1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 70 using namespace llvm; 71 using namespace llvm::MachO; 72 using namespace llvm::support::endian; 73 using namespace llvm::sys; 74 using namespace lld; 75 using namespace lld::macho; 76 77 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 78 std::string lld::toString(const InputFile *f) { 79 if (!f) 80 return "<internal>"; 81 if (f->archiveName.empty()) 82 return std::string(f->getName()); 83 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 84 ")") 85 .str(); 86 } 87 88 SetVector<InputFile *> macho::inputFiles; 89 std::unique_ptr<TarWriter> macho::tar; 90 int InputFile::idCount = 0; 91 92 // Open a given file path and return it as a memory-mapped file. 93 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 94 // Open a file. 95 auto mbOrErr = MemoryBuffer::getFile(path); 96 if (auto ec = mbOrErr.getError()) { 97 error("cannot open " + path + ": " + ec.message()); 98 return None; 99 } 100 101 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 102 MemoryBufferRef mbref = mb->getMemBufferRef(); 103 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 104 105 // If this is a regular non-fat file, return it. 106 const char *buf = mbref.getBufferStart(); 107 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 108 if (read32be(&hdr->magic) != MachO::FAT_MAGIC) { 109 if (tar) 110 tar->append(relativeToRoot(path), mbref.getBuffer()); 111 return mbref; 112 } 113 114 // Object files and archive files may be fat files, which contains 115 // multiple real files for different CPU ISAs. Here, we search for a 116 // file that matches with the current link target and returns it as 117 // a MemoryBufferRef. 118 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 119 120 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 121 if (reinterpret_cast<const char *>(arch + i + 1) > 122 buf + mbref.getBufferSize()) { 123 error(path + ": fat_arch struct extends beyond end of file"); 124 return None; 125 } 126 127 if (read32be(&arch[i].cputype) != target->cpuType || 128 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 129 continue; 130 131 uint32_t offset = read32be(&arch[i].offset); 132 uint32_t size = read32be(&arch[i].size); 133 if (offset + size > mbref.getBufferSize()) 134 error(path + ": slice extends beyond end of file"); 135 if (tar) 136 tar->append(relativeToRoot(path), mbref.getBuffer()); 137 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 138 } 139 140 error("unable to find matching architecture in " + path); 141 return None; 142 } 143 144 const load_command *macho::findCommand(const mach_header_64 *hdr, 145 uint32_t type) { 146 const uint8_t *p = 147 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 148 149 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 150 auto *cmd = reinterpret_cast<const load_command *>(p); 151 if (cmd->cmd == type) 152 return cmd; 153 p += cmd->cmdsize; 154 } 155 return nullptr; 156 } 157 158 void ObjFile::parseSections(ArrayRef<section_64> sections) { 159 subsections.reserve(sections.size()); 160 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 161 162 for (const section_64 &sec : sections) { 163 InputSection *isec = make<InputSection>(); 164 isec->file = this; 165 isec->name = 166 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 167 isec->segname = 168 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 169 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 170 static_cast<size_t>(sec.size)}; 171 if (sec.align >= 32) 172 error("alignment " + std::to_string(sec.align) + " of section " + 173 isec->name + " is too large"); 174 else 175 isec->align = 1 << sec.align; 176 isec->flags = sec.flags; 177 178 if (!(isDebugSection(isec->flags) && 179 isec->segname == segment_names::dwarf)) { 180 subsections.push_back({{0, isec}}); 181 } else { 182 // Instead of emitting DWARF sections, we emit STABS symbols to the 183 // object files that contain them. We filter them out early to avoid 184 // parsing their relocations unnecessarily. But we must still push an 185 // empty map to ensure the indices line up for the remaining sections. 186 subsections.push_back({}); 187 debugSections.push_back(isec); 188 } 189 } 190 } 191 192 // Find the subsection corresponding to the greatest section offset that is <= 193 // that of the given offset. 