1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75
76 #include <type_traits>
77
78 using namespace llvm;
79 using namespace llvm::MachO;
80 using namespace llvm::support::endian;
81 using namespace llvm::sys;
82 using namespace lld;
83 using namespace lld::macho;
84
85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
toString(const InputFile * f)86 std::string lld::toString(const InputFile *f) {
87 if (!f)
88 return "<internal>";
89
90 // Multiple dylibs can be defined in one .tbd file.
91 if (auto dylibFile = dyn_cast<DylibFile>(f))
92 if (f->getName().endswith(".tbd"))
93 return (f->getName() + "(" + dylibFile->installName + ")").str();
94
95 if (f->archiveName.empty())
96 return std::string(f->getName());
97 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
98 }
99
toString(const Section & sec)100 std::string lld::toString(const Section &sec) {
101 return (toString(sec.file) + ":(" + sec.name + ")").str();
102 }
103
104 SetVector<InputFile *> macho::inputFiles;
105 std::unique_ptr<TarWriter> macho::tar;
106 int InputFile::idCount = 0;
107
decodeVersion(uint32_t version)108 static VersionTuple decodeVersion(uint32_t version) {
109 unsigned major = version >> 16;
110 unsigned minor = (version >> 8) & 0xffu;
111 unsigned subMinor = version & 0xffu;
112 return VersionTuple(major, minor, subMinor);
113 }
114
getPlatformInfos(const InputFile * input)115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
116 if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
117 return {};
118
119 const char *hdr = input->mb.getBufferStart();
120
121 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
122 std::vector<PlatformInfo> platformInfos;
123 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
124 PlatformInfo info;
125 info.target.Platform = static_cast<PlatformType>(cmd->platform);
126 info.minimum = decodeVersion(cmd->minos);
127 platformInfos.emplace_back(std::move(info));
128 }
129 for (auto *cmd : findCommands<version_min_command>(
130 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
131 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
132 PlatformInfo info;
133 switch (cmd->cmd) {
134 case LC_VERSION_MIN_MACOSX:
135 info.target.Platform = PLATFORM_MACOS;
136 break;
137 case LC_VERSION_MIN_IPHONEOS:
138 info.target.Platform = PLATFORM_IOS;
139 break;
140 case LC_VERSION_MIN_TVOS:
141 info.target.Platform = PLATFORM_TVOS;
142 break;
143 case LC_VERSION_MIN_WATCHOS:
144 info.target.Platform = PLATFORM_WATCHOS;
145 break;
146 }
147 info.minimum = decodeVersion(cmd->version);
148 platformInfos.emplace_back(std::move(info));
149 }
150
151 return platformInfos;
152 }
153
checkCompatibility(const InputFile * input)154 static bool checkCompatibility(const InputFile *input) {
155 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
156 if (platformInfos.empty())
157 return true;
158
159 auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
160 return removeSimulator(info.target.Platform) ==
161 removeSimulator(config->platform());
162 });
163 if (it == platformInfos.end()) {
164 std::string platformNames;
165 raw_string_ostream os(platformNames);
166 interleave(
167 platformInfos, os,
168 [&](const PlatformInfo &info) {
169 os << getPlatformName(info.target.Platform);
170 },
171 "/");
172 error(toString(input) + " has platform " + platformNames +
173 Twine(", which is different from target platform ") +
174 getPlatformName(config->platform()));
175 return false;
176 }
177
178 if (it->minimum > config->platformInfo.minimum)
179 warn(toString(input) + " has version " + it->minimum.getAsString() +
180 ", which is newer than target minimum of " +
181 config->platformInfo.minimum.getAsString());
182
183 return true;
184 }
185
186 // This cache mostly exists to store system libraries (and .tbds) as they're
187 // loaded, rather than the input archives, which are already cached at a higher
188 // level, and other files like the filelist that are only read once.
189 // Theoretically this caching could be more efficient by hoisting it, but that
190 // would require altering many callers to track the state.
191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
192 // Open a given file path and return it as a memory-mapped file.
readFile(StringRef path)193 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
194 CachedHashStringRef key(path);
195 auto entry = cachedReads.find(key);
196 if (entry != cachedReads.end())
197 return entry->second;
198
199 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
200 if (std::error_code ec = mbOrErr.getError()) {
201 error("cannot open " + path + ": " + ec.message());
202 return None;
203 }
204
205 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
206 MemoryBufferRef mbref = mb->getMemBufferRef();
207 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
208
209 // If this is a regular non-fat file, return it.
210 const char *buf = mbref.getBufferStart();
211 const auto *hdr = reinterpret_cast<const fat_header *>(buf);
212 if (mbref.getBufferSize() < sizeof(uint32_t) ||
213 read32be(&hdr->magic) != FAT_MAGIC) {
214 if (tar)
215 tar->append(relativeToRoot(path), mbref.getBuffer());
216 return cachedReads[key] = mbref;
217 }
218
219 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
220
221 // Object files and archive files may be fat files, which contain multiple
222 // real files for different CPU ISAs. Here, we search for a file that matches
223 // with the current link target and returns it as a MemoryBufferRef.
224 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
225
226 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
227 if (reinterpret_cast<const char *>(arch + i + 1) >
228 buf + mbref.getBufferSize()) {
229 error(path + ": fat_arch struct extends beyond end of file");
230 return None;
231 }
232
233 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
234 read32be(&arch[i].cpusubtype) != target->cpuSubtype)
235 continue;
236
237 uint32_t offset = read32be(&arch[i].offset);
238 uint32_t size = read32be(&arch[i].size);
239 if (offset + size > mbref.getBufferSize())
240 error(path + ": slice extends beyond end of file");
241 if (tar)
242 tar->append(relativeToRoot(path), mbref.getBuffer());
243 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
244 path.copy(bAlloc));
245 }
246
247 error("unable to find matching architecture in " + path);
248 return None;
249 }
250
InputFile(Kind kind,const InterfaceFile & interface)251 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
252 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
253
254 // Some sections comprise of fixed-size records, so instead of splitting them at
255 // symbol boundaries, we split them based on size. Records are distinct from
256 // literals in that they may contain references to other sections, instead of
257 // being leaf nodes in the InputSection graph.
258 //
259 // Note that "record" is a term I came up with. In contrast, "literal" is a term
260 // used by the Mach-O format.
getRecordSize(StringRef segname,StringRef name)261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
262 if (name == section_names::compactUnwind) {
263 if (segname == segment_names::ld)
264 return target->wordSize == 8 ? 32 : 20;
265 }
266 if (!config->dedupLiterals)
267 return {};
268
269 if (name == section_names::cfString && segname == segment_names::data)
270 return target->wordSize == 8 ? 32 : 16;
271
272 if (config->icfLevel == ICFLevel::none)
273 return {};
274
275 if (name == section_names::objcClassRefs && segname == segment_names::data)
276 return target->wordSize;
277 return {};
278 }
279
parseCallGraph(ArrayRef<uint8_t> data,std::vector<CallGraphEntry> & callGraph)280 static Error parseCallGraph(ArrayRef<uint8_t> data,
281 std::vector<CallGraphEntry> &callGraph) {
282 TimeTraceScope timeScope("Parsing call graph section");
283 BinaryStreamReader reader(data, support::little);
284 while (!reader.empty()) {
285 uint32_t fromIndex, toIndex;
286 uint64_t count;
287 if (Error err = reader.readInteger(fromIndex))
288 return err;
289 if (Error err = reader.readInteger(toIndex))
290 return err;
291 if (Error err = reader.readInteger(count))
292 return err;
293 callGraph.emplace_back(fromIndex, toIndex, count);
294 }
295 return Error::success();
296 }
297
298 // Parse the sequence of sections within a single LC_SEGMENT(_64).
299 // Split each section into subsections.
300 template <class SectionHeader>
parseSections(ArrayRef<SectionHeader> sectionHeaders)301 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
302 sections.reserve(sectionHeaders.size());
303 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
304
305 for (const SectionHeader &sec : sectionHeaders) {
306 StringRef name =
307 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
308 StringRef segname =
309 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
310 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
311 if (sec.align >= 32) {
312 error("alignment " + std::to_string(sec.align) + " of section " + name +
313 " is too large");
314 continue;
315 }
316 Section §ion = *sections.back();
317 uint32_t align = 1 << sec.align;
318 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
319 : buf + sec.offset,
320 static_cast<size_t>(sec.size)};
321
322 auto splitRecords = [&](int recordSize) -> void {
323 if (data.empty())
324 return;
325 Subsections &subsections = section.subsections;
326 subsections.reserve(data.size() / recordSize);
327 for (uint64_t off = 0; off < data.size(); off += recordSize) {
328 auto *isec = make<ConcatInputSection>(
329 section, data.slice(off, recordSize), align);
330 subsections.push_back({off, isec});
331 }
332 section.doneSplitting = true;
333 };
334
335 if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
336 (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
337 if (sec.nreloc && config->dedupLiterals)
338 fatal(toString(this) + " contains relocations in " + sec.segname + "," +
339 sec.sectname +
340 ", so LLD cannot deduplicate literals. Try re-running without "
341 "--deduplicate-literals.");
342
343 InputSection *isec;
344 if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
345 isec = make<CStringInputSection>(section, data, align);
346 // FIXME: parallelize this?
347 cast<CStringInputSection>(isec)->splitIntoPieces();
348 } else {
349 isec = make<WordLiteralInputSection>(section, data, align);
350 }
351 section.subsections.push_back({0, isec});
352 } else if (auto recordSize = getRecordSize(segname, name)) {
353 splitRecords(*recordSize);
354 } else if (name == section_names::ehFrame &&
355 segname == segment_names::text) {
356 splitEhFrames(data, *sections.back());
357 } else if (segname == segment_names::llvm) {
358 if (config->callGraphProfileSort && name == section_names::cgProfile)
359 checkError(parseCallGraph(data, callGraph));
360 // ld64 does not appear to emit contents from sections within the __LLVM
361 // segment. Symbols within those sections point to bitcode metadata
362 // instead of actual symbols. Global symbols within those sections could
363 // have the same name without causing duplicate symbol errors. To avoid
364 // spurious duplicate symbol errors, we do not parse these sections.
