1 //===-- ValueObjectVariable.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObjectVariable.h" 11 12 #include "lldb/Core/Address.h" 13 #include "lldb/Core/AddressRange.h" 14 #include "lldb/Core/Module.h" 15 #include "lldb/Core/Value.h" 16 #include "lldb/Expression/DWARFExpression.h" 17 #include "lldb/Symbol/Declaration.h" 18 #include "lldb/Symbol/Function.h" 19 #include "lldb/Symbol/ObjectFile.h" 20 #include "lldb/Symbol/SymbolContext.h" 21 #include "lldb/Symbol/SymbolContextScope.h" 22 #include "lldb/Symbol/Type.h" 23 #include "lldb/Symbol/Variable.h" 24 #include "lldb/Target/ExecutionContext.h" 25 #include "lldb/Target/Process.h" 26 #include "lldb/Target/RegisterContext.h" 27 #include "lldb/Target/Target.h" 28 #include "lldb/Utility/DataExtractor.h" 29 #include "lldb/Utility/RegisterValue.h" 30 #include "lldb/Utility/Scalar.h" 31 #include "lldb/Utility/Status.h" 32 #include "lldb/lldb-private-enumerations.h" 33 #include "lldb/lldb-types.h" 34 35 #include "llvm/ADT/StringRef.h" 36 37 #include <assert.h> 38 #include <memory> 39 40 namespace lldb_private { 41 class ExecutionContextScope; 42 } 43 namespace lldb_private { 44 class StackFrame; 45 } 46 namespace lldb_private { 47 struct RegisterInfo; 48 } 49 using namespace lldb_private; 50 51 lldb::ValueObjectSP 52 ValueObjectVariable::Create(ExecutionContextScope *exe_scope, 53 const lldb::VariableSP &var_sp) { 54 return (new ValueObjectVariable(exe_scope, var_sp))->GetSP(); 55 } 56 57 ValueObjectVariable::ValueObjectVariable(ExecutionContextScope *exe_scope, 58 const lldb::VariableSP &var_sp) 59 : ValueObject(exe_scope), m_variable_sp(var_sp) { 60 // Do not attempt to construct one of these objects with no variable! 61 assert(m_variable_sp.get() != NULL); 62 m_name = var_sp->GetName(); 63 } 64 65 ValueObjectVariable::~ValueObjectVariable() {} 66 67 CompilerType ValueObjectVariable::GetCompilerTypeImpl() { 68 Type *var_type = m_variable_sp->GetType(); 69 if (var_type) 70 return var_type->GetForwardCompilerType(); 71 return CompilerType(); 72 } 73 74 ConstString ValueObjectVariable::GetTypeName() { 75 Type *var_type = m_variable_sp->GetType(); 76 if (var_type) 77 return var_type->GetName(); 78 return ConstString(); 79 } 80 81 ConstString ValueObjectVariable::GetDisplayTypeName() { 82 Type *var_type = m_variable_sp->GetType(); 83 if (var_type) 84 return var_type->GetForwardCompilerType().GetDisplayTypeName(); 85 return ConstString(); 86 } 87 88 ConstString ValueObjectVariable::GetQualifiedTypeName() { 89 Type *var_type = m_variable_sp->GetType(); 90 if (var_type) 91 return var_type->GetQualifiedName(); 92 return ConstString(); 93 } 94 95 size_t ValueObjectVariable::CalculateNumChildren(uint32_t max) { 96 CompilerType type(GetCompilerType()); 97 98 if (!type.IsValid()) 99 return 0; 100 101 ExecutionContext exe_ctx(GetExecutionContextRef()); 102 const bool omit_empty_base_classes = true; 103 auto child_count = type.GetNumChildren(omit_empty_base_classes, &exe_ctx); 104 return child_count <= max ? child_count : max; 105 } 106 107 uint64_t ValueObjectVariable::GetByteSize() { 108 ExecutionContext exe_ctx(GetExecutionContextRef()); 109 110 CompilerType type(GetCompilerType()); 111 112 if (!type.IsValid()) 113 return 0; 114 115 llvm::Optional<uint64_t> size = 116 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 117 return size ? *size : 0; 118 } 119 120 lldb::ValueType ValueObjectVariable::GetValueType() const { 121 if (m_variable_sp) 122 return m_variable_sp->GetScope(); 123 return lldb::eValueTypeInvalid; 124 } 125 126 bool ValueObjectVariable::UpdateValue() { 127 SetValueIsValid(false); 128 m_error.Clear(); 129 130 Variable *variable = m_variable_sp.get(); 131 DWARFExpression &expr = variable->LocationExpression(); 132 133 if (variable->GetLocationIsConstantValueData()) { 134 // expr doesn't contain DWARF bytes, it contains the constant variable 135 // value bytes themselves... 