194 // 195 // offset: an offset relative to the start of the original InputSection (before 196 // any subsection splitting has occurred). It will be updated to represent the 197 // same location as an offset relative to the start of the containing 198 // subsection. 199 static InputSection *findContainingSubsection(SubsectionMap &map, 200 uint32_t *offset) { 201 auto it = std::prev(map.upper_bound(*offset)); 202 *offset -= it->first; 203 return it->second; 204 } 205 206 static bool validateRelocationInfo(MemoryBufferRef mb, const section_64 &sec, 207 relocation_info rel) { 208 const TargetInfo::RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 209 bool valid = true; 210 auto message = [relocAttrs, mb, sec, rel, &valid](const Twine &diagnostic) { 211 valid = false; 212 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 213 std::to_string(rel.r_address) + " of " + sec.segname + "," + 214 sec.sectname + " in " + mb.getBufferIdentifier()) 215 .str(); 216 }; 217 218 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 219 error(message("must be extern")); 220 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 221 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 222 "be PC-relative")); 223 if (isThreadLocalVariables(sec.flags) && 224 (!relocAttrs.hasAttr(RelocAttrBits::TLV) || 225 relocAttrs.hasAttr(RelocAttrBits::LOAD))) 226 error(message("not allowed in thread-local section, must be UNSIGNED")); 227 if (rel.r_length < 2 || rel.r_length > 3 || 228 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 229 static SmallVector<StringRef, 4> widths{"INVALID", "4", "8", "4 or 8"}; 230 error(message("has width " + std::to_string(1 << rel.r_length) + 231 " bytes, but must be " + 232 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 233 " bytes")); 234 } 235 return valid; 236 } 237 238 void ObjFile::parseRelocations(const section_64 &sec, 239 SubsectionMap &subsecMap) { 240 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 241 ArrayRef<relocation_info> relInfos( 242 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 243 244 for (size_t i = 0; i < relInfos.size(); i++) { 245 // Paired relocations serve as Mach-O's method for attaching a 246 // supplemental datum to a primary relocation record. ELF does not 247 // need them because the *_RELOC_RELA records contain the extra 248 // addend field, vs. *_RELOC_REL which omit the addend. 249 // 250 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 251 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 252 // datum for each is a symbolic address. The result is the offset 253 // between two addresses. 254 // 255 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 256 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 257 // base symbolic address. 258 // 259 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 260 // addend into the instruction stream. On X86, a relocatable address 261 // field always occupies an entire contiguous sequence of byte(s), 262 // so there is no need to merge opcode bits with address 263 // bits. Therefore, it's easy and convenient to store addends in the 264 // instruction-stream bytes that would otherwise contain zeroes. By 265 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 266 // address bits so that bitwise arithmetic is necessary to extract 267 // and insert them. Storing addends in the instruction stream is 268 // possible, but inconvenient and more costly at link time. 269 270 uint64_t pairedAddend = 0; 271 relocation_info relInfo = relInfos[i]; 272 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 273 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 274 relInfo = relInfos[++i]; 275 } 276 assert(i < relInfos.size()); 277 if (!validateRelocationInfo(mb, sec, relInfo)) 278 continue; 279 if (relInfo.r_address & R_SCATTERED) 280 fatal("TODO: Scattered relocations not supported"); 281 uint64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo); 282 assert(!