1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/Architecture.h" 70 #include "llvm/TextAPI/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 92 } 93 94 SetVector<InputFile *> macho::inputFiles; 95 std::unique_ptr<TarWriter> macho::tar; 96 int InputFile::idCount = 0; 97 98 static VersionTuple decodeVersion(uint32_t version) { 99 unsigned major = version >> 16; 100 unsigned minor = (version >> 8) & 0xffu; 101 unsigned subMinor = version & 0xffu; 102 return VersionTuple(major, minor, subMinor); 103 } 104 105 static Optional<PlatformInfo> getPlatformInfo(const InputFile *input) { 106 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 107 return None; 108 109 const char *hdr = input->mb.getBufferStart(); 110 111 PlatformInfo platformInfo; 112 if (const auto *cmd = 113 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 platformInfo.target.Platform = static_cast<PlatformKind>(cmd->platform); 115 platformInfo.minimum = decodeVersion(cmd->minos); 116 return platformInfo; 117 } 118 if (const auto *cmd = findCommand<version_min_command>( 119 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 120 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 121 switch (cmd->cmd) { 122 case LC_VERSION_MIN_MACOSX: 123 platformInfo.target.Platform = PlatformKind::macOS; 124 break; 125 case LC_VERSION_MIN_IPHONEOS: 126 platformInfo.target.Platform = PlatformKind::iOS; 127 break; 128 case LC_VERSION_MIN_TVOS: 129 platformInfo.target.Platform = PlatformKind::tvOS; 130 break; 131 case LC_VERSION_MIN_WATCHOS: 132 platformInfo.target.Platform = PlatformKind::watchOS; 133 break; 134 } 135 platformInfo.minimum = decodeVersion(cmd->version); 136 return platformInfo; 137 } 138 139 return None; 140 } 141 142 static PlatformKind removeSimulator(PlatformKind platform) { 143 // Mapping of platform to simulator and vice-versa. 144 static const std::map<PlatformKind, PlatformKind> platformMap = { 145 {PlatformKind::iOSSimulator, PlatformKind::iOS}, 146 {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, 147 {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; 148 149 auto iter = platformMap.find(platform); 150 if (iter == platformMap.end()) 151 return platform; 152 return iter->second; 153 } 154 155 static bool checkCompatibility(const InputFile *input) { 156 Optional<PlatformInfo> platformInfo = getPlatformInfo(input); 157 if (!platformInfo) 158 return true; 159 160 if (removeSimulator(config->platform()) != 161 removeSimulator(platformInfo->target.Platform)) { 162 error(toString(input) + " has platform " + 163 getPlatformName(platformInfo->target.Platform) + 164 Twine(", which is different from target platform ") + 165 getPlatformName(config->platform())); 166 return false; 167 } 168 if (platformInfo->minimum <= config->platformInfo.minimum) 169 return true; 170 error(toString(input) + " has version " + 171 platformInfo->minimum.getAsString() + 172 ", which is newer than target minimum of " + 173 config->platformInfo.minimum.getAsString()); 174 return false; 175 } 176 177 // Open a given file path and return it as a memory-mapped file. 178 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 179 // Open a file. 180 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 181 if (std::error_code ec = mbOrErr.getError()) { 182 error("cannot open " + path + ": " + ec.message()); 183 return None; 184 } 185 186 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 187 MemoryBufferRef mbref = mb->getMemBufferRef(); 188 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 189 190 // If this is a regular non-fat file, return it. 191 const char *buf = mbref.getBufferStart(); 192 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 193 if (mbref.getBufferSize() < sizeof(uint32_t) || 194 read32be(&hdr->magic) != FAT_MAGIC) { 195 if (tar) 196 tar->append(relativeToRoot(path), mbref.getBuffer()); 197 return mbref; 198 } 199 200 // Object files and archive files may be fat files, which contains 201 // multiple real files for different CPU ISAs. Here, we search for a 202 // file that matches with the current link target and returns it as 203 // a MemoryBufferRef. 204 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 205 206 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 207 if (reinterpret_cast<const char *>(arch + i + 1) > 208 buf + mbref.getBufferSize()) { 209 error(path + ": fat_arch struct extends beyond end of file"); 210 return None; 211 } 212 213 if (read32be(&arch[i].cputype) != target->cpuType || 214 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 215 continue; 216 217 uint32_t offset = read32be(&arch[i].offset); 218 uint32_t size = read32be(&arch[i].size); 219 if (offset + size > mbref.getBufferSize()) 220 error(path + ": slice extends beyond end of file"); 221 if (tar) 222 tar->append(relativeToRoot(path), mbref.getBuffer()); 223 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 224 } 225 226 error("unable to find matching architecture in " + path); 227 return None; 228 } 229 230 