m_reg_data.GetByteSize(), 420 endian::InlHostByteOrder(), 421 endian::InlHostByteOrder()); 422 423 if (thread_suffix_supported) 424 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 425 426 // Invalidate all register values 427 InvalidateIfNeeded (true); 428 429 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 430 packet.GetString().size(), 431 response, 432 false) == GDBRemoteCommunication::PacketResult::Success) 433 { 434 SetAllRegisterValid (false); 435 if (response.IsOKResponse()) 436 { 437 return true; 438 } 439 } 440 } 441 else 442 { 443 bool success = true; 444 445 if (reg_info->value_regs) 446 { 447 // This register is part of another register. In this case we read the actual 448 // register data for any "value_regs", and once all that data is read, we will 449 // have enough data in our register context bytes for the value of this register 450 451 // Invalidate this composite register first. 452 453 for (uint32_t idx = 0; success; ++idx) 454 { 455 const uint32_t reg = reg_info->value_regs[idx]; 456 if (reg == LLDB_INVALID_REGNUM) 457 break; 458 // We have a valid primordial register as our constituent. 459 // Grab the corresponding register info. 460 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 461 if (value_reg_info == NULL) 462 success = false; 463 else 464 success = SetPrimordialRegister(value_reg_info, gdb_comm); 465 } 466 } 467 else 468 { 469 // This is an actual register, write it 470 success = SetPrimordialRegister(reg_info, gdb_comm); 471 } 472 473 // Check if writing this register will invalidate any other register values? 474 // If so, invalidate them 475 if (reg_info->invalidate_regs) 476 { 477 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 478 reg != LLDB_INVALID_REGNUM; 479 reg = reg_info->invalidate_regs[++idx]) 480 { 481 SetRegisterIsValid(reg, false); 482 } 483 } 484 485 return success; 486 } 487 } 488 } 489 else 490 { 491 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 492 if (log) 493 { 494 if (log->GetVerbose()) 495 { 496 StreamString strm; 497 gdb_comm.DumpHistory(strm); 498 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 499 } 500 else 501 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 502 } 503 } 504 } 505 return false; 506 } 507 508 bool 509 GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint ®_checkpoint) 510 { 511 ExecutionContext exe_ctx (CalculateThread()); 512 513 Process *process = exe_ctx.GetProcessPtr(); 514 Thread *thread = exe_ctx.GetThreadPtr(); 515 if (process == NULL || thread == NULL) 516 return false; 517 518 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 519 520 uint32_t save_id = 0; 521 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) 522 { 523 reg_checkpoint.SetID(save_id); 524 reg_checkpoint.GetData().reset(); 525 return true; 526 } 527 else 528 { 529 reg_checkpoint.SetID(0); // Invalid save ID is zero 530 return ReadAllRegisterValues(reg_checkpoint.GetData()); 531 } 532 } 533 534 bool 535 GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint ®_checkpoint) 536 { 537 uint32_t save_id = reg_checkpoint.GetID(); 538 if (save_id != 0) 539 { 540 ExecutionContext exe_ctx (CalculateThread()); 541 542 Process *process = exe_ctx.GetProcessPtr(); 543 Thread *thread = exe_ctx.GetThreadPtr(); 544 if (process == NULL || thread == NULL) 545 return false; 546 547 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 548 549 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 550 } 551 else 552 { 553 return WriteAllRegisterValues(reg_checkpoint.GetData()); 554 } 555 } 556 557 bool 558 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 559 { 560 ExecutionContext exe_ctx (CalculateThread()); 561 562 Process *process = exe_ctx.GetProcessPtr(); 563 Thread *thread = exe_ctx.GetThreadPtr(); 564 if (process == NULL || thread == NULL) 565 return false; 566 567 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 568 569 StringExtractorGDBRemote response; 570 571 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 572 573 Mutex::Locker locker; 574 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) 575 { 576 SyncThreadState(process); 577 578 char packet[32]; 579 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 580 ProcessSP process_sp (m_thread.GetProcess()); 581 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 582 { 583 int packet_len = 0; 584 if (thread_suffix_supported) 585 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 586 else 587 packet_len = ::snprintf (packet, sizeof(packet), "g"); 588 assert (packet_len < ((int)sizeof(packet) - 1)); 589 590 if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 591 { 592 int packet_len = 0; 593 if (thread_suffix_supported) 594 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 595 else 596 packet_len = ::snprintf (packet, sizeof(packet), "g"); 597 assert (packet_len < ((int)sizeof(packet) - 1)); 598 599 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) 600 { 601 if (response.IsErrorResponse()) 602 return false; 603 604 std::string &response_str = response.GetStringRef(); 605 if (isxdigit(response_str[0])) 606 { 607 response_str.insert(0, 1, 'G'); 608 if (thread_suffix_supported) 609 { 610 char thread_id_cstr[64]; 611 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 612 response_str.append (thread_id_cstr); 613 } 614 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 615 return true; 616 } 617 } 618 } 619 else 620 { 621 // For the use_g_packet == false case, we're going to read each register 622 // individually and store them as binary data in a buffer instead of as ascii 623 // characters. 