(embeddedAddend && pairedAddend)); 283 uint64_t totalAddend = pairedAddend + embeddedAddend; 284 285 Reloc p; 286 if (target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND)) { 287 p.type = relInfo.r_type; 288 p.referent = symbols[relInfo.r_symbolnum]; 289 relInfo = relInfos[++i]; 290 } 291 Reloc r; 292 r.type = relInfo.r_type; 293 r.pcrel = relInfo.r_pcrel; 294 r.length = relInfo.r_length; 295 r.offset = relInfo.r_address; 296 if (relInfo.r_extern) { 297 r.referent = symbols[relInfo.r_symbolnum]; 298 r.addend = totalAddend; 299 } else { 300 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 301 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 302 uint32_t referentOffset; 303 if (relInfo.r_pcrel) { 304 // The implicit addend for pcrel section relocations is the pcrel offset 305 // in terms of the addresses in the input file. Here we adjust it so 306 // that it describes the offset from the start of the referent section. 307 // TODO: The offset of 4 is probably not right for ARM64, nor for 308 // relocations with r_length != 2. 309 referentOffset = 310 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 311 } else { 312 // The addend for a non-pcrel relocation is its absolute address. 313 referentOffset = totalAddend - referentSec.addr; 314 } 315 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 316 r.addend = referentOffset; 317 } 318 319 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 320 if (p.type != GENERIC_RELOC_INVALID && 321 target->hasAttr(p.type, RelocAttrBits::SUBTRAHEND)) 322 subsec->relocs.push_back(p); 323 subsec->relocs.push_back(r); 324 } 325 } 326 327 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 328 StringRef name, InputSection *isec, 329 uint32_t value) { 330 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 331 // N_EXT: Global symbols 332 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 333 // N_PEXT: Does not occur in input files in practice, 334 // a private extern must be external. 335 // 0: Translation-unit scoped. These are not in the symbol table. 336 337 if (sym.n_type & (N_EXT | N_PEXT)) { 338 assert((sym.n_type & N_EXT) && "invalid input"); 339 return symtab->addDefined(name, isec->file, isec, value, 340 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 341 } 342 return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF, 343 /*isExternal=*/false, /*isPrivateExtern=*/false); 344 } 345 346 // Absolute symbols are defined symbols that do not have an associated 347 // InputSection. They cannot be weak. 348 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 349 InputFile *file, StringRef name) { 350 if (sym.n_type & (N_EXT | N_PEXT)) { 351 assert((sym.n_type & N_EXT) && "invalid input"); 352 return symtab->addDefined(name, file, nullptr, sym.n_value, 353 /*isWeakDef=*/false, sym.n_type & N_PEXT); 354 } 355 return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false, 356 /*isExternal=*/false, /*isPrivateExtern=*/false); 357 } 358 359 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 360 StringRef name) { 361 uint8_t type = sym.n_type & N_TYPE; 362 switch (type) { 363 case N_UNDF: 364 return sym.n_value == 0 365 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 366 : symtab->addCommon(name, this, sym.n_value, 367 1 << GET_COMM_ALIGN(sym.n_desc), 368 sym.n_type & N_PEXT); 369 case N_ABS: 370 return createAbsolute(sym, this, name); 371 case N_PBUD: 372 case N_INDR: 373 error("TODO: support symbols of type " + std::to_string(type)); 374 return nullptr; 375 case N_SECT: 376 llvm_unreachable( 377 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 378 default: 379 llvm_unreachable("invalid symbol type"); 380 } 381 } 382 383 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 384 const char *strtab, bool subsectionsViaSymbols) { 385 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 386 // out-of-sequence. 387 symbols.resize(nList.size()); 388 std::vector<size_t> altEntrySymIdxs; 389 390 for (size_t i = 0, n = nList.size(); i < n; ++i) { 391 const structs::nlist_64 &sym = nList[i]; 392 StringRef name = strtab + sym.n_strx; 393 394 if ((sym.n_type & N_TYPE) != N_SECT) { 395 symbols[i] = parseNonSectionSymbol(sym, name); 396 continue; 397 } 398 399 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 400 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 401 assert(!subsecMap.empty()); 402 uint64_t offset = sym.n_value - sec.addr; 403 404 // If the input file does not use subsections-via-symbols, all symbols can 405 // use the same subsection. Otherwise, we must split the sections along 406 // symbol boundaries. 