365 // TODO: Evaluate whether the bitcode metadata is needed.
366 } else if (name == section_names::objCImageInfo &&
367 segname == segment_names::data) {
368 objCImageInfo = data;
369 } else {
370 if (name == section_names::addrSig)
371 addrSigSection = sections.back();
372
373 auto *isec = make<ConcatInputSection>(section, data, align);
374 if (isDebugSection(isec->getFlags()) &&
375 isec->getSegName() == segment_names::dwarf) {
376 // Instead of emitting DWARF sections, we emit STABS symbols to the
377 // object files that contain them. We filter them out early to avoid
378 // parsing their relocations unnecessarily.
379 debugSections.push_back(isec);
380 } else {
381 section.subsections.push_back({0, isec});
382 }
383 }
384 }
385 }
386
splitEhFrames(ArrayRef<uint8_t> data,Section & ehFrameSection)387 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
388 EhReader reader(this, data, /*dataOff=*/0);
389 size_t off = 0;
390 while (off < reader.size()) {
391 uint64_t frameOff = off;
392 uint64_t length = reader.readLength(&off);
393 if (length == 0)
394 break;
395 uint64_t fullLength = length + (off - frameOff);
396 off += length;
397 // We hard-code an alignment of 1 here because we don't actually want our
398 // EH frames to be aligned to the section alignment. EH frame decoders don't
399 // expect this alignment. Moreover, each EH frame must start where the
400 // previous one ends, and where it ends is indicated by the length field.
401 // Unless we update the length field (troublesome), we should keep the
402 // alignment to 1.
403 // Note that we still want to preserve the alignment of the overall section,
404 // just not of the individual EH frames.
405 ehFrameSection.subsections.push_back(
406 {frameOff, make<ConcatInputSection>(ehFrameSection,
407 data.slice(frameOff, fullLength),
408 /*align=*/1)});
409 }
410 ehFrameSection.doneSplitting = true;
411 }
412
413 template <class T>
findContainingSection(const std::vector<Section * > & sections,T * offset)414 static Section *findContainingSection(const std::vector<Section *> §ions,
415 T *offset) {
416 static_assert(std::is_same<uint64_t, T>::value ||
417 std::is_same<uint32_t, T>::value,
418 "unexpected type for offset");
419 auto it = std::prev(llvm::upper_bound(
420 sections, *offset,
421 [](uint64_t value, const Section *sec) { return value < sec->addr; }));
422 *offset -= (*it)->addr;
423 return *it;
424 }
425
426 // Find the subsection corresponding to the greatest section offset that is <=
427 // that of the given offset.
428 //
429 // offset: an offset relative to the start of the original InputSection (before
430 // any subsection splitting has occurred). It will be updated to represent the
431 // same location as an offset relative to the start of the containing
432 // subsection.
433 template <class T>
findContainingSubsection(const Section & section,T * offset)434 static InputSection *findContainingSubsection(const Section §ion,
435 T *offset) {
436 static_assert(std::is_same<uint64_t, T>::value ||
437 std::is_same<uint32_t, T>::value,
438 "unexpected type for offset");
439 auto it = std::prev(llvm::upper_bound(
440 section.subsections, *offset,
441 [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
442 *offset -= it->offset;
443 return it->isec;
444 }
445
446 // Find a symbol at offset `off` within `isec`.
findSymbolAtOffset(const ConcatInputSection * isec,uint64_t off)447 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
448 uint64_t off) {
449 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
450 return d->value < off;
451 });
452 // The offset should point at the exact address of a symbol (with no addend.)
453 if (it == isec->symbols.end() || (*it)->value != off) {
454 assert(isec->wasCoalesced);
455 return nullptr;
456 }
457 return *it;
458 }
459
460 // Linker optimization hints mark a sequence of instructions used for
461 // synthesizing an address which that be transformed into a faster sequence. The
462 // transformations depend on conditions that are determined at link time, like
463 // the distance to the referenced symbol or its alignment.
464 //
465 // Each hint has a type and refers to 2 or 3 instructions. Each of those
466 // instructions must have a corresponding relocation. After addresses have been
467 // finalized and relocations have been performed, we check if the requirements
468 // hold, and perform the optimizations if they do.
469 //
470 // Similar linker relaxations exist for ELF as well, with the difference being
471 // that the explicit marking allows for the relaxation of non-consecutive
472 // relocations too.
473 //
474 // The specific types of hints are documented in Arch/ARM64.cpp
parseOptimizationHints(ArrayRef<uint8_t> data)475 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) {
476 auto expectedArgCount = [](uint8_t type) {
477 switch (type) {
478 case LOH_ARM64_ADRP_ADRP:
479 case LOH_ARM64_ADRP_LDR:
480 case LOH_ARM64_ADRP_ADD:
481 case LOH_ARM64_ADRP_LDR_GOT:
482 return 2;
483 case LOH_ARM64_ADRP_ADD_LDR:
484 case LOH_ARM64_ADRP_ADD_STR:
485 case LOH_ARM64_ADRP_LDR_GOT_LDR:
486 case LOH_ARM64_ADRP_LDR_GOT_STR:
487 return 3;
488 }
489 return -1;
490 };
491
492 // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case,
493 // there are data.size() / 4 LOHs. It's a huge overestimation though, as
494 // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate
495 // half as much.
496 optimizationHints.reserve(data.size() / 8);
497
498 for (const uint8_t *p = data.begin(); p < data.end();) {
499 const ptrdiff_t inputOffset = p - data.begin();
500 unsigned int n = 0;
501 uint8_t type = decodeULEB128(p, &n, data.end());
502 p += n;
503
504 // An entry of type 0 terminates the list.
505 if (type == 0)
506 break;
507
508 int expectedCount = expectedArgCount(type);
509 if (LLVM_UNLIKELY(expectedCount == -1)) {
510 error("Linker optimization hint at offset " + Twine(inputOffset) +
511 " has unknown type " + Twine(type));
512 return;
513 }
514
515 uint8_t argCount = decodeULEB128(p, &n, data.end());
516 p += n;
517
518 if (LLVM_UNLIKELY(argCount != expectedCount)) {
519 error("Linker optimization hint at offset " + Twine(inputOffset) +
520 " has " + Twine(argCount) + " arguments instead of the expected " +
521 Twine(expectedCount));
522 return;
523 }
524
525 uint64_t offset0 = decodeULEB128(p, &n, data.end());
526 p += n;
527
528 int16_t delta[2];
529 for (int i = 0; i < argCount - 1; ++i) {
530 uint64_t address = decodeULEB128(p, &n, data.end());
531 p += n;
532 int64_t d = address - offset0;
533 if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() ||
534 d < std::numeric_limits<int16_t>::min())) {
535 error("Linker optimization hint at offset " + Twine(inputOffset) +
536 " has addresses too far apart");
537 return;
538 }
539 delta[i] = d;
540 }
541
542 optimizationHints.push_back({offset0, {delta[0], delta[1]}, type});
543 }
544
545 // We sort the per-object vector of optimization hints so each section only
546 // needs to hold an ArrayRef to a contiguous range of hints.
547 llvm::sort(optimizationHints,
548 [](const OptimizationHint &a, const OptimizationHint &b) {
549 return a.offset0 < b.offset0;
550 });
551
552 auto section = sections.begin();
553 auto subsection = (*section)->subsections.begin();
554 uint64_t subsectionBase = 0;
555 uint64_t subsectionEnd = 0;
556
557 auto updateAddr = [&]() {
558 subsectionBase = (*section)->addr + subsection->offset;
559 subsectionEnd = subsectionBase + subsection->isec->getSize();
560 };
561
562 auto advanceSubsection = [&]() {
563 if (section == sections.end())
564 return;
565 ++subsection;
566 while (subsection == (*section)->subsections.end()) {
567 ++section;
568 if (section == sections.end())
569 return;
570 subsection = (*section)->subsections.begin();
571 }
572 };
573
574 updateAddr();
575 auto hintStart = optimizationHints.begin();
576 for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end;
577 ++hintEnd) {
578 if (hintEnd->offset0 >= subsectionEnd) {
579 subsection->isec->optimizationHints =
580 ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart);
581
582 hintStart = hintEnd;
583 while (hintStart->offset0 >= subsectionEnd) {
584 advanceSubsection();
585 if (section == sections.end())
586 break;
587 updateAddr();
588 assert(hintStart->offset0 >= subsectionBase);
589 }
590 }
591
592 hintEnd->offset0 -= subsectionBase;
593 for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1;
594 ++i) {
595 if (LLVM_UNLIKELY(
596 hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) ||
597 hintEnd->delta[i] >=
598 static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) {
599 error("Linker optimization hint spans multiple sections");
600 return;
601 }
602 }
603 }
604 if (section != sections.end())
605 subsection->isec->optimizationHints = ArrayRef<OptimizationHint>(
606 &*hintStart, optimizationHints.end() - hintStart);
607 }
608
609 template <class SectionHeader>
validateRelocationInfo(InputFile * file,const SectionHeader & sec,relocation_info rel)610 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
611 relocation_info rel) {
612 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
613 bool valid = true;
614 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
615 valid = false;
616 return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
617 std::to_string(rel.r_address) + " of " + sec.segname + "," +
618 sec.sectname + " in " + toString(file))
619 .str();
620 };
621
622 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
623 error(message("must be extern"));
624 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
625 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
626 "be PC-relative"));
627 if (isThreadLocalVariables(sec.flags) &&
628 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
629 error(message("not allowed in thread-local section, must be UNSIGNED"));
630 if (rel.r_length < 2 || rel.r_length > 3 ||
631 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
632 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
633 error(message("has width " + std::to_string(1 << rel.r_length) +
634 " bytes, but must be " +
635 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
636 " bytes"));
637 }
638 return valid;
639 }
640
641 template <class SectionHeader>
parseRelocations(ArrayRef<SectionHeader> sectionHeaders,const SectionHeader & sec,Section & section)642 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
643 const SectionHeader &sec, Section §ion) {
644 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
645 ArrayRef<relocation_info> relInfos(
646 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
647
648 Subsections &subsections = section.subsections;
649 auto subsecIt = subsections.rbegin();
650 for (size_t i = 0; i < relInfos.size(); i++) {
651 // Paired relocations serve as Mach-O's method for attaching a
652 // supplemental datum to a primary relocation record. ELF does not
653 // need them because the *_RELOC_RELA records contain the extra
654 // addend field, vs. *_RELOC_REL which omit the addend.