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 231 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 232 233 template <class Section> 234 void ObjFile::parseSections(ArrayRef<Section> sections) { 235 subsections.reserve(sections.size()); 236 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 237 238 for (const Section &sec : sections) { 239 InputSection *isec = make<InputSection>(); 240 isec->file = this; 241 isec->name = 242 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 243 isec->segname = 244 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 245 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 246 static_cast<size_t>(sec.size)}; 247 if (sec.align >= 32) 248 error("alignment " + std::to_string(sec.align) + " of section " + 249 isec->name + " is too large"); 250 else 251 isec->align = 1 << sec.align; 252 isec->flags = sec.flags; 253 254 if (!(isDebugSection(isec->flags) && 255 isec->segname == segment_names::dwarf)) { 256 subsections.push_back({{0, isec}}); 257 } else { 258 // Instead of emitting DWARF sections, we emit STABS symbols to the 259 // object files that contain them. We filter them out early to avoid 260 // parsing their relocations unnecessarily. But we must still push an 261 // empty map to ensure the indices line up for the remaining sections. 262 subsections.push_back({}); 263 debugSections.push_back(isec); 264 } 265 } 266 } 267 268 // Find the subsection corresponding to the greatest section offset that is <= 269 // that of the given offset. 270 // 271 // offset: an offset relative to the start of the original InputSection (before 272 // any subsection splitting has occurred). It will be updated to represent the 273 // same location as an offset relative to the start of the containing 274 // subsection. 275 static InputSection *findContainingSubsection(SubsectionMap &map, 276 uint64_t *offset) { 277 auto it = std::prev(llvm::upper_bound( 278 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 279 return value < subsecEntry.offset; 280 })); 281 *offset -= it->offset; 282 return it->isec; 283 } 284 285 template <class Section> 286 static bool validateRelocationInfo(InputFile *file, const Section &sec, 287 relocation_info rel) { 288 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 289 bool valid = true; 290 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 291 valid = false; 292 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 293 std::to_string(rel.r_address) + " of " + sec.segname + "," + 294 sec.sectname + " in " + toString(file)) 295 .str(); 296 }; 297 298 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 299 error(message("must be extern")); 300 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 301 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 302 "be PC-relative")); 303 if (isThreadLocalVariables(sec.flags) && 304 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 305 error(message("not allowed in thread-local section, must be UNSIGNED")); 306 if (rel.r_length < 2 || rel.r_length > 3 || 307 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 308 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 309 error(message("has width " + std::to_string(1 << rel.r_length) + 310 " bytes, but must be " + 311 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 312 " bytes")); 313 } 314 return valid; 315 } 316 317 template <class Section> 318 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 319 const Section &sec, SubsectionMap &subsecMap) { 320 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 321 ArrayRef<relocation_info> relInfos( 322 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 323 324 for (size_t i = 0; i < relInfos.size(); i++) { 325 // Paired relocations serve as Mach-O's method for attaching a 326 // supplemental datum to a primary relocation record. ELF does not 327 // need them because the *_RELOC_RELA records contain the extra 328 // addend field, vs. *_RELOC_REL which omit the addend. 329 // 330 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 331 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 332 // datum for each is a symbolic address. The result is the offset 333 // between two addresses. 334 // 335 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 336 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 337 // base symbolic address. 338 // 339 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 340 // addend into the instruction stream. On X86, a relocatable address 341 // field always occupies an entire contiguous sequence of byte(s), 342 // so there is no need to merge opcode bits with address 343 // bits. Therefore, it's easy and convenient to store addends in the 344 // instruction-stream bytes that would otherwise contain zeroes. By 345 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 346 // address bits so that bitwise arithmetic is necessary to extract 347 // and insert them. Storing addends in the instruction stream is 348 // possible, but inconvenient and more costly at link time. 349 350 int64_t pairedAddend = 0; 351 relocation_info relInfo = relInfos[i]; 352 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 353 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 354 relInfo = relInfos[++i]; 355 } 356 assert(i < relInfos.size()); 357 if (!validateRelocationInfo(this, sec, relInfo)) 358 continue; 359 if (relInfo.r_address & R_SCATTERED) 360 fatal("TODO: Scattered relocations not supported"); 361 362 bool isSubtrahend = 363 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 364 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 365 assert(!