1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // Open a given file path and return it as a memory-mapped file. 177 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 179 if (std::error_code ec = mbOrErr.getError()) { 180 error("cannot open " + path + ": " + ec.message()); 181 return None; 182 } 183 184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 185 MemoryBufferRef mbref = mb->getMemBufferRef(); 186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 187 188 // If this is a regular non-fat file, return it. 189 const char *buf = mbref.getBufferStart(); 190 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 191 if (mbref.getBufferSize() < sizeof(uint32_t) || 192 read32be(&hdr->magic) != FAT_MAGIC) { 193 if (tar) 194 tar->append(relativeToRoot(path), mbref.getBuffer()); 195 return mbref; 196 } 197 198 // Object files and archive files may be fat files, which contain multiple 199 // real files for different CPU ISAs. Here, we search for a file that matches 200 // with the current link target and returns it as a MemoryBufferRef. 201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 202 203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 204 if (reinterpret_cast<const char *>(arch + i + 1) > 205 buf + mbref.getBufferSize()) { 206 error(path + ": fat_arch struct extends beyond end of file"); 207 return None; 208 } 209 210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 211 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 212 continue; 213 214 uint32_t offset = read32be(&arch[i].offset); 215 uint32_t size = read32be(&arch[i].size); 216 if (offset + size > mbref.getBufferSize()) 217 error(path + ": slice extends beyond end of file"); 218 if (tar) 219 tar->append(relativeToRoot(path), mbref.getBuffer()); 220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 221 } 222 223 error("unable to find matching architecture in " + path); 224 return None; 225 } 226 227 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 229 230 template <class Section> 231 void ObjFile::parseSections(ArrayRef<Section> sections) { 232 subsections.reserve(sections.size()); 233 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 234 235 for (const Section &sec : sections) { 236 StringRef name = 237 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 238 StringRef segname = 239 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 240 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 241 : buf + sec.offset, 242 static_cast<size_t>(sec.size)}; 243 if (sec.align >= 32) { 244 error("alignment " + std::to_string(sec.align) + " of section " + name + 245 " is too large"); 246 subsections.push_back({}); 247 continue; 248 } 249 uint32_t align = 1 << sec.align; 250 uint32_t flags = sec.flags; 251 252 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 253 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 254 if (sec.nreloc && config->dedupLiterals) 255 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 256 sec.sectname + 257 ", so LLD cannot deduplicate literals. Try re-running without " 258 "--deduplicate-literals."); 259 260 InputSection *isec; 261 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 262 isec = 263 make<CStringInputSection>(segname, name, this, data, align, flags); 264 // FIXME: parallelize this? 265 cast<CStringInputSection>(isec)->splitIntoPieces(); 266 } else { 267 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 268 flags); 269 } 270 subsections.push_back({{0, isec}}); 271 } else if (config->icfLevel != ICFLevel::none && 272 (name == section_names::cfString && 273 segname == segment_names::data)) { 274 uint64_t literalSize = target->wordSize == 8 ? 32 : 16; 275 subsections.push_back({}); 276 SubsectionMap &subsecMap = subsections.back(); 277 for (uint64_t off = 0; off < data.size(); off += literalSize) 278 subsecMap.push_back( 279 {off, make<ConcatInputSection>(segname, name, this, 280 data.slice(off, literalSize), align, 281 flags)}); 282 } else { 283 auto *isec = 284 make<ConcatInputSection>(segname, name, this, data, align, flags); 285 if (!(isDebugSection(isec->getFlags()) && 286 isec->getSegName() == segment_names::dwarf)) { 287 subsections.push_back({{0, isec}}); 288 } else { 289 // Instead of emitting DWARF sections, we emit STABS symbols to the 290 // object files that contain them. We filter them out early to avoid 291 // parsing their relocations unnecessarily. But we must still push an 292 // empty map to ensure the indices line up for the remaining sections. 293 subsections.push_back({}); 294 debugSections.push_back(isec); 295 } 296 } 297 } 298 } 299 300 // Find the subsection corresponding to the greatest section offset that is <= 301 // that of the given offset. 302 // 303 // offset: an offset relative to the start of the original InputSection (before 304 // any subsection splitting has occurred). It will be updated to represent the 305 // same location as an offset relative to the start of the containing 306 // subsection. 