655 //
656 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
657 // and the paired *_RELOC_UNSIGNED record holds the minuend. The
658 // datum for each is a symbolic address. The result is the offset
659 // between two addresses.
660 //
661 // The ARM64_RELOC_ADDEND record holds the addend, and the paired
662 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
663 // base symbolic address.
664 //
665 // Note: X86 does not use *_RELOC_ADDEND because it can embed an
666 // addend into the instruction stream. On X86, a relocatable address
667 // field always occupies an entire contiguous sequence of byte(s),
668 // so there is no need to merge opcode bits with address
669 // bits. Therefore, it's easy and convenient to store addends in the
670 // instruction-stream bytes that would otherwise contain zeroes. By
671 // contrast, RISC ISAs such as ARM64 mix opcode bits with with
672 // address bits so that bitwise arithmetic is necessary to extract
673 // and insert them. Storing addends in the instruction stream is
674 // possible, but inconvenient and more costly at link time.
675
676 relocation_info relInfo = relInfos[i];
677 bool isSubtrahend =
678 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
679 int64_t pairedAddend = 0;
680 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
681 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
682 relInfo = relInfos[++i];
683 }
684 assert(i < relInfos.size());
685 if (!validateRelocationInfo(this, sec, relInfo))
686 continue;
687 if (relInfo.r_address & R_SCATTERED)
688 fatal("TODO: Scattered relocations not supported");
689
690 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
691 assert(!(embeddedAddend && pairedAddend));
692 int64_t totalAddend = pairedAddend + embeddedAddend;
693 Reloc r;
694 r.type = relInfo.r_type;
695 r.pcrel = relInfo.r_pcrel;
696 r.length = relInfo.r_length;
697 r.offset = relInfo.r_address;
698 if (relInfo.r_extern) {
699 r.referent = symbols[relInfo.r_symbolnum];
700 r.addend = isSubtrahend ? 0 : totalAddend;
701 } else {
702 assert(!isSubtrahend);
703 const SectionHeader &referentSecHead =
704 sectionHeaders[relInfo.r_symbolnum - 1];
705 uint64_t referentOffset;
706 if (relInfo.r_pcrel) {
707 // The implicit addend for pcrel section relocations is the pcrel offset
708 // in terms of the addresses in the input file. Here we adjust it so
709 // that it describes the offset from the start of the referent section.
710 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
711 // have pcrel section relocations. We may want to factor this out into
712 // the arch-specific .cpp file.
713 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
714 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
715 referentSecHead.addr;
716 } else {
717 // The addend for a non-pcrel relocation is its absolute address.
718 referentOffset = totalAddend - referentSecHead.addr;
719 }
720 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
721 &referentOffset);
722 r.addend = referentOffset;
723 }
724
725 // Find the subsection that this relocation belongs to.
726 // Though not required by the Mach-O format, clang and gcc seem to emit
727 // relocations in order, so let's take advantage of it. However, ld64 emits
728 // unsorted relocations (in `-r` mode), so we have a fallback for that
729 // uncommon case.
730 InputSection *subsec;
731 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
732 ++subsecIt;
733 if (subsecIt == subsections.rend() ||
734 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
735 subsec = findContainingSubsection(section, &r.offset);
736 // Now that we know the relocs are unsorted, avoid trying the 'fast path'
737 // for the other relocations.
738 subsecIt = subsections.rend();
739 } else {
740 subsec = subsecIt->isec;
741 r.offset -= subsecIt->offset;
742 }
743 subsec->relocs.push_back(r);
744
745 if (isSubtrahend) {
746 relocation_info minuendInfo = relInfos[++i];
747 // SUBTRACTOR relocations should always be followed by an UNSIGNED one
748 // attached to the same address.
749 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
750 relInfo.r_address == minuendInfo.r_address);
751 Reloc p;
752 p.type = minuendInfo.r_type;
753 if (minuendInfo.r_extern) {
754 p.referent = symbols[minuendInfo.r_symbolnum];
755 p.addend = totalAddend;
756 } else {
757 uint64_t referentOffset =
758 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
759 p.referent = findContainingSubsection(
760 *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
761 p.addend = referentOffset;
762 }
763 subsec->relocs.push_back(p);
764 }
765 }
766 }
767
768 template <class NList>
createDefined(const NList & sym,StringRef name,InputSection * isec,uint64_t value,uint64_t size,bool forceHidden)769 static macho::Symbol *createDefined(const NList &sym, StringRef name,
770 InputSection *isec, uint64_t value,
771 uint64_t size, bool forceHidden) {
772 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
773 // N_EXT: Global symbols. These go in the symbol table during the link,
774 // and also in the export table of the output so that the dynamic
775 // linker sees them.
776 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
777 // symbol table during the link so that duplicates are
778 // either reported (for non-weak symbols) or merged
779 // (for weak symbols), but they do not go in the export
780 // table of the output.
781 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
782 // object files) may produce them. LLD does not yet support -r.
783 // These are translation-unit scoped, identical to the `0` case.
784 // 0: Translation-unit scoped. These are not in the symbol table during
785 // link, and not in the export table of the output either.
786 bool isWeakDefCanBeHidden =
787 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
788
789 if (sym.n_type & N_EXT) {
790 // -load_hidden makes us treat global symbols as linkage unit scoped.
791 // Duplicates are reported but the symbol does not go in the export trie.
792 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
793
794 // lld's behavior for merging symbols is slightly different from ld64:
795 // ld64 picks the winning symbol based on several criteria (see
796 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
797 // just merges metadata and keeps the contents of the first symbol
798 // with that name (see SymbolTable::addDefined). For:
799 // * inline function F in a TU built with -fvisibility-inlines-hidden
800 // * and inline function F in another TU built without that flag
801 // ld64 will pick the one from the file built without
802 // -fvisibility-inlines-hidden.
803 // lld will instead pick the one listed first on the link command line and
804 // give it visibility as if the function was built without
805 // -fvisibility-inlines-hidden.
806 // If both functions have the same contents, this will have the same
807 // behavior. If not, it won't, but the input had an ODR violation in
808 // that case.
809 //
810 // Similarly, merging a symbol
811 // that's isPrivateExtern and not isWeakDefCanBeHidden with one
812 // that's not isPrivateExtern but isWeakDefCanBeHidden technically
813 // should produce one
814 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
815 // with ld64's semantics, because it means the non-private-extern
816 // definition will continue to take priority if more private extern
817 // definitions are encountered. With lld's semantics there's no observable
818 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
819 // that's privateExtern -- neither makes it into the dynamic symbol table,
820 // unless the autohide symbol is explicitly exported.
821 // But if a symbol is both privateExtern and autohide then it can't
822 // be exported.
823 // So we nullify the autohide flag when privateExtern is present
824 // and promote the symbol to privateExtern when it is not already.
825 if (isWeakDefCanBeHidden && isPrivateExtern)
826 isWeakDefCanBeHidden = false;
827 else if (isWeakDefCanBeHidden)
828 isPrivateExtern = true;
829 return symtab->addDefined(
830 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
831 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
832 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
833 isWeakDefCanBeHidden);
834 }
835 assert(!isWeakDefCanBeHidden &&
836 "weak_def_can_be_hidden on already-hidden symbol?");
837 bool includeInSymtab =
838 !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec);
839 return make<Defined>(
840 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
841 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
842 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
843 sym.n_desc & N_NO_DEAD_STRIP);
844 }
845
846 // Absolute symbols are defined symbols that do not have an associated
847 // InputSection. They cannot be weak.
848 template <class NList>
createAbsolute(const NList & sym,InputFile * file,StringRef name,bool forceHidden)849 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
850 StringRef name, bool forceHidden) {
851 if (sym.n_type & N_EXT) {
852 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
853 return symtab->addDefined(
854 name, file, nullptr, sym.n_value, /*size=*/0,
855 /*isWeakDef=*/false, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
856 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
857 /*isWeakDefCanBeHidden=*/false);
858 }
859 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
860 /*isWeakDef=*/false,
861 /*isExternal=*/false, /*isPrivateExtern=*/false,
862 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
863 /*isReferencedDynamically=*/false,
864 sym.n_desc & N_NO_DEAD_STRIP);
865 }
866
867 template <class NList>
parseNonSectionSymbol(const NList & sym,StringRef name)868 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
869 StringRef name) {
870 uint8_t type = sym.n_type & N_TYPE;
871 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
872 switch (type) {
873 case N_UNDF:
874 return sym.n_value == 0
875 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
876 : symtab->addCommon(name, this, sym.n_value,
877 1 << GET_COMM_ALIGN(sym.n_desc),
878 isPrivateExtern);
879 case N_ABS:
880 return createAbsolute(sym, this, name, forceHidden);
881 case N_PBUD:
882 case N_INDR:
883 error("TODO: support symbols of type " + std::to_string(type));
884 return nullptr;
885 case N_SECT:
886 llvm_unreachable(
887 "N_SECT symbols should not be passed to parseNonSectionSymbol");
888 default:
889 llvm_unreachable("invalid symbol type");
890 }
891 }
892
isUndef(const NList & sym)893 template <class NList> static bool isUndef(const NList &sym) {
894 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
895 }
896
897 template <class LP>
parseSymbols(ArrayRef<typename LP::section> sectionHeaders,ArrayRef<typename LP::nlist> nList,const char * strtab,bool subsectionsViaSymbols)898 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
899 ArrayRef<typename LP::nlist> nList,
900 const char *strtab, bool subsectionsViaSymbols) {
901 using NList = typename LP::nlist;
902
903 // Groups indices of the symbols by the sections that contain them.
904 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
905 symbols.resize(nList.size());
906 SmallVector<unsigned, 32> undefineds;
907 for (uint32_t i = 0; i < nList.size(); ++i) {
908 const NList &sym = nList[i];
909
910 // Ignore debug symbols for now.