(embeddedAddend && pairedAddend)); 366 int64_t totalAddend = pairedAddend + embeddedAddend; 367 Reloc r; 368 r.type = relInfo.r_type; 369 r.pcrel = relInfo.r_pcrel; 370 r.length = relInfo.r_length; 371 r.offset = relInfo.r_address; 372 if (relInfo.r_extern) { 373 r.referent = symbols[relInfo.r_symbolnum]; 374 r.addend = isSubtrahend ? 0 : totalAddend; 375 } else { 376 assert(!isSubtrahend); 377 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 378 uint64_t referentOffset; 379 if (relInfo.r_pcrel) { 380 // The implicit addend for pcrel section relocations is the pcrel offset 381 // in terms of the addresses in the input file. Here we adjust it so 382 // that it describes the offset from the start of the referent section. 383 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 384 // have pcrel section relocations. We may want to factor this out into 385 // the arch-specific .cpp file. 386 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 387 referentOffset = 388 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 389 } else { 390 // The addend for a non-pcrel relocation is its absolute address. 391 referentOffset = totalAddend - referentSec.addr; 392 } 393 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 394 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 395 r.addend = referentOffset; 396 } 397 398 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 399 subsec->relocs.push_back(r); 400 401 if (isSubtrahend) { 402 relocation_info minuendInfo = relInfos[++i]; 403 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 404 // attached to the same address. 405 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 406 relInfo.r_address == minuendInfo.r_address); 407 Reloc p; 408 p.type = minuendInfo.r_type; 409 if (minuendInfo.r_extern) { 410 p.referent = symbols[minuendInfo.r_symbolnum]; 411 p.addend = totalAddend; 412 } else { 413 uint64_t referentOffset = 414 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 415 SubsectionMap &referentSubsecMap = 416 subsections[minuendInfo.r_symbolnum - 1]; 417 p.referent = 418 findContainingSubsection(referentSubsecMap, &referentOffset); 419 p.addend = referentOffset; 420 } 421 subsec->relocs.push_back(p); 422 } 423 } 424 } 425 426 template <class NList> 427 static macho::Symbol *createDefined(const NList &sym, StringRef name, 428 InputSection *isec, uint64_t value, 429 uint64_t size) { 430 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 431 // N_EXT: Global symbols. These go in the symbol table during the link, 432 // and also in the export table of the output so that the dynamic 433 // linker sees them. 434 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 435 // symbol table during the link so that duplicates are 436 // either reported (for non-weak symbols) or merged 437 // (for weak symbols), but they do not go in the export 438 // table of the output. 439 // N_PEXT: Does not occur in input files in practice, 440 // a private extern must be external. 441 // 0: Translation-unit scoped. These are not in the symbol table during 442 // link, and not in the export table of the output either. 443 444 bool isWeakDefCanBeHidden = 445 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 446 447 if (sym.n_type & (N_EXT | N_PEXT)) { 448 assert((sym.n_type & N_EXT) && "invalid input"); 449 bool isPrivateExtern = sym.n_type & N_PEXT; 450 451 // lld's behavior for merging symbols is slightly different from ld64: 452 // ld64 picks the winning symbol based on several criteria (see 453 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 454 // just merges metadata and keeps the contents of the first symbol 455 // with that name (see SymbolTable::addDefined). For: 456 // * inline function F in a TU built with -fvisibility-inlines-hidden 457 // * and inline function F in another TU built without that flag 458 // ld64 will pick the one from the file built without 459 // -fvisibility-inlines-hidden. 460 // lld will instead pick the one listed first on the link command line and 461 // give it visibility as if the function was built without 462 // -fvisibility-inlines-hidden. 