307 static InputSection *findContainingSubsection(SubsectionMap &map, 308 uint64_t *offset) { 309 auto it = std::prev(llvm::upper_bound( 310 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 311 return value < subsecEntry.offset; 312 })); 313 *offset -= it->offset; 314 return it->isec; 315 } 316 317 template <class Section> 318 static bool validateRelocationInfo(InputFile *file, const Section &sec, 319 relocation_info rel) { 320 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 321 bool valid = true; 322 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 323 valid = false; 324 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 325 std::to_string(rel.r_address) + " of " + sec.segname + "," + 326 sec.sectname + " in " + toString(file)) 327 .str(); 328 }; 329 330 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 331 error(message("must be extern")); 332 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 333 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 334 "be PC-relative")); 335 if (isThreadLocalVariables(sec.flags) && 336 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 337 error(message("not allowed in thread-local section, must be UNSIGNED")); 338 if (rel.r_length < 2 || rel.r_length > 3 || 339 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 340 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 341 error(message("has width " + std::to_string(1 << rel.r_length) + 342 " bytes, but must be " + 343 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 344 " bytes")); 345 } 346 return valid; 347 } 348 349 template <class Section> 350 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 351 const Section &sec, SubsectionMap &subsecMap) { 352 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 353 ArrayRef<relocation_info> relInfos( 354 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 355 356 auto subsecIt = subsecMap.rbegin(); 357 for (size_t i = 0; i < relInfos.size(); i++) { 358 // Paired relocations serve as Mach-O's method for attaching a 359 // supplemental datum to a primary relocation record. ELF does not 360 // need them because the *_RELOC_RELA records contain the extra 361 // addend field, vs. *_RELOC_REL which omit the addend. 362 // 363 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 364 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 365 // datum for each is a symbolic address. The result is the offset 366 // between two addresses. 367 // 368 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 369 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 370 // base symbolic address. 371 // 372 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 373 // addend into the instruction stream. On X86, a relocatable address 374 // field always occupies an entire contiguous sequence of byte(s), 375 // so there is no need to merge opcode bits with address 376 // bits. Therefore, it's easy and convenient to store addends in the 377 // instruction-stream bytes that would otherwise contain zeroes. By 378 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 379 // address bits so that bitwise arithmetic is necessary to extract 380 // and insert them. Storing addends in the instruction stream is 381 // possible, but inconvenient and more costly at link time. 382 383 int64_t pairedAddend = 0; 384 relocation_info relInfo = relInfos[i]; 385 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 386 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 387 relInfo = relInfos[++i]; 388 } 389 assert(i < relInfos.size()); 390 if (!validateRelocationInfo(this, sec, relInfo)) 391 continue; 392 if (relInfo.r_address & R_SCATTERED) 393 fatal("TODO: Scattered relocations not supported"); 394 395 bool isSubtrahend = 396 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 397 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 398 assert(!(embeddedAddend && pairedAddend)); 399 int64_t totalAddend = pairedAddend + embeddedAddend; 400 Reloc r; 401 r.type = relInfo.r_type; 402 r.pcrel = relInfo.r_pcrel; 403 r.length = relInfo.r_length; 404 r.offset = relInfo.r_address; 405 if (relInfo.r_extern) { 406 r.referent = symbols[relInfo.r_symbolnum]; 407 r.addend = isSubtrahend ? 0 : totalAddend; 408 } else { 409 assert(!isSubtrahend); 410 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 411 uint64_t referentOffset; 412 if (relInfo.r_pcrel) { 413 // The implicit addend for pcrel section relocations is the pcrel offset 414 // in terms of the addresses in the input file. Here we adjust it so 415 // that it describes the offset from the start of the referent section. 416 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 417 // have pcrel section relocations. We may want to factor this out into 418 // the arch-specific .cpp file. 419 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 420 referentOffset = 421 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 422 } else { 423 // The addend for a non-pcrel relocation is its absolute address. 424 referentOffset = totalAddend - referentSec.addr; 425 } 426 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 427 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 428 r.addend = referentOffset; 429 } 430 431 // Find the subsection that this relocation belongs to. 432 // Though not required by the Mach-O format, clang and gcc seem to emit 433 // relocations in order, so let's take advantage of it. However, ld64 emits 434 // unsorted relocations (in `-r` mode), so we have a fallback for that 435 // uncommon case. 436 InputSection *subsec; 437 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 438 ++subsecIt; 439 if (subsecIt == subsecMap.rend() || 440 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 441 subsec = findContainingSubsection(subsecMap, &r.offset); 442 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 443 // for the other relocations. 