911 // FIXME: may need special handling.
912 if (sym.n_type & N_STAB)
913 continue;
914
915 if ((sym.n_type & N_TYPE) == N_SECT) {
916 Subsections &subsections = sections[sym.n_sect - 1]->subsections;
917 // parseSections() may have chosen not to parse this section.
918 if (subsections.empty())
919 continue;
920 symbolsBySection[sym.n_sect - 1].push_back(i);
921 } else if (isUndef(sym)) {
922 undefineds.push_back(i);
923 } else {
924 symbols[i] = parseNonSectionSymbol(sym, StringRef(strtab + sym.n_strx));
925 }
926 }
927
928 for (size_t i = 0; i < sections.size(); ++i) {
929 Subsections &subsections = sections[i]->subsections;
930 if (subsections.empty())
931 continue;
932 std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
933 uint64_t sectionAddr = sectionHeaders[i].addr;
934 uint32_t sectionAlign = 1u << sectionHeaders[i].align;
935
936 // Some sections have already been split into subsections during
937 // parseSections(), so we simply need to match Symbols to the corresponding
938 // subsection here.
939 if (sections[i]->doneSplitting) {
940 for (size_t j = 0; j < symbolIndices.size(); ++j) {
941 uint32_t symIndex = symbolIndices[j];
942 const NList &sym = nList[symIndex];
943 StringRef name = strtab + sym.n_strx;
944 uint64_t symbolOffset = sym.n_value - sectionAddr;
945 InputSection *isec =
946 findContainingSubsection(*sections[i], &symbolOffset);
947 if (symbolOffset != 0) {
948 error(toString(*sections[i]) + ": symbol " + name +
949 " at misaligned offset");
950 continue;
951 }
952 symbols[symIndex] =
953 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
954 }
955 continue;
956 }
957 sections[i]->doneSplitting = true;
958
959 // Calculate symbol sizes and create subsections by splitting the sections
960 // along symbol boundaries.
961 // We populate subsections by repeatedly splitting the last (highest
962 // address) subsection.
963 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
964 return nList[lhs].n_value < nList[rhs].n_value;
965 });
966 for (size_t j = 0; j < symbolIndices.size(); ++j) {
967 uint32_t symIndex = symbolIndices[j];
968 const NList &sym = nList[symIndex];
969 StringRef name = strtab + sym.n_strx;
970 Subsection &subsec = subsections.back();
971 InputSection *isec = subsec.isec;
972
973 uint64_t subsecAddr = sectionAddr + subsec.offset;
974 size_t symbolOffset = sym.n_value - subsecAddr;
975 uint64_t symbolSize =
976 j + 1 < symbolIndices.size()
977 ? nList[symbolIndices[j + 1]].n_value - sym.n_value
978 : isec->data.size() - symbolOffset;
979 // There are 4 cases where we do not need to create a new subsection:
980 // 1. If the input file does not use subsections-via-symbols.
981 // 2. Multiple symbols at the same address only induce one subsection.
982 // (The symbolOffset == 0 check covers both this case as well as
983 // the first loop iteration.)
984 // 3. Alternative entry points do not induce new subsections.
985 // 4. If we have a literal section (e.g. __cstring and __literal4).
986 if (!subsectionsViaSymbols || symbolOffset == 0 ||
987 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
988 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
989 symbolSize, forceHidden);
990 continue;
991 }
992 auto *concatIsec = cast<ConcatInputSection>(isec);
993
994 auto *nextIsec = make<ConcatInputSection>(*concatIsec);
995 nextIsec->wasCoalesced = false;
996 if (isZeroFill(isec->getFlags())) {
997 // Zero-fill sections have NULL data.data() non-zero data.size()
998 nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
999 isec->data = {nullptr, symbolOffset};
1000 } else {
1001 nextIsec->data = isec->data.slice(symbolOffset);
1002 isec->data = isec->data.slice(0, symbolOffset);
1003 }
1004
1005 // By construction, the symbol will be at offset zero in the new
1006 // subsection.
1007 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
1008 symbolSize, forceHidden);
1009 // TODO: ld64 appears to preserve the original alignment as well as each
1010 // subsection's offset from the last aligned address. We should consider
1011 // emulating that behavior.
1012 nextIsec->align = MinAlign(sectionAlign, sym.n_value);
1013 subsections.push_back({sym.n_value - sectionAddr, nextIsec});
1014 }
1015 }
1016
1017 // Undefined symbols can trigger recursive fetch from Archives due to
1018 // LazySymbols. Process defined symbols first so that the relative order
1019 // between a defined symbol and an undefined symbol does not change the
1020 // symbol resolution behavior. In addition, a set of interconnected symbols
1021 // will all be resolved to the same file, instead of being resolved to
1022 // different files.
1023 for (unsigned i : undefineds) {
1024 const NList &sym = nList[i];
1025 StringRef name = strtab + sym.n_strx;
1026 symbols[i] = parseNonSectionSymbol(sym, name);
1027 }
1028 }
1029
OpaqueFile(MemoryBufferRef mb,StringRef segName,StringRef sectName)1030 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
1031 StringRef sectName)
1032 : InputFile(OpaqueKind, mb) {
1033 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1034 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
1035 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
1036 sectName.take_front(16),
1037 /*flags=*/0, /*addr=*/0));
1038 Section §ion = *sections.back();
1039 ConcatInputSection *isec = make<ConcatInputSection>(section, data);
1040 isec->live = true;
1041 section.subsections.push_back({0, isec});
1042 }
1043
ObjFile(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName,bool lazy,bool forceHidden)1044 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
1045 bool lazy, bool forceHidden)
1046 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) {
1047 this->archiveName = std::string(archiveName);
1048 if (lazy) {
1049 if (target->wordSize == 8)
1050 parseLazy<LP64>();
1051 else
1052 parseLazy<ILP32>();
1053 } else {
1054 if (target->wordSize == 8)
1055 parse<LP64>();
1056 else
1057 parse<ILP32>();
1058 }
1059 }
1060
parse()1061 template <class LP> void ObjFile::parse() {
1062 using Header = typename LP::mach_header;
1063 using SegmentCommand = typename LP::segment_command;
1064 using SectionHeader = typename LP::section;
1065 using NList = typename LP::nlist;
1066
1067 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1068 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1069
1070 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
1071 if (arch != config->arch()) {
1072 auto msg = config->errorForArchMismatch
1073 ? static_cast<void (*)(const Twine &)>(error)
1074 : warn;
1075 msg(toString(this) + " has architecture " + getArchitectureName(arch) +
1076 " which is incompatible with target architecture " +
1077 getArchitectureName(config->arch()));
1078 return;
1079 }
1080
1081 if (!checkCompatibility(this))
1082 return;
1083
1084 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
1085 StringRef data{reinterpret_cast<const char *>(cmd + 1),
1086 cmd->cmdsize - sizeof(linker_option_command)};
1087 parseLCLinkerOption(this, cmd->count, data);
1088 }
1089
1090 ArrayRef<SectionHeader> sectionHeaders;
1091 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1092 auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1093 sectionHeaders = ArrayRef<SectionHeader>{
1094 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1095 parseSections(sectionHeaders);
1096 }
1097
1098 // TODO: Error on missing LC_SYMTAB?
1099 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1100 auto *c = reinterpret_cast<const symtab_command *>(cmd);
1101 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1102 c->nsyms);
1103 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1104 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1105 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1106 }
1107
1108 // The relocations may refer to the symbols, so we parse them after we have
1109 // parsed all the symbols.
1110 for (size_t i = 0, n = sections.size(); i < n; ++i)
1111 if (!sections[i]->subsections.empty())
1112 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1113
1114 if (!config->ignoreOptimizationHints)
1115 if (auto *cmd = findCommand<linkedit_data_command>(
1116 hdr, LC_LINKER_OPTIMIZATION_HINT))
1117 parseOptimizationHints({buf + cmd->dataoff, cmd->datasize});
1118
1119 parseDebugInfo();
1120
1121 Section *ehFrameSection = nullptr;
1122 Section *compactUnwindSection = nullptr;
1123 for (Section *sec : sections) {
1124 Section **s = StringSwitch<Section **>(sec->name)
1125 .Case(section_names::compactUnwind, &compactUnwindSection)
1126 .Case(section_names::ehFrame, &ehFrameSection)
1127 .Default(nullptr);
1128 if (s)
1129 *s = sec;
1130 }
1131 if (compactUnwindSection)
1132 registerCompactUnwind(*compactUnwindSection);
1133 if (ehFrameSection)
1134 registerEhFrames(*ehFrameSection);
1135 }
1136
parseLazy()1137 template <class LP> void ObjFile::parseLazy() {
1138 using Header = typename LP::mach_header;
1139 using NList = typename LP::nlist;
1140
1141 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1142 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1143 const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1144 if (!cmd)
1145 return;
1146 auto *c = reinterpret_cast<const symtab_command *>(cmd);
1147 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1148 c->nsyms);
1149 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1150 symbols.resize(nList.size());
1151 for (auto it : llvm::enumerate(nList)) {
1152 const NList &sym = it.value();
1153 if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1154 // TODO: Bound checking
1155 StringRef name = strtab + sym.n_strx;
1156 symbols[it.index()] = symtab->addLazyObject(name, *this);
1157 if (!lazy)
1158 break;
1159 }
1160 }
1161 }
1162
parseDebugInfo()1163 void ObjFile::parseDebugInfo() {
1164 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1165 if (!dObj)
1166 return;
1167
1168 // We do not re-use the context from getDwarf() here as that function
1169 // constructs an expensive DWARFCache object.
1170 auto *ctx = make<DWARFContext>(
1171 std::move(dObj), "",
1172 [&](Error err) {
1173 warn(toString(this) + ": " + toString(std::move(err)));
1174 },
1175 [&](Error warning) {
1176 warn(toString(this) + ": " + toString(std::move(warning)));
1177 });
1178
1179 // TODO: Since object files can contain a lot of DWARF info, we should verify
1180 // that we are parsing just the info we need
1181 const DWARFContext::compile_unit_range &units = ctx->compile_units();
1182 // FIXME: There can be more than one compile unit per object file. See
1183 // PR48637.