463 // If both functions have the same contents, this will have the same 464 // behavior. If not, it won't, but the input had an ODR violation in 465 // that case. 466 // 467 // Similarly, merging a symbol 468 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 469 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 470 // should produce one 471 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 472 // with ld64's semantics, because it means the non-private-extern 473 // definition will continue to take priority if more private extern 474 // definitions are encountered. With lld's semantics there's no observable 475 // difference between a symbol that's isWeakDefCanBeHidden or one that's 476 // privateExtern -- neither makes it into the dynamic symbol table. So just 477 // promote isWeakDefCanBeHidden to isPrivateExtern here. 478 if (isWeakDefCanBeHidden) 479 isPrivateExtern = true; 480 481 return symtab->addDefined(name, isec->file, isec, value, size, 482 sym.n_desc & N_WEAK_DEF, isPrivateExtern, 483 sym.n_desc & N_ARM_THUMB_DEF); 484 } 485 486 assert(!isWeakDefCanBeHidden && 487 "weak_def_can_be_hidden on already-hidden symbol?"); 488 return make<Defined>(name, isec->file, isec, value, size, 489 sym.n_desc & N_WEAK_DEF, 490 /*isExternal=*/false, /*isPrivateExtern=*/false, 491 sym.n_desc & N_ARM_THUMB_DEF); 492 } 493 494 // Absolute symbols are defined symbols that do not have an associated 495 // InputSection. They cannot be weak. 496 template <class NList> 497 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 498 StringRef name) { 499 if (sym.n_type & (N_EXT | N_PEXT)) { 500 assert((sym.n_type & N_EXT) && "invalid input"); 501 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 502 /*isWeakDef=*/false, sym.n_type & N_PEXT, 503 sym.n_desc & N_ARM_THUMB_DEF); 504 } 505 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 506 /*isWeakDef=*/false, 507 /*isExternal=*/false, /*isPrivateExtern=*/false, 508 sym.n_desc & N_ARM_THUMB_DEF); 509 } 510 511 template <class NList> 512 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 513 StringRef name) { 514 uint8_t type = sym.n_type & N_TYPE; 515 switch (type) { 516 case N_UNDF: 517 return sym.n_value == 0 518 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 519 : symtab->addCommon(name, this, sym.n_value, 520 1 << GET_COMM_ALIGN(sym.n_desc), 521 sym.n_type & N_PEXT); 522 case N_ABS: 523 return createAbsolute(sym, this, name); 524 case N_PBUD: 525 case N_INDR: 526 error("TODO: support symbols of type " + std::to_string(type)); 527 return nullptr; 528 case N_SECT: 529 llvm_unreachable( 530 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 531 default: 532 llvm_unreachable("invalid symbol type"); 533 } 534 } 535 536 template <class LP> 537 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 538 ArrayRef<typename LP::nlist> nList, 539 const char *strtab, bool subsectionsViaSymbols) { 540 using NList = typename LP::nlist; 541 542 // Groups indices of the symbols by the sections that contain them. 543 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 544 symbols.resize(nList.size()); 545 for (uint32_t i = 0; i < nList.size(); ++i) { 546 const NList &sym = nList[i]; 547 StringRef name = strtab + sym.n_strx; 548 if ((sym.n_type & N_TYPE) == N_SECT) { 549 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 550 // parseSections() may have chosen not to parse this section. 551 if (subsecMap.empty()) 552 continue; 553 symbolsBySection[sym.n_sect - 1].push_back(i); 554 } else { 555 symbols[i] = parseNonSectionSymbol(sym, name); 556 } 557 } 558 559 // Calculate symbol sizes and create subsections by splitting the sections 560 // along symbol boundaries. 561 for (size_t i = 0; i < subsections.size(); ++i) { 562 SubsectionMap &subsecMap = subsections[i]; 563 if (subsecMap.empty()) 564 continue; 565 566 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 567 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 568 return nList[lhs].n_value < nList[rhs].n_value; 569 }); 570 uint64_t sectionAddr = sectionHeaders[i].addr; 571 572 // We populate subsecMap by repeatedly splitting the last (highest address) 573 // subsection. 574 SubsectionEntry subsecEntry = subsecMap.back(); 575 for (size_t j = 0; j < symbolIndices.size(); ++j) { 576 uint32_t symIndex = symbolIndices[j]; 577 const NList &sym = nList[symIndex]; 578 StringRef name = strtab + sym.n_strx; 579 InputSection *isec = subsecEntry.isec; 580 581 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 582 uint64_t symbolOffset = sym.n_value - subsecAddr; 583 uint64_t symbolSize = 584 j + 1 < symbolIndices.size() 585 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 586 : isec->data.size() - symbolOffset; 587 // There are 3 cases where we do not need to create a new subsection: 588 // 1. If the input file does not use subsections-via-symbols. 589 // 2. Multiple symbols at the same address only induce one subsection. 590 // 3. Alternative entry points do not induce new subsections. 591 if (!subsectionsViaSymbols || symbolOffset == 0 || 592 sym.n_desc & N_ALT_ENTRY) { 593 symbols[symIndex] = 594 createDefined(sym, name, isec, symbolOffset, symbolSize); 595 continue; 596 } 597 598 auto *nextIsec = make<InputSection>(*isec); 599 nextIsec->data = isec->data.slice(symbolOffset); 600 isec->data = isec->data.slice(0, symbolOffset); 601 602 // By construction, the symbol will be at offset zero in the new 603 // subsection. 