444 subsecIt = subsecMap.rend(); 445 } else { 446 subsec = subsecIt->isec; 447 r.offset -= subsecIt->offset; 448 } 449 subsec->relocs.push_back(r); 450 451 if (isSubtrahend) { 452 relocation_info minuendInfo = relInfos[++i]; 453 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 454 // attached to the same address. 455 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 456 relInfo.r_address == minuendInfo.r_address); 457 Reloc p; 458 p.type = minuendInfo.r_type; 459 if (minuendInfo.r_extern) { 460 p.referent = symbols[minuendInfo.r_symbolnum]; 461 p.addend = totalAddend; 462 } else { 463 uint64_t referentOffset = 464 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 465 SubsectionMap &referentSubsecMap = 466 subsections[minuendInfo.r_symbolnum - 1]; 467 p.referent = 468 findContainingSubsection(referentSubsecMap, &referentOffset); 469 p.addend = referentOffset; 470 } 471 subsec->relocs.push_back(p); 472 } 473 } 474 } 475 476 template <class NList> 477 static macho::Symbol *createDefined(const NList &sym, StringRef name, 478 InputSection *isec, uint64_t value, 479 uint64_t size) { 480 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 481 // N_EXT: Global symbols. These go in the symbol table during the link, 482 // and also in the export table of the output so that the dynamic 483 // linker sees them. 484 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 485 // symbol table during the link so that duplicates are 486 // either reported (for non-weak symbols) or merged 487 // (for weak symbols), but they do not go in the export 488 // table of the output. 489 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 490 // object files) may produce them. LLD does not yet support -r. 491 // These are translation-unit scoped, identical to the `0` case. 492 // 0: Translation-unit scoped. These are not in the symbol table during 493 // link, and not in the export table of the output either. 494 bool isWeakDefCanBeHidden = 495 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 496 497 if (sym.n_type & N_EXT) { 498 bool isPrivateExtern = sym.n_type & N_PEXT; 499 // lld's behavior for merging symbols is slightly different from ld64: 500 // ld64 picks the winning symbol based on several criteria (see 501 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 502 // just merges metadata and keeps the contents of the first symbol 503 // with that name (see SymbolTable::addDefined). For: 504 // * inline function F in a TU built with -fvisibility-inlines-hidden 505 // * and inline function F in another TU built without that flag 506 // ld64 will pick the one from the file built without 507 // -fvisibility-inlines-hidden. 508 // lld will instead pick the one listed first on the link command line and 509 // give it visibility as if the function was built without 510 // -fvisibility-inlines-hidden. 511 // If both functions have the same contents, this will have the same 512 // behavior. If not, it won't, but the input had an ODR violation in 513 // that case. 514 // 515 // Similarly, merging a symbol 516 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 517 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 518 // should produce one 519 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 520 // with ld64's semantics, because it means the non-private-extern 521 // definition will continue to take priority if more private extern 522 // definitions are encountered. With lld's semantics there's no observable 523 // difference between a symbol that's isWeakDefCanBeHidden or one that's 524 // privateExtern -- neither makes it into the dynamic symbol table. So just 525 // promote isWeakDefCanBeHidden to isPrivateExtern here. 526 if (isWeakDefCanBeHidden) 527 isPrivateExtern = true; 528 529 return symtab->addDefined( 530 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 531 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 532 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 533 } 534 535 assert(!isWeakDefCanBeHidden && 536 "weak_def_can_be_hidden on already-hidden symbol?"); 537 return make<Defined>( 538 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 539 /*isExternal=*/false, /*isPrivateExtern=*/false, 540 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 541 sym.n_desc & N_NO_DEAD_STRIP); 542 } 543 544 // Absolute symbols are defined symbols that do not have an associated 545 // InputSection. They cannot be weak. 546 template <class NList> 547 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 548 StringRef name) { 549 if (sym.n_type & N_EXT) { 550 return symtab->addDefined( 551 name, file, nullptr, sym.n_value, /*size=*/0, 552 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 553 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 554 } 555 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 556 /*isWeakDef=*/false, 557 /*isExternal=*/false, /*isPrivateExtern=*/false, 558 sym.n_desc & N_ARM_THUMB_DEF, 559 /*isReferencedDynamically=*/false, 560 sym.n_desc & N_NO_DEAD_STRIP); 561 } 562 563 template <class NList> 564 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 565 StringRef name) { 566 uint8_t type = sym.n_type & N_TYPE; 567 switch (type) { 568 case N_UNDF: 