624 const RegisterInfo *reg_info; 625 626 // data_sp will take ownership of this DataBufferHeap pointer soon. 627 DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0)); 628 629 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 630 { 631 if (reg_info->value_regs) // skip registers that are slices of real registers 632 continue; 633 ReadRegisterBytes (reg_info, m_reg_data); 634 // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer 635 } 636 memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 637 638 data_sp = reg_ctx; 639 return true; 640 } 641 } 642 } 643 else 644 { 645 646 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 647 if (log) 648 { 649 if (log->GetVerbose()) 650 { 651 StreamString strm; 652 gdb_comm.DumpHistory(strm); 653 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 654 } 655 else 656 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 657 } 658 } 659 660 data_sp.reset(); 661 return false; 662 } 663 664 bool 665 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 666 { 667 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 668 return false; 669 670 ExecutionContext exe_ctx (CalculateThread()); 671 672 Process *process = exe_ctx.GetProcessPtr(); 673 Thread *thread = exe_ctx.GetThreadPtr(); 674 if (process == NULL || thread == NULL) 675 return false; 676 677 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 678 679 const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; 680 681 StringExtractorGDBRemote response; 682 Mutex::Locker locker; 683 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) 684 { 685 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 686 ProcessSP process_sp (m_thread.GetProcess()); 687 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 688 { 689 // The data_sp contains the entire G response packet including the 690 // G, and if the thread suffix is supported, it has the thread suffix 691 // as well. 692 const char *G_packet = (const char *)data_sp->GetBytes(); 693 size_t G_packet_len = data_sp->GetByteSize(); 694 if (use_g_packet 695 && gdb_comm.SendPacketAndWaitForResponse (G_packet, 696 G_packet_len, 697 response, 698 false) == GDBRemoteCommunication::PacketResult::Success) 699 { 700 // The data_sp contains the entire G response packet including the 701 // G, and if the thread suffix is supported, it has the thread suffix 702 // as well. 703 const char *G_packet = (const char *)data_sp->GetBytes(); 704 size_t G_packet_len = data_sp->GetByteSize(); 705 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 706 G_packet_len, 707 response, 708 false) == GDBRemoteCommunication::PacketResult::Success) 709 { 710 if (response.IsOKResponse()) 711 return true; 712 else if (response.IsErrorResponse()) 713 { 714 uint32_t num_restored = 0; 715 // We need to manually go through all of the registers and 716 // restore them manually 717 718 response.GetStringRef().assign (G_packet, G_packet_len); 719 response.SetFilePos(1); // Skip the leading 'G' 720 721 // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier. 722 // This means buffer will be a little more than 2x larger than necessary but we resize 723 // it down once we've extracted all hex ascii chars from the packet. 724 DataBufferHeap buffer (G_packet_len, 0); 725 726 const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(), 727 buffer.GetByteSize(), 728 '\xcc'); 729 730 DataExtractor restore_data (buffer.GetBytes(), 731 buffer.GetByteSize(), 732 m_reg_data.GetByteOrder(), 733 m_reg_data.GetAddressByteSize()); 734 735 if (bytes_extracted < restore_data.GetByteSize()) 736 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 737 738 const RegisterInfo *reg_info; 739 740 // The g packet contents may either include the slice registers (registers defined in 741 // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers 742 // should NOT be in the g packet, but some implementations may incorrectly include them. 743 // 744 // If the slice registers are included in the packet, we must step over the slice registers 745 // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect. 746 // If the slice registers are not included, then using the byte_offset values into the 747 // data buffer is the best way to find individual register values. 748 749 uint64_t size_including_slice_registers = 0; 750 uint64_t size_not_including_slice_registers = 0; 751 uint64_t size_by_highest_offset = 0; 752 753 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx) 754 { 755 size_including_slice_registers += reg_info->byte_size; 756 if (reg_info->value_regs == NULL) 757 size_not_including_slice_registers += reg_info->byte_size; 758 if (reg_info->byte_offset >= size_by_highest_offset) 759 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 760 } 761 762 bool use_byte_offset_into_buffer; 763 if (size_by_highest_offset == restore_data.GetByteSize()) 764 { 765 // The size of the packet agrees with the highest offset: + size in the register file 766 use_byte_offset_into_buffer = true; 767 } 768 else if (size_not_including_slice_registers == restore_data.GetByteSize()) 769 { 770 // The size of the packet is the same as concatenating all of the registers sequentially, 771 // skipping the slice registers 772 use_byte_offset_into_buffer = true; 773 } 774 else if (size_including_slice_registers == restore_data.GetByteSize()) 775 { 776 // The slice registers are present in the packet (when they shouldn't be). 777 // Don't try to use the RegisterInfo byte_offset into the restore_data, it will 778 // point to the wrong place. 779 use_byte_offset_into_buffer = false; 780 } 781 else { 782 // None of our expected sizes match the actual g packet data we're looking at. 783 // The most conservative approach here is to use the running total byte offset. 784 use_byte_offset_into_buffer = false; 785 } 786 787 // In case our register definitions don't include the correct offsets, 788 // keep track of the size of each reg & compute offset based on that. 789 uint32_t running_byte_offset = 0; 790 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size) 791 { 792 // Skip composite aka slice registers (e.g. eax is a slice of rax). 