604 symbols[symIndex] = 605 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 606 // TODO: ld64 appears to preserve the original alignment as well as each 607 // subsection's offset from the last aligned address. We should consider 608 // emulating that behavior. 609 nextIsec->align = MinAlign(isec->align, sym.n_value); 610 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 611 subsecEntry = subsecMap.back(); 612 } 613 } 614 } 615 616 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 617 StringRef sectName) 618 : InputFile(OpaqueKind, mb) { 619 InputSection *isec = make<InputSection>(); 620 isec->file = this; 621 isec->name = sectName.take_front(16); 622 isec->segname = segName.take_front(16); 623 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 624 isec->data = {buf, mb.getBufferSize()}; 625 subsections.push_back({{0, isec}}); 626 } 627 628 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 629 : InputFile(ObjKind, mb), modTime(modTime) { 630 this->archiveName = std::string(archiveName); 631 if (target->wordSize == 8) 632 parse<LP64>(); 633 else 634 parse<ILP32>(); 635 } 636 637 template <class LP> void ObjFile::parse() { 638 using Header = typename LP::mach_header; 639 using SegmentCommand = typename LP::segment_command; 640 using Section = typename LP::section; 641 using NList = typename LP::nlist; 642 643 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 644 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 645 646 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 647 if (arch != config->arch()) { 648 error(toString(this) + " has architecture " + getArchitectureName(arch) + 649 " which is incompatible with target architecture " + 650 getArchitectureName(config->arch())); 651 return; 652 } 653 654 if (!checkCompatibility(this)) 655 return; 656 657 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 658 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 659 StringRef data{reinterpret_cast<const char *>(c + 1), 660 c->cmdsize - sizeof(linker_option_command)}; 661 parseLCLinkerOption(this, c->count, data); 662 } 663 664 ArrayRef<Section> sectionHeaders; 665 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 666 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 667 sectionHeaders = 668 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 669 parseSections(sectionHeaders); 670 } 671 672 // TODO: Error on missing LC_SYMTAB? 673 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 674 auto *c = reinterpret_cast<const symtab_command *>(cmd); 675 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 676 c->nsyms); 677 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 678 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 679 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 680 } 681 682 // The relocations may refer to the symbols, so we parse them after we have 683 // parsed all the symbols. 684 for (size_t i = 0, n = subsections.size(); i < n; ++i) 685 if (!subsections[i].empty()) 686 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 687 688 parseDebugInfo(); 689 } 690 691 void ObjFile::parseDebugInfo() { 692 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 693 if (!dObj) 694 return; 695 696 auto *ctx = make<DWARFContext>( 697 std::move(dObj), "", 698 [&](Error err) { 699 warn(toString(this) + ": " + toString(std::move(err))); 700 }, 701 [&](Error warning) { 702 warn(toString(this) + ": " + toString(std::move(warning))); 703 }); 704 705 // TODO: Since object files can contain a lot of DWARF info, we should verify 706 // that we are parsing just the info we need 707 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 708 // FIXME: There can be more than one compile unit per object file. See 709 // PR48637. 710 auto it = units.begin(); 711 compileUnit = it->get(); 712 } 713 714 // The path can point to either a dylib or a .tbd file. 715 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 716 Optional<MemoryBufferRef> mbref = readFile(path); 717 if (!mbref) { 718 error("could not read dylib file at " + path); 719 return {}; 720 } 721 return loadDylib(*mbref, umbrella); 722 } 723 724 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 725 // the first document storing child pointers to the rest of them. When we are 726 // processing a given TBD file, we store that top-level document in 727 // currentTopLevelTapi. When processing re-exports, we search its children for 728 // potentially matching documents in the same TBD file. Note that the children 729 // themselves don't point to further documents, i.e. this is a two-level tree. 730 // 731 // Re-exports can either refer to on-disk files, or to documents within .tbd 732 // files. 