1184 auto it = units.begin();
1185 compileUnit = it != units.end() ? it->get() : nullptr;
1186 }
1187
getDataInCode() const1188 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1189 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1190 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1191 if (!cmd)
1192 return {};
1193 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1194 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1195 c->datasize / sizeof(data_in_code_entry)};
1196 }
1197
1198 // Create pointers from symbols to their associated compact unwind entries.
registerCompactUnwind(Section & compactUnwindSection)1199 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1200 for (const Subsection &subsection : compactUnwindSection.subsections) {
1201 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1202 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1203 // their addends in its data. Thus if ICF operated naively and compared the
1204 // entire contents of each CUE, entries with identical unwind info but e.g.
1205 // belonging to different functions would never be considered equivalent. To
1206 // work around this problem, we remove some parts of the data containing the
1207 // embedded addends. In particular, we remove the function address and LSDA
1208 // pointers. Since these locations are at the start and end of the entry,
1209 // we can do this using a simple, efficient slice rather than performing a
1210 // copy. We are not losing any information here because the embedded
1211 // addends have already been parsed in the corresponding Reloc structs.
1212 //
1213 // Removing these pointers would not be safe if they were pointers to
1214 // absolute symbols. In that case, there would be no corresponding
1215 // relocation. However, (AFAIK) MC cannot emit references to absolute
1216 // symbols for either the function address or the LSDA. However, it *can* do
1217 // so for the personality pointer, so we are not slicing that field away.
1218 //
1219 // Note that we do not adjust the offsets of the corresponding relocations;
1220 // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1221 // truncated input sections.
1222 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1223 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1224 // llvm-mc omits CU entries for functions that need DWARF encoding, but
1225 // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1226 // CU entries from the DWARF info during the output phase.
1227 if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding)
1228 continue;
1229
1230 ConcatInputSection *referentIsec;
1231 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1232 Reloc &r = *it;
1233 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1234 if (r.offset != 0) {
1235 ++it;
1236 continue;
1237 }
1238 uint64_t add = r.addend;
1239 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1240 // Check whether the symbol defined in this file is the prevailing one.
1241 // Skip if it is e.g. a weak def that didn't prevail.
1242 if (sym->getFile() != this) {
1243 ++it;
1244 continue;
1245 }
1246 add += sym->value;
1247 referentIsec = cast<ConcatInputSection>(sym->isec);
1248 } else {
1249 referentIsec =
1250 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1251 }
1252 // Unwind info lives in __DATA, and finalization of __TEXT will occur
1253 // before finalization of __DATA. Moreover, the finalization of unwind
1254 // info depends on the exact addresses that it references. So it is safe
1255 // for compact unwind to reference addresses in __TEXT, but not addresses
1256 // in any other segment.
1257 if (referentIsec->getSegName() != segment_names::text)
1258 error(isec->getLocation(r.offset) + " references section " +
1259 referentIsec->getName() + " which is not in segment __TEXT");
1260 // The functionAddress relocations are typically section relocations.
1261 // However, unwind info operates on a per-symbol basis, so we search for
1262 // the function symbol here.
1263 Defined *d = findSymbolAtOffset(referentIsec, add);
1264 if (!d) {
1265 ++it;
1266 continue;
1267 }
1268 d->unwindEntry = isec;
1269 // Now that the symbol points to the unwind entry, we can remove the reloc
1270 // that points from the unwind entry back to the symbol.
1271 //
1272 // First, the symbol keeps the unwind entry alive (and not vice versa), so
1273 // this keeps dead-stripping simple.
1274 //
1275 // Moreover, it reduces the work that ICF needs to do to figure out if
1276 // functions with unwind info are foldable.
1277 //
1278 // However, this does make it possible for ICF to fold CUEs that point to
1279 // distinct functions (if the CUEs are otherwise identical).
1280 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1281 // each one can hold a distinct functionAddress value.
1282 //
1283 // Given that clang emits relocations in reverse order of address, this
1284 // relocation should be at the end of the vector for most of our input
1285 // object files, so this erase() is typically an O(1) operation.
1286 it = isec->relocs.erase(it);
1287 }
1288 }
1289 }
1290
1291 struct CIE {
1292 macho::Symbol *personalitySymbol = nullptr;
1293 bool fdesHaveAug = false;
1294 uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1295 uint8_t funcPtrSize = 0;
1296 };
1297
pointerEncodingToSize(uint8_t enc)1298 static uint8_t pointerEncodingToSize(uint8_t enc) {
1299 switch (enc & 0xf) {
1300 case dwarf::DW_EH_PE_absptr:
1301 return target->wordSize;
1302 case dwarf::DW_EH_PE_sdata4:
1303 return 4;
1304 case dwarf::DW_EH_PE_sdata8:
1305 // ld64 doesn't actually support sdata8, but this seems simple enough...
1306 return 8;
1307 default:
1308 return 0;
1309 };
1310 }
1311
parseCIE(const InputSection * isec,const EhReader & reader,size_t off)1312 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1313 size_t off) {
1314 // Handling the full generality of possible DWARF encodings would be a major
1315 // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1316 // DWARF and handle just that.
1317 constexpr uint8_t expectedPersonalityEnc =
1318 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1319
1320 CIE cie;
1321 uint8_t version = reader.readByte(&off);
1322 if (version != 1 && version != 3)
1323 fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1324 StringRef aug = reader.readString(&off);
1325 reader.skipLeb128(&off); // skip code alignment
1326 reader.skipLeb128(&off); // skip data alignment
1327 reader.skipLeb128(&off); // skip return address register
1328 reader.skipLeb128(&off); // skip aug data length
1329 uint64_t personalityAddrOff = 0;
1330 for (char c : aug) {
1331 switch (c) {
1332 case 'z':
1333 cie.fdesHaveAug = true;
1334 break;
1335 case 'P': {
1336 uint8_t personalityEnc = reader.readByte(&off);
1337 if (personalityEnc != expectedPersonalityEnc)
1338 reader.failOn(off, "unexpected personality encoding 0x" +
1339 Twine::utohexstr(personalityEnc));
1340 personalityAddrOff = off;
1341 off += 4;
1342 break;
1343 }
1344 case 'L': {
1345 uint8_t lsdaEnc = reader.readByte(&off);
1346 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1347 if (cie.lsdaPtrSize == 0)
1348 reader.failOn(off, "unexpected LSDA encoding 0x" +
1349 Twine::utohexstr(lsdaEnc));
1350 break;
1351 }
1352 case 'R': {
1353 uint8_t pointerEnc = reader.readByte(&off);
1354 cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1355 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1356 reader.failOn(off, "unexpected pointer encoding 0x" +
1357 Twine::utohexstr(pointerEnc));
1358 break;
1359 }
1360 default:
1361 break;
1362 }
1363 }
1364 if (personalityAddrOff != 0) {
1365 auto personalityRelocIt =
1366 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1367 return r.offset == personalityAddrOff;
1368 });
1369 if (personalityRelocIt == isec->relocs.end())
1370 reader.failOn(off, "Failed to locate relocation for personality symbol");
1371 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1372 }
1373 return cie;
1374 }
1375
1376 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1377 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1378 // This function recovers the target address from the subtractors, essentially
1379 // performing the inverse operation of EhRelocator.
1380 //
1381 // Concretely, we expect our relocations to write the value of `PC -
1382 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1383 // points to a symbol plus an addend.
1384 //
1385 // It is important that the minuend relocation point to a symbol within the
1386 // same section as the fixup value, since sections may get moved around.
1387 //
1388 // For example, for arm64, llvm-mc emits relocations for the target function
1389 // address like so:
1390 //
1391 // ltmp:
1392 // <CIE start>
1393 // ...
1394 // <CIE end>
1395 // ... multiple FDEs ...
1396 // <FDE start>
1397 // <target function address - (ltmp + pcrel offset)>
1398 // ...
1399 //
1400 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1401 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1402 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1403 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1404 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1405 //
1406 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1407 // to `PC`.
1408 template <bool Invert = false>
1409 Defined *
targetSymFromCanonicalSubtractor(const InputSection * isec,std::vector<macho::Reloc>::iterator relocIt)1410 targetSymFromCanonicalSubtractor(const InputSection *isec,
1411 std::vector<macho::Reloc>::iterator relocIt) {
1412 macho::Reloc &subtrahend = *relocIt;
1413 macho::Reloc &minuend = *std::next(relocIt);
1414 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1415 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1416 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1417 // addend.
1418 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1419 Defined *target =
1420 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1421 if (!pcSym) {
1422 auto *targetIsec =
1423 cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1424 target = findSymbolAtOffset(targetIsec, minuend.addend);
1425 }
1426 if (Invert)
1427 std::swap(pcSym, target);
1428 if (pcSym->isec == isec) {
1429 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1430 fatal("invalid FDE relocation in __eh_frame");
1431 } else {
1432 // Ensure the pcReloc points to a symbol within the current EH frame.
1433 // HACK: we should really verify that the original relocation's semantics
1434 // are preserved. In particular, we should have
1435 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1436 // have an easy way to access the offsets from this point in the code; some
1437 // refactoring is needed for that.
1438 macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1439 pcReloc.referent = isec->symbols[0];
1440 assert(isec->symbols[0]->value == 0);
1441 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1442 }
1443 return target;
1444 }
1445
findSymbolAtAddress(const std::vector<Section * > & sections,uint64_t addr)1446 Defined *findSymbolAtAddress(const std::vector<Section *> §ions,
1447 uint64_t addr) {
1448 Section *sec = findContainingSection(sections, &addr);
1449 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1450 return findSymbolAtOffset(isec, addr);
1451 }
1452
1453 // For symbols that don't have compact unwind info, associate them with the more
1454 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1455 //
1456 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1457 // description of its format.
1458 //
1459 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1460 // are relocations which are implicitly encoded as offsets in the section data.
1461 // We convert them into explicit Reloc structs so that the EH frames can be
1462 // handled just like a regular ConcatInputSection later in our output phase.