136 if (expr.GetExpressionData(m_data)) 137 m_value.SetContext(Value::eContextTypeVariable, variable); 138 else 139 m_error.SetErrorString("empty constant data"); 140 // constant bytes can't be edited - sorry 141 m_resolved_value.SetContext(Value::eContextTypeInvalid, NULL); 142 } else { 143 lldb::addr_t loclist_base_load_addr = LLDB_INVALID_ADDRESS; 144 ExecutionContext exe_ctx(GetExecutionContextRef()); 145 146 Target *target = exe_ctx.GetTargetPtr(); 147 if (target) { 148 m_data.SetByteOrder(target->GetArchitecture().GetByteOrder()); 149 m_data.SetAddressByteSize(target->GetArchitecture().GetAddressByteSize()); 150 } 151 152 if (expr.IsLocationList()) { 153 SymbolContext sc; 154 variable->CalculateSymbolContext(&sc); 155 if (sc.function) 156 loclist_base_load_addr = 157 sc.function->GetAddressRange().GetBaseAddress().GetLoadAddress( 158 target); 159 } 160 Value old_value(m_value); 161 if (expr.Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, nullptr, 162 nullptr, m_value, &m_error)) { 163 m_resolved_value = m_value; 164 m_value.SetContext(Value::eContextTypeVariable, variable); 165 166 CompilerType compiler_type = GetCompilerType(); 167 if (compiler_type.IsValid()) 168 m_value.SetCompilerType(compiler_type); 169 170 Value::ValueType value_type = m_value.GetValueType(); 171 172 Process *process = exe_ctx.GetProcessPtr(); 173 const bool process_is_alive = process && process->IsAlive(); 174 const uint32_t type_info = compiler_type.GetTypeInfo(); 175 const bool is_pointer_or_ref = 176 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 177 178 switch (value_type) { 179 case Value::eValueTypeFileAddress: 180 // If this type is a pointer, then its children will be considered load 181 // addresses if the pointer or reference is dereferenced, but only if 182 // the process is alive. 183 // 184 // There could be global variables like in the following code: 185 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 186 // Foo g_foo1; 187 // Foo g_foo2; 188 // LinkedListNode g_second_node = { &g_foo2, NULL }; 189 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 190 // 191 // When we aren't running, we should be able to look at these variables 192 // using the "target variable" command. Children of the "g_first_node" 193 // always will be of the same address type as the parent. But children 194 // of the "next" member of LinkedListNode will become load addresses if 195 // we have a live process, or remain what a file address if it what a 196 // file address. 197 if (process_is_alive && is_pointer_or_ref) 198 SetAddressTypeOfChildren(eAddressTypeLoad); 199 else 200 SetAddressTypeOfChildren(eAddressTypeFile); 201 break; 202 case Value::eValueTypeHostAddress: 203 // Same as above for load addresses, except children of pointer or refs 204 // are always load addresses. Host addresses are used to store freeze 205 // dried variables. If this type is a struct, the entire struct 206 // contents will be copied into the heap of the 207 // LLDB process, but we do not currently follow any pointers. 208 if (is_pointer_or_ref) 209 SetAddressTypeOfChildren(eAddressTypeLoad); 210 else 211 SetAddressTypeOfChildren(eAddressTypeHost); 212 break; 213 case Value::eValueTypeLoadAddress: 214 case Value::eValueTypeScalar: 215 case Value::eValueTypeVector: 216 SetAddressTypeOfChildren(eAddressTypeLoad); 217 break; 218 } 219 220 switch (value_type) { 221 case Value::eValueTypeVector: 222 // fall through 223 case Value::eValueTypeScalar: 224 // The variable value is in the Scalar value inside the m_value. We can 225 // point our m_data right to it. 226 m_error = 227 m_value.GetValueAsData(&exe_ctx, m_data, 0, GetModule().get()); 228 break; 229 230 case Value::eValueTypeFileAddress: 231 case Value::eValueTypeLoadAddress: 232 case Value::eValueTypeHostAddress: 233 // The DWARF expression result was an address in the inferior process. 234 // If this variable is an aggregate type, we just need the address as 235 // the main value as all child variable objects will rely upon this 236 // location and add an offset and then read their own values as needed. 237 // If this variable is a simple type, we read all data for it into 238 // m_data. Make sure this type has a value before we try and read it 239 240 // If we have a file address, convert it to a load address if we can. 241 if (value_type == Value::eValueTypeFileAddress && process_is_alive) 242 m_value.ConvertToLoadAddress(GetModule().get(), target); 243 244 if (!CanProvideValue()) { 245 // this value object represents an aggregate type whose children have 246 // values, but this object does not. So we say we are changed if our 247 // location has changed. 