407 if (!subsectionsViaSymbols) { 408 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 409 continue; 410 } 411 412 // nList entries aren't necessarily arranged in address order. Therefore, 413 // we can't create alt-entry symbols at this point because a later symbol 414 // may split its section, which may affect which subsection the alt-entry 415 // symbol is assigned to. So we need to handle them in a second pass below. 416 if (sym.n_desc & N_ALT_ENTRY) { 417 altEntrySymIdxs.push_back(i); 418 continue; 419 } 420 421 // Find the subsection corresponding to the greatest section offset that is 422 // <= that of the current symbol. The subsection that we find either needs 423 // to be used directly or split in two. 424 uint32_t firstSize = offset; 425 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 426 427 if (firstSize == 0) { 428 // Alias of an existing symbol, or the first symbol in the section. These 429 // are handled by reusing the existing section. 430 symbols[i] = createDefined(sym, name, firstIsec, 0); 431 continue; 432 } 433 434 // We saw a symbol definition at a new offset. Split the section into two 435 // subsections. The new symbol uses the second subsection. 436 auto *secondIsec = make<InputSection>(*firstIsec); 437 secondIsec->data = firstIsec->data.slice(firstSize); 438 firstIsec->data = firstIsec->data.slice(0, firstSize); 439 // TODO: ld64 appears to preserve the original alignment as well as each 440 // subsection's offset from the last aligned address. We should consider 441 // emulating that behavior. 442 secondIsec->align = MinAlign(firstIsec->align, offset); 443 444 subsecMap[offset] = secondIsec; 445 // By construction, the symbol will be at offset zero in the new section. 446 symbols[i] = createDefined(sym, name, secondIsec, 0); 447 } 448 449 for (size_t idx : altEntrySymIdxs) { 450 const structs::nlist_64 &sym = nList[idx]; 451 StringRef name = strtab + sym.n_strx; 452 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 453 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 454 InputSection *subsec = findContainingSubsection(subsecMap, &off); 455 symbols[idx] = createDefined(sym, name, subsec, off); 456 } 457 } 458 459 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 460 StringRef sectName) 461 : InputFile(OpaqueKind, mb) { 462 InputSection *isec = make<InputSection>(); 463 isec->file = this; 464 isec->name = sectName.take_front(16); 465 isec->segname = segName.take_front(16); 466 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 467 isec->data = {buf, mb.getBufferSize()}; 468 subsections.push_back({{0, isec}}); 469 } 470 471 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 472 : InputFile(ObjKind, mb), modTime(modTime) { 473 this->archiveName = std::string(archiveName); 474 475 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 476 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 477 478 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 479 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 480 StringRef data{reinterpret_cast<const char *>(c + 1), 481 c->cmdsize - sizeof(linker_option_command)}; 482 parseLCLinkerOption(this, c->count, data); 483 } 484 485 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 486 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 487 sectionHeaders = ArrayRef<section_64>{ 488 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 489 parseSections(sectionHeaders); 490 } 491 492 // TODO: Error on missing LC_SYMTAB? 493 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 494 auto *c = reinterpret_cast<const symtab_command *>(cmd); 495 ArrayRef<structs::nlist_64> nList( 496 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 497 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 498 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 499 parseSymbols(nList, strtab, subsectionsViaSymbols); 500 } 501 502 // The relocations may refer to the symbols, so we parse them after we have 503 // parsed all the symbols. 