1463 //
1464 // We also need to handle the case where our input object file has explicit
1465 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1466 // look for the "abs-ified" relocation if an explicit relocation is absent.
registerEhFrames(Section & ehFrameSection)1467 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1468 DenseMap<const InputSection *, CIE> cieMap;
1469 for (const Subsection &subsec : ehFrameSection.subsections) {
1470 auto *isec = cast<ConcatInputSection>(subsec.isec);
1471 uint64_t isecOff = subsec.offset;
1472
1473 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1474 // that all EH frames have an associated symbol so that we can generate
1475 // subtractor relocs that reference them.
1476 if (isec->symbols.size() == 0)
1477 isec->symbols.push_back(make<Defined>(
1478 "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0,
1479 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
1480 /*includeInSymtab=*/false, /*isThumb=*/false,
1481 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
1482 else if (isec->symbols[0]->value != 0)
1483 fatal("found symbol at unexpected offset in __eh_frame");
1484
1485 EhReader reader(this, isec->data, subsec.offset);
1486 size_t dataOff = 0; // Offset from the start of the EH frame.
1487 reader.skipValidLength(&dataOff); // readLength() already validated this.
1488 // cieOffOff is the offset from the start of the EH frame to the cieOff
1489 // value, which is itself an offset from the current PC to a CIE.
1490 const size_t cieOffOff = dataOff;
1491
1492 EhRelocator ehRelocator(isec);
1493 auto cieOffRelocIt = llvm::find_if(
1494 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1495 InputSection *cieIsec = nullptr;
1496 if (cieOffRelocIt != isec->relocs.end()) {
1497 // We already have an explicit relocation for the CIE offset.
1498 cieIsec =
1499 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1500 ->isec;
1501 dataOff += sizeof(uint32_t);
1502 } else {
1503 // If we haven't found a relocation, then the CIE offset is most likely
1504 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1505 // and generate a Reloc struct.
1506 uint32_t cieMinuend = reader.readU32(&dataOff);
1507 if (cieMinuend == 0)
1508 cieIsec = isec;
1509 else {
1510 uint32_t cieOff = isecOff + dataOff - cieMinuend;
1511 cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1512 if (cieIsec == nullptr)
1513 fatal("failed to find CIE");
1514 }
1515 if (cieIsec != isec)
1516 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1517 /*length=*/2);
1518 }
1519 if (cieIsec == isec) {
1520 cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1521 continue;
1522 }
1523
1524 assert(cieMap.count(cieIsec));
1525 const CIE &cie = cieMap[cieIsec];
1526 // Offset of the function address within the EH frame.
1527 const size_t funcAddrOff = dataOff;
1528 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1529 ehFrameSection.addr + isecOff + funcAddrOff;
1530 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1531 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1532 Optional<uint64_t> lsdaAddrOpt;
1533 if (cie.fdesHaveAug) {
1534 reader.skipLeb128(&dataOff);
1535 lsdaAddrOff = dataOff;
1536 if (cie.lsdaPtrSize != 0) {
1537 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1538 if (lsdaOff != 0) // FIXME possible to test this?
1539 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1540 }
1541 }
1542
1543 auto funcAddrRelocIt = isec->relocs.end();
1544 auto lsdaAddrRelocIt = isec->relocs.end();
1545 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1546 if (it->offset == funcAddrOff)
1547 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1548 else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1549 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1550 }
1551
1552 Defined *funcSym;
1553 if (funcAddrRelocIt != isec->relocs.end()) {
1554 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1555 // Canonicalize the symbol. If there are multiple symbols at the same
1556 // address, we want both `registerEhFrame` and `registerCompactUnwind`
1557 // to register the unwind entry under same symbol.
1558 // This is not particularly efficient, but we should run into this case
1559 // infrequently (only when handling the output of `ld -r`).
1560 if (funcSym->isec)
1561 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
1562 funcSym->value);
1563 } else {
1564 funcSym = findSymbolAtAddress(sections, funcAddr);
1565 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1566 }
1567 // The symbol has been coalesced, or already has a compact unwind entry.
1568 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1569 // We must prune unused FDEs for correctness, so we cannot rely on
1570 // -dead_strip being enabled.
1571 isec->live = false;
1572 continue;
1573 }
1574
1575 InputSection *lsdaIsec = nullptr;
1576 if (lsdaAddrRelocIt != isec->relocs.end()) {
1577 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1578 } else if (lsdaAddrOpt) {
1579 uint64_t lsdaAddr = *lsdaAddrOpt;
1580 Section *sec = findContainingSection(sections, &lsdaAddr);
1581 lsdaIsec =
1582 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1583 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1584 }
1585
1586 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1587 funcSym->unwindEntry = isec;
1588 ehRelocator.commit();
1589 }
1590
1591 // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1592 // are normally required to be kept alive if they reference a live symbol.
1593 // However, we've explicitly created a dependency from a symbol to its FDE, so
1594 // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1595 // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1596 // live symbol (e.g. if there were multiple weak copies). Remove this flag to
1597 // let dead-stripping proceed correctly.
1598 ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1599 }
1600
sourceFile() const1601 std::string ObjFile::sourceFile() const {
1602 SmallString<261> dir(compileUnit->getCompilationDir());
1603 StringRef sep = sys::path::get_separator();
1604 // We don't use `path::append` here because we want an empty `dir` to result
1605 // in an absolute path. `append` would give us a relative path for that case.
1606 if (!dir.endswith(sep))
1607 dir += sep;
1608 return (dir + compileUnit->getUnitDIE().getShortName()).str();
1609 }
1610
getDwarf()1611 lld::DWARFCache *ObjFile::getDwarf() {
1612 llvm::call_once(initDwarf, [this]() {
1613 auto dwObj = DwarfObject::create(this);
1614 if (!dwObj)
1615 return;
1616 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1617 std::move(dwObj), "",
1618 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1619 [&](Error warning) {
1620 warn(getName() + ": " + toString(std::move(warning)));
1621 }));
1622 });
1623
1624 return dwarfCache.get();
1625 }
1626 // The path can point to either a dylib or a .tbd file.
loadDylib(StringRef path,DylibFile * umbrella)1627 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1628 Optional<MemoryBufferRef> mbref = readFile(path);
1629 if (!mbref) {
1630 error("could not read dylib file at " + path);
1631 return nullptr;
1632 }
1633 return loadDylib(*mbref, umbrella);
1634 }
1635
1636 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1637 // the first document storing child pointers to the rest of them. When we are
1638 // processing a given TBD file, we store that top-level document in
1639 // currentTopLevelTapi. When processing re-exports, we search its children for
1640 // potentially matching documents in the same TBD file. Note that the children
1641 // themselves don't point to further documents, i.e. this is a two-level tree.
1642 //
1643 // Re-exports can either refer to on-disk files, or to documents within .tbd
1644 // files.
findDylib(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)1645 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1646 const InterfaceFile *currentTopLevelTapi) {
1647 // Search order:
1648 // 1. Install name basename in -F / -L directories.
1649 {
1650 StringRef stem = path::stem(path);
1651 SmallString<128> frameworkName;
1652 path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1653 bool isFramework = path.endswith(frameworkName);
1654 if (isFramework) {
1655 for (StringRef dir : config->frameworkSearchPaths) {
1656 SmallString<128> candidate = dir;
1657 path::append(candidate, frameworkName);
1658 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1659 return loadDylib(*dylibPath, umbrella);
1660 }
1661 } else if (Optional<StringRef> dylibPath = findPathCombination(
1662 stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1663 return loadDylib(*dylibPath, umbrella);
1664 }
1665
1666 // 2. As absolute path.
1667 if (path::is_absolute(path, path::Style::posix))
1668 for (StringRef root : config->systemLibraryRoots)
1669 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1670 return loadDylib(*dylibPath, umbrella);
1671
1672 // 3. As relative path.
1673
1674 // TODO: Handle -dylib_file
1675
1676 // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1677 SmallString<128> newPath;
1678 if (config->outputType == MH_EXECUTE &&
1679 path.consume_front("@executable_path/")) {
1680 // ld64 allows overriding this with the undocumented flag -executable_path.
1681 // lld doesn't currently implement that flag.
1682 // FIXME: Consider using finalOutput instead of outputFile.
1683 path::append(newPath, path::parent_path(config->outputFile), path);
1684 path = newPath;
1685 } else if (path.consume_front("@loader_path/")) {
1686 fs::real_path(umbrella->getName(), newPath);
1687 path::remove_filename(newPath);
1688 path::append(newPath, path);
1689 path = newPath;
1690 } else if (path.startswith("@rpath/")) {
1691 for (StringRef rpath : umbrella->rpaths) {
1692 newPath.clear();
1693 if (rpath.consume_front("@loader_path/")) {
1694 fs::real_path(umbrella->getName(), newPath);
1695 path::remove_filename(newPath);
1696 }
1697 path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1698 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1699 return loadDylib(*dylibPath, umbrella);
1700 }
1701 }
1702
1703 // FIXME: Should this be further up?
1704 if (currentTopLevelTapi) {
1705 for (InterfaceFile &child :
1706 make_pointee_range(currentTopLevelTapi->documents())) {
1707 assert(child.documents().empty());
1708 if (path == child.getInstallName()) {
1709 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1710 /*explicitlyLinked=*/false);
1711 file->parseReexports(child);
1712 return file;
1713 }
1714 }
1715 }
1716
1717 if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1718 return loadDylib(*dylibPath, umbrella);
1719
1720 return nullptr;
1721 }
1722
1723 // If a re-exported dylib is public (lives in /usr/lib or
1724 // /System/Library/Frameworks), then it is considered implicitly linked: we
1725 // should bind to its symbols directly instead of via the re-exporting umbrella
1726 // library.
isImplicitlyLinked(StringRef path)1727 static bool isImplicitlyLinked(StringRef path) {
1728 if (!config->implicitDylibs)
1729 return false;
1730
1731 if (path::parent_path(path) == "/usr/lib")
1732 return true;
1733
1734 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1735 if (path.consume_front("/System/Library/Frameworks/")) {
1736 StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1737 return path::filename(path) == frameworkName;
1738 }
1739
1740 return false;
1741 }
1742
loadReexport(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)1743 static void loadReexport(StringRef path, DylibFile *umbrella,
1744 const InterfaceFile *currentTopLevelTapi) {
1745 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1746 if (!reexport)
1747 error("unable to locate re-export with install name " + path);
1748 }
1749
DylibFile(MemoryBufferRef mb,DylibFile * umbrella,bool isBundleLoader,bool explicitlyLinked)1750 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1751 bool isBundleLoader, bool explicitlyLinked)
1752 : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1753 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1754 assert(!isBundleLoader || !umbrella);
1755 if (umbrella == nullptr)
1756 umbrella = this;
1757 this->umbrella = umbrella;
1758
1759 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1760
1761 // Initialize installName.