569 return sym.n_value == 0 570 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 571 : symtab->addCommon(name, this, sym.n_value, 572 1 << GET_COMM_ALIGN(sym.n_desc), 573 sym.n_type & N_PEXT); 574 case N_ABS: 575 return createAbsolute(sym, this, name); 576 case N_PBUD: 577 case N_INDR: 578 error("TODO: support symbols of type " + std::to_string(type)); 579 return nullptr; 580 case N_SECT: 581 llvm_unreachable( 582 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 583 default: 584 llvm_unreachable("invalid symbol type"); 585 } 586 } 587 588 template <class NList> 589 static bool isUndef(const NList &sym) { 590 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 591 } 592 593 template <class LP> 594 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 595 ArrayRef<typename LP::nlist> nList, 596 const char *strtab, bool subsectionsViaSymbols) { 597 using NList = typename LP::nlist; 598 599 // Groups indices of the symbols by the sections that contain them. 600 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 601 symbols.resize(nList.size()); 602 SmallVector<unsigned, 32> undefineds; 603 for (uint32_t i = 0; i < nList.size(); ++i) { 604 const NList &sym = nList[i]; 605 606 // Ignore debug symbols for now. 607 // FIXME: may need special handling. 608 if (sym.n_type & N_STAB) 609 continue; 610 611 StringRef name = strtab + sym.n_strx; 612 if ((sym.n_type & N_TYPE) == N_SECT) { 613 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 614 // parseSections() may have chosen not to parse this section. 615 if (subsecMap.empty()) 616 continue; 617 symbolsBySection[sym.n_sect - 1].push_back(i); 618 } else if (isUndef(sym)) { 619 undefineds.push_back(i); 620 } else { 621 symbols[i] = parseNonSectionSymbol(sym, name); 622 } 623 } 624 625 for (size_t i = 0; i < subsections.size(); ++i) { 626 SubsectionMap &subsecMap = subsections[i]; 627 if (subsecMap.empty()) 628 continue; 629 630 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 631 uint64_t sectionAddr = sectionHeaders[i].addr; 632 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 633 634 InputSection *isec = subsecMap.back().isec; 635 // __cfstring has already been split into subsections during 636 // parseSections(), so we simply need to match Symbols to the corresponding 637 // subsection here. 638 if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) { 639 for (size_t j = 0; j < symbolIndices.size(); ++j) { 640 uint32_t symIndex = symbolIndices[j]; 641 const NList &sym = nList[symIndex]; 642 StringRef name = strtab + sym.n_strx; 643 uint64_t symbolOffset = sym.n_value - sectionAddr; 644 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 645 if (symbolOffset != 0) { 646 error(toString(this) + ": __cfstring contains symbol " + name + 647 " at misaligned offset"); 648 continue; 649 } 650 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 651 } 652 continue; 653 } 654 655 // Calculate symbol sizes and create subsections by splitting the sections 656 // along symbol boundaries. 657 // We populate subsecMap by repeatedly splitting the last (highest address) 658 // subsection. 659 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 660 return nList[lhs].n_value < nList[rhs].n_value; 661 }); 662 SubsectionEntry subsecEntry = subsecMap.back(); 663 for (size_t j = 0; j < symbolIndices.size(); ++j) { 664 uint32_t symIndex = symbolIndices[j]; 665 const NList &sym = nList[symIndex]; 666 StringRef name = strtab + sym.n_strx; 667 InputSection *isec = subsecEntry.isec; 668 669 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 670 size_t symbolOffset = sym.n_value - subsecAddr; 671 uint64_t symbolSize = 672 j + 1 < symbolIndices.size() 673 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 674 : isec->data.size() - symbolOffset; 675 // There are 4 cases where we do not need to create a new subsection: 676 // 1. If the input file does not use subsections-via-symbols. 677 // 2. Multiple symbols at the same address only induce one subsection. 678 // (The symbolOffset == 0 check covers both this case as well as 679 // the first loop iteration.) 680 // 3. Alternative entry points do not induce new subsections. 681 // 4. If we have a literal section (e.g. __cstring and __literal4). 682 if (!subsectionsViaSymbols || symbolOffset == 0 || 683 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 684 symbols[symIndex] = 685 createDefined(sym, name, isec, symbolOffset, symbolSize); 686 continue; 687 } 688 auto *concatIsec = cast<ConcatInputSection>(isec); 689 690 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 691 nextIsec->numRefs = 0; 692 nextIsec->wasCoalesced = false; 693 if (isZeroFill(isec->getFlags())) { 694 // Zero-fill sections have NULL data.data() non-zero data.size() 695 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 696 isec->data = {nullptr, symbolOffset}; 697 } else { 698 nextIsec->data = isec->data.slice(symbolOffset); 699 isec->data = isec->data.slice(0, symbolOffset); 700 } 701 702 // By construction, the symbol will be at offset zero in the new 703 // subsection. 704 symbols[symIndex] = 705 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 706 // TODO: ld64 appears to preserve the original alignment as well as each 707 // subsection's offset from the last aligned address. We should consider 708 // emulating that behavior. 