248 SetValueDidChange(value_type != old_value.GetValueType() || 249 m_value.GetScalar() != old_value.GetScalar()); 250 } else { 251 // Copy the Value and set the context to use our Variable so it can 252 // extract read its value into m_data appropriately 253 Value value(m_value); 254 value.SetContext(Value::eContextTypeVariable, variable); 255 m_error = 256 value.GetValueAsData(&exe_ctx, m_data, 0, GetModule().get()); 257 258 SetValueDidChange(value_type != old_value.GetValueType() || 259 m_value.GetScalar() != old_value.GetScalar()); 260 } 261 break; 262 } 263 264 SetValueIsValid(m_error.Success()); 265 } else { 266 // could not find location, won't allow editing 267 m_resolved_value.SetContext(Value::eContextTypeInvalid, NULL); 268 } 269 } 270 return m_error.Success(); 271 } 272 273 bool ValueObjectVariable::IsInScope() { 274 const ExecutionContextRef &exe_ctx_ref = GetExecutionContextRef(); 275 if (exe_ctx_ref.HasFrameRef()) { 276 ExecutionContext exe_ctx(exe_ctx_ref); 277 StackFrame *frame = exe_ctx.GetFramePtr(); 278 if (frame) { 279 return m_variable_sp->IsInScope(frame); 280 } else { 281 // This ValueObject had a frame at one time, but now we can't locate it, 282 // so return false since we probably aren't in scope. 283 return false; 284 } 285 } 286 // We have a variable that wasn't tied to a frame, which means it is a global 287 // and is always in scope. 288 return true; 289 } 290 291 lldb::ModuleSP ValueObjectVariable::GetModule() { 292 if (m_variable_sp) { 293 SymbolContextScope *sc_scope = m_variable_sp->GetSymbolContextScope(); 294 if (sc_scope) { 295 return sc_scope->CalculateSymbolContextModule(); 296 } 297 } 298 return lldb::ModuleSP(); 299 } 300 301 SymbolContextScope *ValueObjectVariable::GetSymbolContextScope() { 302 if (m_variable_sp) 303 return m_variable_sp->GetSymbolContextScope(); 304 return NULL; 305 } 306 307 bool ValueObjectVariable::GetDeclaration(Declaration &decl) { 308 if (m_variable_sp) { 309 decl = m_variable_sp->GetDeclaration(); 310 return true; 311 } 312 return false; 313 } 314 315 const char *ValueObjectVariable::GetLocationAsCString() { 316 if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) 317 return GetLocationAsCStringImpl(m_resolved_value, m_data); 318 else 319 return ValueObject::GetLocationAsCString(); 320 } 321 322 bool ValueObjectVariable::SetValueFromCString(const char *value_str, 323 Status &error) { 324 if (!UpdateValueIfNeeded()) { 325 error.SetErrorString("unable to update value before writing"); 326 return false; 327 } 328 329 if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) { 330 RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo(); 331 ExecutionContext exe_ctx(GetExecutionContextRef()); 332 RegisterContext *reg_ctx = exe_ctx.GetRegisterContext(); 333 RegisterValue reg_value; 334 if (!reg_info || !reg_ctx) { 335 error.SetErrorString("unable to retrieve register info"); 336 return false; 337 } 338 error = reg_value.SetValueFromString(reg_info, llvm::StringRef(value_str)); 339 if (error.Fail()) 340 return false; 341 if (reg_ctx->WriteRegister(reg_info, reg_value)) { 342 SetNeedsUpdate(); 343 return true; 344 } else { 345 error.SetErrorString("unable to write back to register"); 346 return false; 347 } 348 } else 349 return ValueObject::SetValueFromCString(value_str, error); 350 } 351 352 bool ValueObjectVariable::SetData(DataExtractor &data, Status &error) { 353 if (!UpdateValueIfNeeded()) { 354 error.SetErrorString("unable to update value before writing"); 355 return false; 356 } 357 358 if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) { 359 RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo(); 360 ExecutionContext exe_ctx(GetExecutionContextRef()); 361 RegisterContext *reg_ctx = exe_ctx.GetRegisterContext(); 362 RegisterValue reg_value; 363 if (!reg_info || !reg_ctx) { 364 error.SetErrorString("unable to retrieve register info"); 365 return false; 366 } 367 error = reg_value.SetValueFromData(reg_info, data, 0, true); 368 if (error.Fail()) 369 return false; 370 if (reg_ctx->WriteRegister(reg_info, reg_value)) { 371 SetNeedsUpdate(); 372 return true; 373 } else { 374 error.SetErrorString("unable to write back to register"); 375 return false; 376 } 377 } else 378 return ValueObject::SetData(data, error); 379 } 380