733 static Optional<DylibFile *> 734 findDylib(StringRef path, DylibFile *umbrella, 735 const InterfaceFile *currentTopLevelTapi) { 736 if (path::is_absolute(path, path::Style::posix)) 737 for (StringRef root : config->systemLibraryRoots) 738 if (Optional<std::string> dylibPath = 739 resolveDylibPath((root + path).str())) 740 return loadDylib(*dylibPath, umbrella); 741 742 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 743 744 if (currentTopLevelTapi) { 745 for (InterfaceFile &child : 746 make_pointee_range(currentTopLevelTapi->documents())) { 747 assert(child.documents().empty()); 748 if (path == child.getInstallName()) 749 return make<DylibFile>(child, umbrella); 750 } 751 } 752 753 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 754 return loadDylib(*dylibPath, umbrella); 755 756 return {}; 757 } 758 759 // If a re-exported dylib is public (lives in /usr/lib or 760 // /System/Library/Frameworks), then it is considered implicitly linked: we 761 // should bind to its symbols directly instead of via the re-exporting umbrella 762 // library. 763 static bool isImplicitlyLinked(StringRef path) { 764 if (!config->implicitDylibs) 765 return false; 766 767 if (path::parent_path(path) == "/usr/lib") 768 return true; 769 770 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 771 if (path.consume_front("/System/Library/Frameworks/")) { 772 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 773 return path::filename(path) == frameworkName; 774 } 775 776 return false; 777 } 778 779 void loadReexport(StringRef path, DylibFile *umbrella, 780 const InterfaceFile *currentTopLevelTapi) { 781 Optional<DylibFile *> reexport = 782 findDylib(path, umbrella, currentTopLevelTapi); 783 if (!reexport) 784 error("unable to locate re-export with install name " + path); 785 else if (isImplicitlyLinked(path)) 786 inputFiles.insert(*reexport); 787 } 788 789 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 790 bool isBundleLoader) 791 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 792 isBundleLoader(isBundleLoader) { 793 assert(!isBundleLoader || !umbrella); 794 if (umbrella == nullptr) 795 umbrella = this; 796 797 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 798 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 799 800 // Initialize dylibName. 801 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 802 auto *c = reinterpret_cast<const dylib_command *>(cmd); 803 currentVersion = read32le(&c->dylib.current_version); 804 compatibilityVersion = read32le(&c->dylib.compatibility_version); 805 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 806 } else if (!isBundleLoader) { 807 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 808 // so it's OK. 809 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 810 return; 811 } 812 813 if (!checkCompatibility(this)) 814 return; 815 816 // Initialize symbols. 817 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 818 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 819 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 820 parseTrie(buf + c->export_off, c->export_size, 821 [&](const Twine &name, uint64_t flags) { 822 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 823 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 824 symbols.push_back(symtab->addDylib( 825 saver.save(name), exportingFile, isWeakDef, isTlv)); 826 }); 827 } else { 828 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 829 return; 830 } 831 832 const uint8_t *p = 833 reinterpret_cast<const uint8_t *>(hdr) + target->headerSize; 834 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 835 auto *cmd = reinterpret_cast<const load_command *>(p); 836 p += cmd->cmdsize; 837 838 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 839 cmd->cmd == LC_REEXPORT_DYLIB) { 840 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 841 StringRef reexportPath = 842 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 843 loadReexport(reexportPath, exportingFile, nullptr); 844 } 845 846 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 847 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 848 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 849 if (config->namespaceKind == NamespaceKind::flat && 850 cmd->cmd == LC_LOAD_DYLIB) { 851 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 852 StringRef dylibPath = 853 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 854 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 855 if (!dylib) 856 error(Twine("unable to locate library '") + dylibPath + 857 "' loaded from '" + toString(this) + "' for -flat_namespace"); 858 } 859 } 860 } 861 862 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 863 bool isBundleLoader) 864 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 865 isBundleLoader(isBundleLoader) { 866 // FIXME: Add test for the missing TBD code path. 867 868 if (umbrella == nullptr) 869 umbrella = this; 870 871 dylibName = saver.save(interface.getInstallName()); 872 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 873 currentVersion = interface.getCurrentVersion().rawValue(); 874 875 // Some versions of XCode ship with .tbd files that don't have the right 876 // platform settings. 