709 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 710 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 711 subsecEntry = subsecMap.back(); 712 } 713 } 714 715 // Undefined symbols can trigger recursive fetch from Archives due to 716 // LazySymbols. Process defined symbols first so that the relative order 717 // between a defined symbol and an undefined symbol does not change the 718 // symbol resolution behavior. In addition, a set of interconnected symbols 719 // will all be resolved to the same file, instead of being resolved to 720 // different files. 721 for (unsigned i : undefineds) { 722 const NList &sym = nList[i]; 723 StringRef name = strtab + sym.n_strx; 724 symbols[i] = parseNonSectionSymbol(sym, name); 725 } 726 } 727 728 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 729 StringRef sectName) 730 : InputFile(OpaqueKind, mb) { 731 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 732 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 733 ConcatInputSection *isec = 734 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 735 /*file=*/this, data); 736 isec->live = true; 737 subsections.push_back({{0, isec}}); 738 } 739 740 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 741 : InputFile(ObjKind, mb), modTime(modTime) { 742 this->archiveName = std::string(archiveName); 743 if (target->wordSize == 8) 744 parse<LP64>(); 745 else 746 parse<ILP32>(); 747 } 748 749 template <class LP> void ObjFile::parse() { 750 using Header = typename LP::mach_header; 751 using SegmentCommand = typename LP::segment_command; 752 using Section = typename LP::section; 753 using NList = typename LP::nlist; 754 755 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 756 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 757 758 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 759 if (arch != config->arch()) { 760 error(toString(this) + " has architecture " + getArchitectureName(arch) + 761 " which is incompatible with target architecture " + 762 getArchitectureName(config->arch())); 763 return; 764 } 765 766 if (!checkCompatibility(this)) 767 return; 768 769 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 770 StringRef data{reinterpret_cast<const char *>(cmd + 1), 771 cmd->cmdsize - sizeof(linker_option_command)}; 772 parseLCLinkerOption(this, cmd->count, data); 773 } 774 775 ArrayRef<Section> sectionHeaders; 776 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 777 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 778 sectionHeaders = 779 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 780 parseSections(sectionHeaders); 781 } 782 783 // TODO: Error on missing LC_SYMTAB? 784 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 785 auto *c = reinterpret_cast<const symtab_command *>(cmd); 786 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 787 c->nsyms); 788 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 789 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 790 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 791 } 792 793 // The relocations may refer to the symbols, so we parse them after we have 794 // parsed all the symbols. 795 for (size_t i = 0, n = subsections.size(); i < n; ++i) 796 if (!subsections[i].empty()) 797 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 798 799 parseDebugInfo(); 800 if (config->emitDataInCodeInfo) 801 parseDataInCode(); 802 } 803 804 void ObjFile::parseDebugInfo() { 805 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 806 if (!dObj) 807 return; 808 809 auto *ctx = make<DWARFContext>( 810 std::move(dObj), "", 811 [&](Error err) { 812 warn(toString(this) + ": " + toString(std::move(err))); 813 }, 814 [&](Error warning) { 815 warn(toString(this) + ": " + toString(std::move(warning))); 816 }); 817 818 // TODO: Since object files can contain a lot of DWARF info, we should verify 819 // that we are parsing just the info we need 820 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 821 // FIXME: There can be more than one compile unit per object file. See 822 // PR48637. 823 auto it = units.begin(); 824 compileUnit = it->get(); 825 } 826 827 void ObjFile::parseDataInCode() { 828 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 829 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 830 if (!cmd) 831 return; 832 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 833 dataInCodeEntries = { 834 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 835 c->datasize / sizeof(data_in_code_entry)}; 836 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 837 const data_in_code_entry &rhs) { 838 return lhs.offset < rhs.offset; 839 })); 840 } 841 842 // The path can point to either a dylib or a .tbd file. 843 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 844 Optional<MemoryBufferRef> mbref = readFile(path); 845 if (!mbref) { 846 error("could not read dylib file at " + path); 847 return nullptr; 848 } 849 return loadDylib(*mbref, umbrella); 850 } 851 852 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 853 // the first document storing child pointers to the rest of them. When we are 854 // processing a given TBD file, we store that top-level document in 855 // currentTopLevelTapi. When processing re-exports, we search its children for 856 // potentially matching documents in the same TBD file. Note that the children 857 // themselves don't point to further documents, i.e. this is a two-level tree. 858 // 859 // Re-exports can either refer to on-disk files, or to documents within .tbd 860 // files. 