1762 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1763 auto *c = reinterpret_cast<const dylib_command *>(cmd);
1764 currentVersion = read32le(&c->dylib.current_version);
1765 compatibilityVersion = read32le(&c->dylib.compatibility_version);
1766 installName =
1767 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1768 } else if (!isBundleLoader) {
1769 // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1770 // so it's OK.
1771 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1772 return;
1773 }
1774
1775 if (config->printEachFile)
1776 message(toString(this));
1777 inputFiles.insert(this);
1778
1779 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1780
1781 if (!checkCompatibility(this))
1782 return;
1783
1784 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1785
1786 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1787 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1788 rpaths.push_back(rpath);
1789 }
1790
1791 // Initialize symbols.
1792 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1793
1794 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1795 const auto *exportsTrie =
1796 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1797 if (dyldInfo && exportsTrie) {
1798 // It's unclear what should happen in this case. Maybe we should only error
1799 // out if the two load commands refer to different data?
1800 error("dylib " + toString(this) +
1801 " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1802 return;
1803 } else if (dyldInfo) {
1804 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1805 } else if (exportsTrie) {
1806 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1807 } else {
1808 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1809 toString(this));
1810 return;
1811 }
1812 }
1813
parseExportedSymbols(uint32_t offset,uint32_t size)1814 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1815 struct TrieEntry {
1816 StringRef name;
1817 uint64_t flags;
1818 };
1819
1820 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1821 std::vector<TrieEntry> entries;
1822 // Find all the $ld$* symbols to process first.
1823 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1824 StringRef savedName = saver().save(name);
1825 if (handleLDSymbol(savedName))
1826 return;
1827 entries.push_back({savedName, flags});
1828 });
1829
1830 // Process the "normal" symbols.
1831 for (TrieEntry &entry : entries) {
1832 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1833 continue;
1834
1835 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1836 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1837
1838 symbols.push_back(
1839 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1840 }
1841 }
1842
parseLoadCommands(MemoryBufferRef mb)1843 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1844 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1845 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1846 target->headerSize;
1847 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1848 auto *cmd = reinterpret_cast<const load_command *>(p);
1849 p += cmd->cmdsize;
1850
1851 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1852 cmd->cmd == LC_REEXPORT_DYLIB) {
1853 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1854 StringRef reexportPath =
1855 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1856 loadReexport(reexportPath, exportingFile, nullptr);
1857 }
1858
1859 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1860 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1861 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1862 if (config->namespaceKind == NamespaceKind::flat &&
1863 cmd->cmd == LC_LOAD_DYLIB) {
1864 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1865 StringRef dylibPath =
1866 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1867 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1868 if (!dylib)
1869 error(Twine("unable to locate library '") + dylibPath +
1870 "' loaded from '" + toString(this) + "' for -flat_namespace");
1871 }
1872 }
1873 }
1874
1875 // Some versions of Xcode ship with .tbd files that don't have the right
1876 // platform settings.
1877 constexpr std::array<StringRef, 3> skipPlatformChecks{
1878 "/usr/lib/system/libsystem_kernel.dylib",
1879 "/usr/lib/system/libsystem_platform.dylib",
1880 "/usr/lib/system/libsystem_pthread.dylib"};
1881
skipPlatformCheckForCatalyst(const InterfaceFile & interface,bool explicitlyLinked)1882 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1883 bool explicitlyLinked) {
1884 // Catalyst outputs can link against implicitly linked macOS-only libraries.
1885 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1886 return false;
1887 return is_contained(interface.targets(),
1888 MachO::Target(config->arch(), PLATFORM_MACOS));
1889 }
1890
DylibFile(const InterfaceFile & interface,DylibFile * umbrella,bool isBundleLoader,bool explicitlyLinked)1891 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1892 bool isBundleLoader, bool explicitlyLinked)
1893 : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1894 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1895 // FIXME: Add test for the missing TBD code path.
1896
1897 if (umbrella == nullptr)
1898 umbrella = this;
1899 this->umbrella = umbrella;
1900
1901 installName = saver().save(interface.getInstallName());
1902 compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1903 currentVersion = interface.getCurrentVersion().rawValue();
1904
1905 if (config->printEachFile)
1906 message(toString(this));
1907 inputFiles.insert(this);
1908
1909 if (!is_contained(skipPlatformChecks, installName) &&
1910 !is_contained(interface.targets(), config->platformInfo.target) &&
1911 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1912 error(toString(this) + " is incompatible with " +
1913 std::string(config->platformInfo.target));
1914 return;
1915 }
1916
1917 checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1918
1919 exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1920 auto addSymbol = [&](const Twine &name) -> void {
1921 StringRef savedName = saver().save(name);
1922 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1923 return;
1924
1925 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1926 /*isWeakDef=*/false,
1927 /*isTlv=*/false));
1928 };
1929
1930 std::vector<const llvm::MachO::Symbol *> normalSymbols;
1931 normalSymbols.reserve(interface.symbolsCount());
1932 for (const auto *symbol : interface.symbols()) {
1933 if (!symbol->getArchitectures().has(config->arch()))
1934 continue;
1935 if (handleLDSymbol(symbol->getName()))
1936 continue;
1937
1938 switch (symbol->getKind()) {
1939 case SymbolKind::GlobalSymbol: // Fallthrough
1940 case SymbolKind::ObjectiveCClass: // Fallthrough
1941 case SymbolKind::ObjectiveCClassEHType: // Fallthrough
1942 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1943 normalSymbols.push_back(symbol);
1944 }
1945 }
1946
1947 // TODO(compnerd) filter out symbols based on the target platform
1948 // TODO: handle weak defs, thread locals
1949 for (const auto *symbol : normalSymbols) {
1950 switch (symbol->getKind()) {
1951 case SymbolKind::GlobalSymbol:
1952 addSymbol(symbol->getName());
1953 break;
1954 case SymbolKind::ObjectiveCClass:
1955 // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1956 // want to emulate that.
1957 addSymbol(objc::klass + symbol->getName());
1958 addSymbol(objc::metaclass + symbol->getName());
1959 break;
1960 case SymbolKind::ObjectiveCClassEHType:
1961 addSymbol(objc::ehtype + symbol->getName());
1962 break;
1963 case SymbolKind::ObjectiveCInstanceVariable:
1964 addSymbol(objc::ivar + symbol->getName());
1965 break;
1966 }
1967 }
1968 }
1969
DylibFile(DylibFile * umbrella)1970 DylibFile::DylibFile(DylibFile *umbrella)
1971 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1972 explicitlyLinked(false), isBundleLoader(false) {
1973 if (umbrella == nullptr)
1974 umbrella = this;
1975 this->umbrella = umbrella;
1976 }
1977
parseReexports(const InterfaceFile & interface)1978 void DylibFile::parseReexports(const InterfaceFile &interface) {
1979 const InterfaceFile *topLevel =
1980 interface.getParent() == nullptr ? &interface : interface.getParent();
1981 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1982 InterfaceFile::const_target_range targets = intfRef.targets();
1983 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1984 is_contained(targets, config->platformInfo.target))
1985 loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1986 }
1987 }
1988
isExplicitlyLinked() const1989 bool DylibFile::isExplicitlyLinked() const {
1990 if (!explicitlyLinked)
1991 return false;
1992
1993 // If this dylib was explicitly linked, but at least one of the symbols
1994 // of the synthetic dylibs it created via $ld$previous symbols is
1995 // referenced, then that synthetic dylib fulfils the explicit linkedness
1996 // and we can deadstrip this dylib if it's unreferenced.
1997 for (const auto *dylib : extraDylibs)
1998 if (dylib->isReferenced())
1999 return false;
2000
2001 return true;
2002 }
2003
getSyntheticDylib(StringRef installName,uint32_t currentVersion,uint32_t compatVersion)2004 DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
2005 uint32_t currentVersion,
2006 uint32_t compatVersion) {
2007 for (DylibFile *dylib : extraDylibs)
2008 if (dylib->installName == installName) {
2009 // FIXME: Check what to do if different $ld$previous symbols
2010 // request the same dylib, but with different versions.
2011 return dylib;
2012 }
2013
2014 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
2015 dylib->installName = saver().save(installName);
2016 dylib->currentVersion = currentVersion;
2017 dylib->compatibilityVersion = compatVersion;
2018 extraDylibs.push_back(dylib);
2019 return dylib;
2020 }
2021
2022 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
2023 // name, compatibility version or hide/add symbols) for specific target
2024 // versions.
handleLDSymbol(StringRef originalName)2025 bool DylibFile::handleLDSymbol(StringRef originalName) {
2026 if (!originalName.startswith("$ld$"))
2027 return false;
2028
2029 StringRef action;
2030 StringRef name;
2031 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
2032 if (action == "previous")
2033 handleLDPreviousSymbol(name, originalName);
2034 else if (action == "install_name")
2035 handleLDInstallNameSymbol(name, originalName);
2036 else if (action == "hide")
2037 handleLDHideSymbol(name, originalName);
2038 return true;
2039 }
2040
handleLDPreviousSymbol(StringRef name,StringRef originalName)2041 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
2042 // originalName: $ld$ previous $ <installname> $ <compatversion> $
2043 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
2044 StringRef installName;
2045 StringRef compatVersion;
2046 StringRef platformStr;
2047 StringRef startVersion;
2048 StringRef endVersion;
2049 StringRef symbolName;
2050 StringRef rest;
2051
2052 std::tie(installName, name) = name.split('$');
2053 std::tie(compatVersion, name) = name.split('$');
2054 std::tie(platformStr, name) = name.split('$');
2055 std::tie(startVersion, name) = name.split('$');
2056 std::tie(endVersion, name) = name.split('$');
2057 std::tie(symbolName, rest) = name.rsplit('$');
2058
2059 // FIXME: Does this do the right thing for zippered files?