504 for (size_t i = 0, n = subsections.size(); i < n; ++i) 505 if (!subsections[i].empty()) 506 parseRelocations(sectionHeaders[i], subsections[i]); 507 508 parseDebugInfo(); 509 } 510 511 void ObjFile::parseDebugInfo() { 512 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 513 if (!dObj) 514 return; 515 516 auto *ctx = make<DWARFContext>( 517 std::move(dObj), "", 518 [&](Error err) { 519 warn(toString(this) + ": " + toString(std::move(err))); 520 }, 521 [&](Error warning) { 522 warn(toString(this) + ": " + toString(std::move(warning))); 523 }); 524 525 // TODO: Since object files can contain a lot of DWARF info, we should verify 526 // that we are parsing just the info we need 527 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 528 auto it = units.begin(); 529 compileUnit = it->get(); 530 assert(std::next(it) == units.end()); 531 } 532 533 // The path can point to either a dylib or a .tbd file. 534 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 535 Optional<MemoryBufferRef> mbref = readFile(path); 536 if (!mbref) { 537 error("could not read dylib file at " + path); 538 return {}; 539 } 540 return loadDylib(*mbref, umbrella); 541 } 542 543 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 544 // the first document storing child pointers to the rest of them. When we are 545 // processing a given TBD file, we store that top-level document here. When 546 // processing re-exports, we search its children for potentially matching 547 // documents in the same TBD file. Note that the children themselves don't 548 // point to further documents, i.e. this is a two-level tree. 549 // 550 // ld64 allows a TAPI re-export to reference documents nested within other TBD 551 // files, but that seems like a strange design, so this is an intentional 552 // deviation. 553 const InterfaceFile *currentTopLevelTapi = nullptr; 554 555 // Re-exports can either refer to on-disk files, or to documents within .tbd 556 // files. 557 static Optional<DylibFile *> loadReexportHelper(StringRef path, 558 DylibFile *umbrella) { 559 if (path::is_absolute(path, path::Style::posix)) 560 for (StringRef root : config->systemLibraryRoots) 561 if (Optional<std::string> dylibPath = 562 resolveDylibPath((root + path).str())) 563 return loadDylib(*dylibPath, umbrella); 564 565 // TODO: Expand @loader_path, @executable_path etc 566 567 if (currentTopLevelTapi) { 568 for (InterfaceFile &child : 569 make_pointee_range(currentTopLevelTapi->documents())) { 570 if (path == child.getInstallName()) 571 return make<DylibFile>(child, umbrella); 572 assert(child.documents().empty()); 573 } 574 } 575 576 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 577 return loadDylib(*dylibPath, umbrella); 578 579 error("unable to locate re-export with install name " + path); 580 return {}; 581 } 582 583 // If a re-exported dylib is public (lives in /usr/lib or 584 // /System/Library/Frameworks), then it is considered implicitly linked: we 585 // should bind to its symbols directly instead of via the re-exporting umbrella 586 // library. 587 static bool isImplicitlyLinked(StringRef path) { 588 if (!config->implicitDylibs) 589 return false; 590 591 if (path::parent_path(path) == "/usr/lib") 592 return true; 593 594 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 595 if (path.consume_front("/System/Library/Frameworks/")) { 596 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 597 return path::filename(path) == frameworkName; 598 } 599 600 return false; 601 } 602 603 void loadReexport(StringRef path, DylibFile *umbrella) { 604 Optional<DylibFile *> reexport = loadReexportHelper(path, umbrella); 605 if (reexport && isImplicitlyLinked(path)) 606 inputFiles.insert(*reexport); 607 } 608 609 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) 610 : InputFile(DylibKind, mb), refState(RefState::Unreferenced) { 611 if (umbrella == nullptr) 612 umbrella = this; 613 614 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 615 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 616 617 // Initialize dylibName. 618 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 619 auto *c = reinterpret_cast<const dylib_command *>(cmd); 620 currentVersion = read32le(&c->dylib.current_version); 621 compatibilityVersion = read32le(&c->dylib.compatibility_version); 622 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 623 } else { 624 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 625 return; 626 } 627 628 // Initialize symbols. 