877 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 878 "/usr/lib/system/libsystem_kernel.dylib", 879 "/usr/lib/system/libsystem_platform.dylib", 880 "/usr/lib/system/libsystem_pthread.dylib"}; 881 882 if (!is_contained(skipPlatformChecks, dylibName) && 883 !is_contained(interface.targets(), config->platformInfo.target)) { 884 error(toString(this) + " is incompatible with " + 885 std::string(config->platformInfo.target)); 886 return; 887 } 888 889 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 890 auto addSymbol = [&](const Twine &name) -> void { 891 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 892 /*isWeakDef=*/false, 893 /*isTlv=*/false)); 894 }; 895 // TODO(compnerd) filter out symbols based on the target platform 896 // TODO: handle weak defs, thread locals 897 for (const auto *symbol : interface.symbols()) { 898 if (!symbol->getArchitectures().has(config->arch())) 899 continue; 900 901 switch (symbol->getKind()) { 902 case SymbolKind::GlobalSymbol: 903 addSymbol(symbol->getName()); 904 break; 905 case SymbolKind::ObjectiveCClass: 906 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 907 // want to emulate that. 908 addSymbol(objc::klass + symbol->getName()); 909 addSymbol(objc::metaclass + symbol->getName()); 910 break; 911 case SymbolKind::ObjectiveCClassEHType: 912 addSymbol(objc::ehtype + symbol->getName()); 913 break; 914 case SymbolKind::ObjectiveCInstanceVariable: 915 addSymbol(objc::ivar + symbol->getName()); 916 break; 917 } 918 } 919 920 const InterfaceFile *topLevel = 921 interface.getParent() == nullptr ? &interface : interface.getParent(); 922 923 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 924 InterfaceFile::const_target_range targets = intfRef.targets(); 925 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 926 is_contained(targets, config->platformInfo.target)) 927 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 928 } 929 } 930 931 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 932 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 933 for (const object::Archive::Symbol &sym : file->symbols()) 934 symtab->addLazy(sym.getName(), this, sym); 935 } 936 937 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 938 object::Archive::Child c = 939 CHECK(sym.getMember(), toString(this) + 940 ": could not get the member for symbol " + 941 toMachOString(sym)); 942 943 if (!seen.insert(c.getChildOffset()).second) 944 return; 945 946 MemoryBufferRef mb = 947 CHECK(c.getMemoryBufferRef(), 948 toString(this) + 949 ": could not get the buffer for the member defining symbol " + 950 toMachOString(sym)); 951 952 if (tar && c.getParent()->isThin()) 953 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 954 955 uint32_t modTime = toTimeT( 956 CHECK(c.getLastModified(), toString(this) + 957 ": could not get the modification time " 958 "for the member defining symbol " + 959 toMachOString(sym))); 960 961 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 962 // and become invalid after that call. Copy it to the stack so we can refer 963 // to it later. 964 const object::Archive::Symbol symCopy = sym; 965 966 if (Optional<InputFile *> file = 967 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 968 inputFiles.insert(*file); 969 // ld64 doesn't demangle sym here even with -demangle. 970 // Match that: intentionally don't call toMachOString(). 971 printArchiveMemberLoad(symCopy.getName(), *file); 972 } 973 } 974 975 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 976 BitcodeFile &file) { 977 StringRef name = saver.save(objSym.getName()); 978 979 // TODO: support weak references 980 if (objSym.isUndefined()) 981 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 982 983 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 984 985 // TODO: Write a test demonstrating why computing isPrivateExtern before 986 // LTO compilation is important. 987 bool isPrivateExtern = false; 988 switch (objSym.getVisibility()) { 989 case GlobalValue::HiddenVisibility: 990 isPrivateExtern = true; 991 break; 992 case GlobalValue::ProtectedVisibility: 993 error(name + " has protected visibility, which is not supported by Mach-O"); 994 break; 995 case GlobalValue::DefaultVisibility: 996 break; 997 } 998 999 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1000 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1001 /*isThumb=*/false); 1002 } 1003 1004 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1005 : InputFile(BitcodeKind, mbref) { 1006 obj = check(lto::InputFile::create(mbref)); 1007 1008 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1009 // "winning" symbol will then be marked as Prevailing at LTO compilation 1010 // time. 1011 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1012 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1013 } 1014 1015 template void ObjFile::parse<LP64>(); 1016