793 if (reg_info->value_regs) 794 continue; 795 796 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 797 798 uint32_t register_offset; 799 if (use_byte_offset_into_buffer) 800 { 801 register_offset = reg_info->byte_offset; 802 } 803 else 804 { 805 register_offset = running_byte_offset; 806 } 807 808 // Only write down the registers that need to be written 809 // if we are going to be doing registers individually. 810 bool write_reg = true; 811 const uint32_t reg_byte_size = reg_info->byte_size; 812 813 const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size); 814 if (restore_src) 815 { 816 StreamString packet; 817 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); 818 packet.PutBytesAsRawHex8 (restore_src, 819 reg_byte_size, 820 endian::InlHostByteOrder(), 821 endian::InlHostByteOrder()); 822 823 if (thread_suffix_supported) 824 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 825 826 SetRegisterIsValid(reg, false); 827 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 828 packet.GetString().size(), 829 response, 830 false) == GDBRemoteCommunication::PacketResult::Success) 831 { 832 const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size); 833 if (current_src) 834 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 835 } 836 837 if (write_reg) 838 { 839 StreamString packet; 840 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); 841 packet.PutBytesAsRawHex8 (restore_src, 842 reg_byte_size, 843 endian::InlHostByteOrder(), 844 endian::InlHostByteOrder()); 845 846 if (thread_suffix_supported) 847 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 848 849 SetRegisterIsValid(reg, false); 850 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 851 packet.GetString().size(), 852 response, 853 false) == GDBRemoteCommunication::PacketResult::Success) 854 { 855 if (response.IsOKResponse()) 856 ++num_restored; 857 } 858 } 859 } 860 } 861 return num_restored > 0; 862 } 863 } 864 } 865 else 866 { 867 // For the use_g_packet == false case, we're going to write each register 868 // individually. The data buffer is binary data in this case, instead of 869 // ascii characters. 870 871 bool arm64_debugserver = false; 872 if (m_thread.GetProcess().get()) 873 { 874 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 875 if (arch.IsValid() 876 && arch.GetMachine() == llvm::Triple::aarch64 877 && arch.GetTriple().getVendor() == llvm::Triple::Apple 878 && arch.GetTriple().getOS() == llvm::Triple::IOS) 879 { 880 arm64_debugserver = true; 881 } 882 } 883 uint32_t num_restored = 0; 884 const RegisterInfo *reg_info; 885 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) 886 { 887 if (reg_info->value_regs) // skip registers that are slices of real registers 888 continue; 889 // Skip the fpsr and fpcr floating point status/control register writing to 890 // work around a bug in an older version of debugserver that would lead to 891 // register context corruption when writing fpsr/fpcr. 892 if (arm64_debugserver && 893 (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0)) 894 { 895 continue; 896 } 897 StreamString packet; 898 packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); 899 packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); 900 if (thread_suffix_supported) 901 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 902 903 SetRegisterIsValid(reg_info, false); 904 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 905 packet.GetString().size(), 906 response, 907 false) == GDBRemoteCommunication::PacketResult::Success) 908 { 909 if (response.IsOKResponse()) 910 ++num_restored; 911 } 912 } 913 return num_restored > 0; 914 } 915 } 916 } 917 else 918 { 919 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 920 if (log) 921 { 922 if (log->GetVerbose()) 923 { 924 StreamString strm; 925 gdb_comm.DumpHistory(strm); 926 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 927 } 928 else 929 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 930 } 931 } 932 return false; 933 } 934 935 936 uint32_t 937 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) 938 { 939 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 940 } 941 942 943 void 944 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) 945 { 946 // For Advanced SIMD and VFP register mapping. 947 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 948 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 949 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 950 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 951 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 952 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 953 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 954 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 955 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 956 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 957 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 958 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 959 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 960 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 961 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 962 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 963 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 964 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 965 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 966 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 967 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 968 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 969 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 970 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 971 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 972 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 973 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 974 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 975 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 976 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 977 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 978 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 979 980 // This is our array of composite registers, with each element coming from the above register mappings. 