629 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 630 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 631 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 632 parseTrie(buf + c->export_off, c->export_size, 633 [&](const Twine &name, uint64_t flags) { 634 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 635 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 636 symbols.push_back(symtab->addDylib( 637 saver.save(name), exportingFile, isWeakDef, isTlv)); 638 }); 639 } else { 640 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 641 return; 642 } 643 644 if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) 645 return; 646 647 const uint8_t *p = 648 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 649 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 650 auto *cmd = reinterpret_cast<const load_command *>(p); 651 p += cmd->cmdsize; 652 if (cmd->cmd != LC_REEXPORT_DYLIB) 653 continue; 654 655 auto *c = reinterpret_cast<const dylib_command *>(cmd); 656 StringRef reexportPath = 657 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 658 loadReexport(reexportPath, umbrella); 659 } 660 } 661 662 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella) 663 : InputFile(DylibKind, interface), refState(RefState::Unreferenced) { 664 if (umbrella == nullptr) 665 umbrella = this; 666 667 dylibName = saver.save(interface.getInstallName()); 668 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 669 currentVersion = interface.getCurrentVersion().rawValue(); 670 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 671 auto addSymbol = [&](const Twine &name) -> void { 672 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 673 /*isWeakDef=*/false, 674 /*isTlv=*/false)); 675 }; 676 // TODO(compnerd) filter out symbols based on the target platform 677 // TODO: handle weak defs, thread locals 678 for (const auto symbol : interface.symbols()) { 679 if (!symbol->getArchitectures().has(config->arch)) 680 continue; 681 682 switch (symbol->getKind()) { 683 case SymbolKind::GlobalSymbol: 684 addSymbol(symbol->getName()); 685 break; 686 case SymbolKind::ObjectiveCClass: 687 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 688 // want to emulate that. 689 addSymbol(objc::klass + symbol->getName()); 690 addSymbol(objc::metaclass + symbol->getName()); 691 break; 692 case SymbolKind::ObjectiveCClassEHType: 693 addSymbol(objc::ehtype + symbol->getName()); 694 break; 695 case SymbolKind::ObjectiveCInstanceVariable: 696 addSymbol(objc::ivar + symbol->getName()); 697 break; 698 } 699 } 700 701 bool isTopLevelTapi = false; 702 if (currentTopLevelTapi == nullptr) { 703 currentTopLevelTapi = &interface; 704 isTopLevelTapi = true; 705 } 706 707 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) 708 loadReexport(intfRef.getInstallName(), umbrella); 709 710 if (isTopLevelTapi) 711 currentTopLevelTapi = nullptr; 712 } 713 714 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 715 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 716 for (const object::Archive::Symbol &sym : file->symbols()) 717 symtab->addLazy(sym.getName(), this, sym); 718 } 719 720 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 721 object::Archive::Child c = 722 CHECK(sym.getMember(), toString(this) + 723 ": could not get the member for symbol " + 724 toMachOString(sym)); 725 726 if (!seen.insert(c.getChildOffset()).second) 727 return; 728 729 MemoryBufferRef mb = 730 CHECK(c.getMemoryBufferRef(), 731 toString(this) + 732 ": could not get the buffer for the member defining symbol " + 733 toMachOString(sym)); 734 735 if (tar && c.getParent()->isThin()) 736 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 737 738 uint32_t modTime = toTimeT( 739 CHECK(c.getLastModified(), toString(this) + 740 ": could not get the modification time " 741 "for the member defining symbol " + 742 toMachOString(sym))); 743 744 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 745 // and become invalid after that call. Copy it to the stack so we can refer 746 // to it later. 747 const object::Archive::Symbol sym_copy = sym; 748 749 if (Optional<InputFile *> file = 750 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 751 inputFiles.insert(*file); 752 // ld64 doesn't demangle sym here even with -demangle. Match that, so 753 // intentionally no call to toMachOString() here. 754 printArchiveMemberLoad(sym_copy.getName(), *file); 755 } 756 } 757 758 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 759 : InputFile(BitcodeKind, mbref) { 760 obj = check(lto::InputFile::create(mbref)); 761 } 762