861 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 862 const InterfaceFile *currentTopLevelTapi) { 863 if (path::is_absolute(path, path::Style::posix)) 864 for (StringRef root : config->systemLibraryRoots) 865 if (Optional<std::string> dylibPath = 866 resolveDylibPath((root + path).str())) 867 return loadDylib(*dylibPath, umbrella); 868 869 // TODO: Handle -dylib_file 870 871 SmallString<128> newPath; 872 if (config->outputType == MH_EXECUTE && 873 path.consume_front("@executable_path/")) { 874 // ld64 allows overriding this with the undocumented flag -executable_path. 875 // lld doesn't currently implement that flag. 876 // FIXME: Consider using finalOutput instead of outputFile. 877 path::append(newPath, path::parent_path(config->outputFile), path); 878 path = newPath; 879 } else if (path.consume_front("@loader_path/")) { 880 fs::real_path(umbrella->getName(), newPath); 881 path::remove_filename(newPath); 882 path::append(newPath, path); 883 path = newPath; 884 } else if (path.startswith("@rpath/")) { 885 for (StringRef rpath : umbrella->rpaths) { 886 newPath.clear(); 887 if (rpath.consume_front("@loader_path/")) { 888 fs::real_path(umbrella->getName(), newPath); 889 path::remove_filename(newPath); 890 } 891 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 892 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 893 return loadDylib(*dylibPath, umbrella); 894 } 895 } 896 897 if (currentTopLevelTapi) { 898 for (InterfaceFile &child : 899 make_pointee_range(currentTopLevelTapi->documents())) { 900 assert(child.documents().empty()); 901 if (path == child.getInstallName()) { 902 auto file = make<DylibFile>(child, umbrella); 903 file->parseReexports(child); 904 return file; 905 } 906 } 907 } 908 909 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 910 return loadDylib(*dylibPath, umbrella); 911 912 return nullptr; 913 } 914 915 // If a re-exported dylib is public (lives in /usr/lib or 916 // /System/Library/Frameworks), then it is considered implicitly linked: we 917 // should bind to its symbols directly instead of via the re-exporting umbrella 918 // library. 919 static bool isImplicitlyLinked(StringRef path) { 920 if (!config->implicitDylibs) 921 return false; 922 923 if (path::parent_path(path) == "/usr/lib") 924 return true; 925 926 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 927 if (path.consume_front("/System/Library/Frameworks/")) { 928 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 929 return path::filename(path) == frameworkName; 930 } 931 932 return false; 933 } 934 935 static void loadReexport(StringRef path, DylibFile *umbrella, 936 const InterfaceFile *currentTopLevelTapi) { 937 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 938 if (!reexport) 939 error("unable to locate re-export with install name " + path); 940 } 941 942 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 943 bool isBundleLoader) 944 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 945 isBundleLoader(isBundleLoader) { 946 assert(!isBundleLoader || !umbrella); 947 if (umbrella == nullptr) 948 umbrella = this; 949 this->umbrella = umbrella; 950 951 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 952 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 953 954 // Initialize installName. 955 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 956 auto *c = reinterpret_cast<const dylib_command *>(cmd); 957 currentVersion = read32le(&c->dylib.current_version); 958 compatibilityVersion = read32le(&c->dylib.compatibility_version); 959 installName = 960 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 961 } else if (!isBundleLoader) { 962 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 963 // so it's OK. 964 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 965 return; 966 } 967 968 if (config->printEachFile) 969 message(toString(this)); 970 inputFiles.insert(this); 971 972 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 973 974 if (!checkCompatibility(this)) 975 return; 976 977 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 978 979 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 980 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 981 rpaths.push_back(rpath); 982 } 983 984 // Initialize symbols. 985 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 986 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 987 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 988 parseTrie(buf + c->export_off, c->export_size, 989 [&](const Twine &name, uint64_t flags) { 990 StringRef savedName = saver.save(name); 991 if (handleLDSymbol(savedName)) 992 return; 993 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 994 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 995 symbols.push_back(symtab->addDylib(savedName, exportingFile, 996 isWeakDef, isTlv)); 997 }); 998 } else { 999 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1000 return; 1001 } 1002 } 1003 1004 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1005 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1006 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1007 target->headerSize; 1008 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1009 auto *cmd = reinterpret_cast<const load_command *>(p); 1010 p += cmd->cmdsize; 1011 1012 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1013 cmd->cmd == LC_REEXPORT_DYLIB) { 1014 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1015 StringRef reexportPath = 1016 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1017 loadReexport(reexportPath, exportingFile, nullptr); 1018 } 1019 1020 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1021 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1022 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1023 if (config->namespaceKind == NamespaceKind::flat && 1024 cmd->cmd == LC_LOAD_DYLIB) { 1025 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1026 StringRef dylibPath = 1027 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1028 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1029 if (!dylib) 1030 error(Twine("unable to locate library '") + dylibPath + 1031 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1032 } 1033 } 1034 } 1035 1036 // Some versions of XCode ship with .tbd files that don't have the right 1037 // platform settings. 1038 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1039 "/usr/lib/system/libsystem_kernel.dylib", 1040 "/usr/lib/system/libsystem_platform.dylib", 1041 "/usr/lib/system/libsystem_pthread.dylib"}; 1042 1043 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1044 bool isBundleLoader) 1045 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1046 isBundleLoader(isBundleLoader) { 1047 // FIXME: Add test for the missing TBD code path. 1048 1049 if (umbrella == nullptr) 1050 umbrella = this; 1051 this->umbrella = umbrella; 1052 1053 installName = saver.save(interface.getInstallName()); 1054 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1055 currentVersion = interface.getCurrentVersion().rawValue(); 1056 1057 if (config->printEachFile) 1058 message(toString(this)); 1059 inputFiles.insert(this); 1060 1061 if (!is_contained(skipPlatformChecks, installName) && 1062 !is_contained(interface.targets(), config->platformInfo.target)) { 1063 error(toString(this) + " is incompatible with " + 1064 std::string(config->platformInfo.target)); 1065 return; 1066 } 1067 1068 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1069 1070 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1071 auto addSymbol = [&](const Twine &name) -> void { 1072 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1073 /*isWeakDef=*/false, 1074 /*isTlv=*/false)); 1075 }; 1076 // TODO(compnerd) filter out symbols based on the target platform 1077 // TODO: handle weak defs, thread locals 1078 for (const auto *symbol : interface.symbols()) { 1079 if (!symbol->getArchitectures().has(config->arch())) 1080 continue; 1081 1082 if (handleLDSymbol(symbol->getName())) 1083 continue; 1084 1085 switch (symbol->getKind()) { 1086 case SymbolKind::GlobalSymbol: 1087 addSymbol(symbol->getName()); 1088 break; 1089 case SymbolKind::ObjectiveCClass: 1090 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1091 // want to emulate that. 1092 addSymbol(objc::klass + symbol->getName()); 1093 addSymbol(objc::metaclass + symbol->getName()); 1094 break; 1095 case SymbolKind::ObjectiveCClassEHType: 1096 addSymbol(objc::ehtype + symbol->getName()); 1097 break; 1098 case SymbolKind::ObjectiveCInstanceVariable: 1099 addSymbol(objc::ivar + symbol->getName()); 1100 break; 1101 } 1102 } 1103 } 1104 1105 void DylibFile::parseReexports(const InterfaceFile &interface) { 1106 const InterfaceFile *topLevel = 1107 interface.getParent() == nullptr ? &interface : interface.getParent(); 1108 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1109 InterfaceFile::const_target_range targets = intfRef.targets(); 1110 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1111 is_contained(targets, config->platformInfo.target)) 1112 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1113 } 1114 } 1115 1116 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1117 // name, compatibility version or hide/add symbols) for specific target 1118 // versions. 1119 bool DylibFile::handleLDSymbol(StringRef originalName) { 1120 if (!originalName.startswith("$ld$")) 1121 return false; 1122 1123 StringRef action; 1124 StringRef name; 1125 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1126 if (action == "previous") 1127 handleLDPreviousSymbol(name, originalName); 1128 else if (action == "install_name") 1129 handleLDInstallNameSymbol(name, originalName); 1130 return true; 1131 } 1132 1133 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1134 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1135 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1136 StringRef installName; 1137 StringRef compatVersion; 1138 StringRef platformStr; 1139 StringRef startVersion; 1140 StringRef endVersion; 1141 StringRef symbolName; 1142 StringRef rest; 1143 1144 std::tie(installName, name) = name.split('$'); 1145 std::tie(compatVersion, name) = name.split('$'); 1146 std::tie(platformStr, name) = name.split('$'); 1147 std::tie(startVersion, name) = name.split('$'); 1148 std::tie(endVersion, name) = name.split('$'); 1149 std::tie(symbolName, rest) = name.split('$'); 1150 // TODO: ld64 contains some logic for non-empty symbolName as well. 1151 if (!symbolName.empty()) 1152 return; 1153 unsigned platform; 1154 if (platformStr.getAsInteger(10, platform) || 