981 static uint32_t *g_composites[] = { 982 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, 983 g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, 984 g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 985 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs 986 }; 987 988 static RegisterInfo g_register_infos[] = { 989 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS 990 // ====== ====== === === ============= ============ =================== =================== ====================== ============= ==== ========== =============== 991 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 992 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 993 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 994 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 995 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 996 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 997 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 998 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 999 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 1000 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 1001 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 1002 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 1003 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 1004 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 1005 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 1006 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 1007 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 1008 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 1009 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 1010 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 1011 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 1012 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 1013 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 1014 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 1015 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 1016 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 1017 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 1018 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 1019 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 1020 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 1021 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 1022 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 1023 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 1024 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 1025 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 1026 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 1027 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 1028 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 1029 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 1030 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 1031 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 1032 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 1033 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 1034 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 1035 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 1036 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 1037 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 1038 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 1039 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 1040 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 1041 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 1042 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 1043 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 1044 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 1045 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 1046 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 1047 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 1048 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 1049 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 1050 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 1051 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 1052 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 1053 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 1054 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 1055 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 1056 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 1057 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 1058 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 1059 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 1060 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 1061 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 1062 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 1063 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 1064 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 1065 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 1066 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 1067 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 1068 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 1069 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 1070 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 1071 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 1072 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 1073 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 1074 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 1075 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 1076 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 1077 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 1078 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 1079 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 1080 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 1081 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 1082 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 1083 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 1084 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 1085 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 1086 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 1087 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 1088 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 1089 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 1090 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 1091 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 1092 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 1093 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 1094 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 1095 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 1096 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 1097 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 1098 }; 1099 1100 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 1101 static ConstString gpr_reg_set ("General Purpose Registers"); 1102 static ConstString sfp_reg_set ("Software Floating Point Registers"); 1103 static ConstString vfp_reg_set ("Floating Point Registers"); 1104 size_t i; 1105 if (from_scratch) 1106 { 1107 // Calculate the offsets of the registers 1108 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 1109 // "primordial" registers is important. This enables us to calculate the offset of the composite 1110 // register by using the offset of its first primordial register. For example, to calculate the 1111 // offset of q0, use s0's offset. 1112 if (g_register_infos[2].byte_offset == 0) 1113 { 1114 uint32_t byte_offset = 0; 1115 for (i=0; i<num_registers; ++i) 1116 { 1117 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 1118 // byte_offset for the next register. Otherwise, we have a composite register whose 1119 // offset can be calculated by consulting the offset of its first primordial register. 1120 if (!g_register_infos[i].value_regs) 1121 { 1122 g_register_infos[i].byte_offset = byte_offset; 1123 byte_offset += g_register_infos[i].byte_size; 1124 } 1125 else 1126 { 1127 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 1128 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 1129 } 1130 } 1131 } 1132 for (i=0; i<num_registers; ++i) 1133 { 1134 ConstString name; 1135 ConstString alt_name; 1136 if (g_register_infos[i].name && g_register_infos[i].name[0]) 1137 name.SetCString(g_register_infos[i].name); 1138 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 1139 alt_name.SetCString(g_register_infos[i].alt_name); 1140 1141 if (i <= 15 || i == 25) 1142 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 1143 else if (i <= 24) 1144 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 1145 else 1146 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 1147 } 1148 } 1149 else 1150 { 1151 // Add composite registers to our primordial registers, then. 1152 const size_t num_composites = llvm::array_lengthof(g_composites); 1153 const size_t num_dynamic_regs = GetNumRegisters(); 1154 const size_t num_common_regs = num_registers - num_composites; 1155 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 1156 1157 // First we need to validate that all registers that we already have match the non composite regs. 1158 // If so, then we can add the registers, else we need to bail 1159 bool match = true; 1160 if (num_dynamic_regs == num_common_regs) 1161 { 1162 for (i=0; match && i<num_dynamic_regs; ++i) 1163 { 1164 // Make sure all register names match 1165 if (m_regs[i].name && g_register_infos[i].name) 1166 { 1167 if (strcmp(m_regs[i].name, g_register_infos[i].name)) 1168 { 1169 match = false; 1170 break; 1171 } 1172 } 1173 1174 // Make sure all register byte sizes match 1175 if (m_regs[i].byte_size != g_register_infos[i].byte_size) 1176 { 1177 match = false; 1178 break; 1179 } 1180 } 1181 } 1182 else 1183 { 1184 // Wrong number of registers. 1185 match = false; 1186 } 1187 // If "match" is true, then we can add extra registers. 1188 if (match) 1189 { 1190 for (i=0; i<num_composites; ++i) 1191 { 1192 ConstString name; 1193 ConstString alt_name; 1194 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; 1195 const char *reg_name = g_register_infos[first_primordial_reg].name; 1196 if (reg_name && reg_name[0]) 1197 { 1198 for (uint32_t j = 0; j < num_dynamic_regs; ++j) 1199 { 1200 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 1201 // Find a matching primordial register info entry. 1202 if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) 1203 { 1204 // The name matches the existing primordial entry. 1205 // Find and assign the offset, and then add this composite register entry. 1206 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 1207 name.SetCString(g_comp_register_infos[i].name); 1208 AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); 1209 } 1210 } 1211 } 1212 } 1213 } 1214 } 1215 } 1216