2060 unsigned platform;
2061 if (platformStr.getAsInteger(10, platform) ||
2062 platform != static_cast<unsigned>(config->platform()))
2063 return;
2064
2065 VersionTuple start;
2066 if (start.tryParse(startVersion)) {
2067 warn("failed to parse start version, symbol '" + originalName +
2068 "' ignored");
2069 return;
2070 }
2071 VersionTuple end;
2072 if (end.tryParse(endVersion)) {
2073 warn("failed to parse end version, symbol '" + originalName + "' ignored");
2074 return;
2075 }
2076 if (config->platformInfo.minimum < start ||
2077 config->platformInfo.minimum >= end)
2078 return;
2079
2080 // Initialized to compatibilityVersion for the symbolName branch below.
2081 uint32_t newCompatibilityVersion = compatibilityVersion;
2082 uint32_t newCurrentVersionForSymbol = currentVersion;
2083 if (!compatVersion.empty()) {
2084 VersionTuple cVersion;
2085 if (cVersion.tryParse(compatVersion)) {
2086 warn("failed to parse compatibility version, symbol '" + originalName +
2087 "' ignored");
2088 return;
2089 }
2090 newCompatibilityVersion = encodeVersion(cVersion);
2091 newCurrentVersionForSymbol = newCompatibilityVersion;
2092 }
2093
2094 if (!symbolName.empty()) {
2095 // A $ld$previous$ symbol with symbol name adds a symbol with that name to
2096 // a dylib with given name and version.
2097 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2098 newCompatibilityVersion);
2099
2100 // Just adding the symbol to the symtab works because dylibs contain their
2101 // symbols in alphabetical order, guaranteeing $ld$ symbols to precede
2102 // normal symbols.
2103 dylib->symbols.push_back(symtab->addDylib(
2104 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2105 return;
2106 }
2107
2108 // A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2109 this->installName = saver().save(installName);
2110 this->compatibilityVersion = newCompatibilityVersion;
2111 }
2112
handleLDInstallNameSymbol(StringRef name,StringRef originalName)2113 void DylibFile::handleLDInstallNameSymbol(StringRef name,
2114 StringRef originalName) {
2115 // originalName: $ld$ install_name $ os<version> $ install_name
2116 StringRef condition, installName;
2117 std::tie(condition, installName) = name.split('$');
2118 VersionTuple version;
2119 if (!condition.consume_front("os") || version.tryParse(condition))
2120 warn("failed to parse os version, symbol '" + originalName + "' ignored");
2121 else if (version == config->platformInfo.minimum)
2122 this->installName = saver().save(installName);
2123 }
2124
handleLDHideSymbol(StringRef name,StringRef originalName)2125 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2126 StringRef symbolName;
2127 bool shouldHide = true;
2128 if (name.startswith("os")) {
2129 // If it's hidden based on versions.
2130 name = name.drop_front(2);
2131 StringRef minVersion;
2132 std::tie(minVersion, symbolName) = name.split('$');
2133 VersionTuple versionTup;
2134 if (versionTup.tryParse(minVersion)) {
2135 warn("Failed to parse hidden version, symbol `" + originalName +
2136 "` ignored.");
2137 return;
2138 }
2139 shouldHide = versionTup == config->platformInfo.minimum;
2140 } else {
2141 symbolName = name;
2142 }
2143
2144 if (shouldHide)
2145 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2146 }
2147
checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const2148 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2149 if (config->applicationExtension && !dylibIsAppExtensionSafe)
2150 warn("using '-application_extension' with unsafe dylib: " + toString(this));
2151 }
2152
ArchiveFile(std::unique_ptr<object::Archive> && f,bool forceHidden)2153 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2154 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2155 forceHidden(forceHidden) {}
2156
addLazySymbols()2157 void ArchiveFile::addLazySymbols() {
2158 for (const object::Archive::Symbol &sym : file->symbols())
2159 symtab->addLazyArchive(sym.getName(), this, sym);
2160 }
2161
2162 static Expected<InputFile *>
loadArchiveMember(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName,uint64_t offsetInArchive,bool forceHidden)2163 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2164 uint64_t offsetInArchive, bool forceHidden) {
2165 if (config->zeroModTime)
2166 modTime = 0;
2167
2168 switch (identify_magic(mb.getBuffer())) {
2169 case file_magic::macho_object:
2170 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden);
2171 case file_magic::bitcode:
2172 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2173 forceHidden);
2174 default:
2175 return createStringError(inconvertibleErrorCode(),
2176 mb.getBufferIdentifier() +
2177 " has unhandled file type");
2178 }
2179 }
2180
fetch(const object::Archive::Child & c,StringRef reason)2181 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2182 if (!seen.insert(c.getChildOffset()).second)
2183 return Error::success();
2184
2185 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2186 if (!mb)
2187 return mb.takeError();
2188
2189 // Thin archives refer to .o files, so --reproduce needs the .o files too.
2190 if (tar && c.getParent()->isThin())
2191 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2192
2193 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2194 if (!modTime)
2195 return modTime.takeError();
2196
2197 Expected<InputFile *> file = loadArchiveMember(
2198 *mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden);
2199
2200 if (!file)
2201 return file.takeError();
2202
2203 inputFiles.insert(*file);
2204 printArchiveMemberLoad(reason, *file);
2205 return Error::success();
2206 }
2207
fetch(const object::Archive::Symbol & sym)2208 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2209 object::Archive::Child c =
2210 CHECK(sym.getMember(), toString(this) +
2211 ": could not get the member defining symbol " +
2212 toMachOString(sym));
2213
2214 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2215 // and become invalid after that call. Copy it to the stack so we can refer
2216 // to it later.
2217 const object::Archive::Symbol symCopy = sym;
2218
2219 // ld64 doesn't demangle sym here even with -demangle.
2220 // Match that: intentionally don't call toMachOString().
2221 if (Error e = fetch(c, symCopy.getName()))
2222 error(toString(this) + ": could not get the member defining symbol " +
2223 toMachOString(symCopy) + ": " + toString(std::move(e)));
2224 }
2225
createBitcodeSymbol(const lto::InputFile::Symbol & objSym,BitcodeFile & file)2226 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2227 BitcodeFile &file) {
2228 StringRef name = saver().save(objSym.getName());
2229
2230 if (objSym.isUndefined())
2231 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2232
2233 // TODO: Write a test demonstrating why computing isPrivateExtern before
2234 // LTO compilation is important.
2235 bool isPrivateExtern = false;
2236 switch (objSym.getVisibility()) {
2237 case GlobalValue::HiddenVisibility:
2238 isPrivateExtern = true;
2239 break;
2240 case GlobalValue::ProtectedVisibility:
2241 error(name + " has protected visibility, which is not supported by Mach-O");
2242 break;
2243 case GlobalValue::DefaultVisibility:
2244 break;
2245 }
2246 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2247 file.forceHidden;
2248
2249 if (objSym.isCommon())
2250 return symtab->addCommon(name, &file, objSym.getCommonSize(),
2251 objSym.getCommonAlignment(), isPrivateExtern);
2252
2253 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2254 /*size=*/0, objSym.isWeak(), isPrivateExtern,
2255 /*isThumb=*/false,
2256 /*isReferencedDynamically=*/false,
2257 /*noDeadStrip=*/false,
2258 /*isWeakDefCanBeHidden=*/false);
2259 }
2260
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,bool lazy,bool forceHidden)2261 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2262 uint64_t offsetInArchive, bool lazy, bool forceHidden)
2263 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2264 this->archiveName = std::string(archiveName);
2265 std::string path = mb.getBufferIdentifier().str();
2266 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2267 // name. If two members with the same name are provided, this causes a
2268 // collision and ThinLTO can't proceed.
2269 // So, we append the archive name to disambiguate two members with the same
2270 // name from multiple different archives, and offset within the archive to
2271 // disambiguate two members of the same name from a single archive.
2272 MemoryBufferRef mbref(mb.getBuffer(),
2273 saver().save(archiveName.empty()
2274 ? path
2275 : archiveName +
2276 sys::path::filename(path) +
2277 utostr(offsetInArchive)));
2278
2279 obj = check(lto::InputFile::create(mbref));
2280 if (lazy)
2281 parseLazy();
2282 else
2283 parse();
2284 }
2285
parse()2286 void BitcodeFile::parse() {
2287 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2288 // "winning" symbol will then be marked as Prevailing at LTO compilation
2289 // time.
2290 symbols.clear();
2291 for (const lto::InputFile::Symbol &objSym : obj->symbols())
2292 symbols.push_back(createBitcodeSymbol(objSym, *this));
2293 }
2294
parseLazy()2295 void BitcodeFile::parseLazy() {
2296 symbols.resize(obj->symbols().size());
2297 for (auto it : llvm::enumerate(obj->symbols())) {
2298 const lto::InputFile::Symbol &objSym = it.value();
2299 if (!objSym.isUndefined()) {
2300 symbols[it.index()] =
2301 symtab->addLazyObject(saver().save(objSym.getName()), *this);
2302 if (!lazy)
2303 break;
2304 }
2305 }
2306 }
2307
extract(InputFile & file,StringRef reason)2308 void macho::extract(InputFile &file, StringRef reason) {
2309 assert(file.lazy);
2310 file.lazy = false;
2311 printArchiveMemberLoad(reason, &file);
2312 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2313 bitcode->parse();
2314 } else {
2315 auto &f = cast<ObjFile>(file);
2316 if (target->wordSize == 8)
2317 f.parse<LP64>();
2318 else
2319 f.parse<ILP32>();
2320 }
2321 }
2322
2323 template void ObjFile::parse<LP64>();
2324