1155 platform != static_cast<unsigned>(config->platform())) 1156 return; 1157 1158 VersionTuple start; 1159 if (start.tryParse(startVersion)) { 1160 warn("failed to parse start version, symbol '" + originalName + 1161 "' ignored"); 1162 return; 1163 } 1164 VersionTuple end; 1165 if (end.tryParse(endVersion)) { 1166 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1167 return; 1168 } 1169 if (config->platformInfo.minimum < start || 1170 config->platformInfo.minimum >= end) 1171 return; 1172 1173 this->installName = saver.save(installName); 1174 1175 if (!compatVersion.empty()) { 1176 VersionTuple cVersion; 1177 if (cVersion.tryParse(compatVersion)) { 1178 warn("failed to parse compatibility version, symbol '" + originalName + 1179 "' ignored"); 1180 return; 1181 } 1182 compatibilityVersion = encodeVersion(cVersion); 1183 } 1184 } 1185 1186 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1187 StringRef originalName) { 1188 // originalName: $ld$ install_name $ os<version> $ install_name 1189 StringRef condition, installName; 1190 std::tie(condition, installName) = name.split('$'); 1191 VersionTuple version; 1192 if (!condition.consume_front("os") || version.tryParse(condition)) 1193 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1194 else if (version == config->platformInfo.minimum) 1195 this->installName = saver.save(installName); 1196 } 1197 1198 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1199 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1200 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1201 } 1202 1203 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1204 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 1205 for (const object::Archive::Symbol &sym : file->symbols()) 1206 symtab->addLazy(sym.getName(), this, sym); 1207 } 1208 1209 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1210 object::Archive::Child c = 1211 CHECK(sym.getMember(), toString(this) + 1212 ": could not get the member for symbol " + 1213 toMachOString(sym)); 1214 1215 if (!seen.insert(c.getChildOffset()).second) 1216 return; 1217 1218 MemoryBufferRef mb = 1219 CHECK(c.getMemoryBufferRef(), 1220 toString(this) + 1221 ": could not get the buffer for the member defining symbol " + 1222 toMachOString(sym)); 1223 1224 if (tar && c.getParent()->isThin()) 1225 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1226 1227 uint32_t modTime = toTimeT( 1228 CHECK(c.getLastModified(), toString(this) + 1229 ": could not get the modification time " 1230 "for the member defining symbol " + 1231 toMachOString(sym))); 1232 1233 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1234 // and become invalid after that call. Copy it to the stack so we can refer 1235 // to it later. 1236 const object::Archive::Symbol symCopy = sym; 1237 1238 if (Optional<InputFile *> file = loadArchiveMember( 1239 mb, modTime, getName(), /*objCOnly=*/false, c.getChildOffset())) { 1240 inputFiles.insert(*file); 1241 // ld64 doesn't demangle sym here even with -demangle. 1242 // Match that: intentionally don't call toMachOString(). 1243 printArchiveMemberLoad(symCopy.getName(), *file); 1244 } 1245 } 1246 1247 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1248 BitcodeFile &file) { 1249 StringRef name = saver.save(objSym.getName()); 1250 1251 // TODO: support weak references 1252 if (objSym.isUndefined()) 1253 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1254 1255 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1256 1257 // TODO: Write a test demonstrating why computing isPrivateExtern before 1258 // LTO compilation is important. 1259 bool isPrivateExtern = false; 1260 switch (objSym.getVisibility()) { 1261 case GlobalValue::HiddenVisibility: 1262 isPrivateExtern = true; 1263 break; 1264 case GlobalValue::ProtectedVisibility: 1265 error(name + " has protected visibility, which is not supported by Mach-O"); 1266 break; 1267 case GlobalValue::DefaultVisibility: 1268 break; 1269 } 1270 1271 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1272 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1273 /*isThumb=*/false, 1274 /*isReferencedDynamically=*/false, 1275 /*noDeadStrip=*/false); 1276 } 1277 1278 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1279 uint64_t offsetInArchive) 1280 : InputFile(BitcodeKind, mb) { 1281 std::string path = mb.getBufferIdentifier().str(); 1282 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1283 // name. If two members with the same name are provided, this causes a 1284 // collision and ThinLTO can't proceed. 1285 // So, we append the archive name to disambiguate two members with the same 1286 // name from multiple different archives, and offset within the archive to 1287 // disambiguate two members of the same name from a single archive. 1288 MemoryBufferRef mbref( 1289 mb.getBuffer(), 1290 saver.save(archiveName.empty() ? path 1291 : archiveName + sys::path::filename(path) + 1292 utostr(offsetInArchive))); 1293 1294 obj = check(lto::InputFile::create(mbref)); 1295 1296 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1297 // "winning" symbol will then be marked as Prevailing at LTO compilation 1298 // time. 1299 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1300 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1301 } 1302 1303 template void ObjFile::parse<LP64>(); 1304