1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static PlatformKind removeSimulator(PlatformKind platform) {
145   // Mapping of platform to simulator and vice-versa.
146   static const std::map<PlatformKind, PlatformKind> platformMap = {
147       {PlatformKind::iOSSimulator, PlatformKind::iOS},
148       {PlatformKind::tvOSSimulator, PlatformKind::tvOS},
149       {PlatformKind::watchOSSimulator, PlatformKind::watchOS}};
150 
151   auto iter = platformMap.find(platform);
152   if (iter == platformMap.end())
153     return platform;
154   return iter->second;
155 }
156 
157 static bool checkCompatibility(const InputFile *input) {
158   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
159   if (platformInfos.empty())
160     return true;
161 
162   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
163     return removeSimulator(info.target.Platform) ==
164            removeSimulator(config->platform());
165   });
166   if (it == platformInfos.end()) {
167     std::string platformNames;
168     raw_string_ostream os(platformNames);
169     interleave(
170         platformInfos, os,
171         [&](const PlatformInfo &info) {
172           os << getPlatformName(info.target.Platform);
173         },
174         "/");
175     error(toString(input) + " has platform " + platformNames +
176           Twine(", which is different from target platform ") +
177           getPlatformName(config->platform()));
178     return false;
179   }
180 
181   if (it->minimum > config->platformInfo.minimum)
182     warn(toString(input) + " has version " + it->minimum.getAsString() +
183          ", which is newer than target minimum of " +
184          config->platformInfo.minimum.getAsString());
185 
186   return true;
187 }
188 
189 // Open a given file path and return it as a memory-mapped file.
190 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
191   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
192   if (std::error_code ec = mbOrErr.getError()) {
193     error("cannot open " + path + ": " + ec.message());
194     return None;
195   }
196 
197   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
198   MemoryBufferRef mbref = mb->getMemBufferRef();
199   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
200 
201   // If this is a regular non-fat file, return it.
202   const char *buf = mbref.getBufferStart();
203   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
204   if (mbref.getBufferSize() < sizeof(uint32_t) ||
205       read32be(&hdr->magic) != FAT_MAGIC) {
206     if (tar)
207       tar->append(relativeToRoot(path), mbref.getBuffer());
208     return mbref;
209   }
210 
211   // Object files and archive files may be fat files, which contain multiple
212   // real files for different CPU ISAs. Here, we search for a file that matches
213   // with the current link target and returns it as a MemoryBufferRef.
214   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
215 
216   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
217     if (reinterpret_cast<const char *>(arch + i + 1) >
218         buf + mbref.getBufferSize()) {
219       error(path + ": fat_arch struct extends beyond end of file");
220       return None;
221     }
222 
223     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
224         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
225       continue;
226 
227     uint32_t offset = read32be(&arch[i].offset);
228     uint32_t size = read32be(&arch[i].size);
229     if (offset + size > mbref.getBufferSize())
230       error(path + ": slice extends beyond end of file");
231     if (tar)
232       tar->append(relativeToRoot(path), mbref.getBuffer());
233     return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
234   }
235 
236   error("unable to find matching architecture in " + path);
237   return None;
238 }
239 
240 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
241     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
242 
243 template <class Section>
244 void ObjFile::parseSections(ArrayRef<Section> sections) {
245   subsections.reserve(sections.size());
246   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
247 
248   for (const Section &sec : sections) {
249     StringRef name =
250         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
251     StringRef segname =
252         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
253     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
254                                                     : buf + sec.offset,
255                               static_cast<size_t>(sec.size)};
256     if (sec.align >= 32) {
257       error("alignment " + std::to_string(sec.align) + " of section " + name +
258             " is too large");
259       subsections.push_back({});
260       continue;
261     }
262     uint32_t align = 1 << sec.align;
263     uint32_t flags = sec.flags;
264 
265     if (config->dedupLiterals &&
266         (sectionType(sec.flags) == S_CSTRING_LITERALS ||
267          isWordLiteralSection(sec.flags))) {
268       if (sec.nreloc)
269         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
270               sec.sectname +
271               ", so LLD cannot deduplicate literals. Try re-running without "
272               "--deduplicate-literals.");
273 
274       InputSection *isec;
275       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
276         isec =
277             make<CStringInputSection>(segname, name, this, data, align, flags);
278         // FIXME: parallelize this?
279         cast<CStringInputSection>(isec)->splitIntoPieces();
280       } else {
281         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
282                                              flags);
283       }
284       subsections.push_back({{0, isec}});
285     } else {
286       auto *isec =
287           make<ConcatInputSection>(segname, name, this, data, align, flags);
288       if (!(isDebugSection(isec->flags) &&
289             isec->segname == segment_names::dwarf)) {
290         subsections.push_back({{0, isec}});
291       } else {
292         // Instead of emitting DWARF sections, we emit STABS symbols to the
293         // object files that contain them. We filter them out early to avoid
294         // parsing their relocations unnecessarily. But we must still push an
295         // empty map to ensure the indices line up for the remaining sections.
296         subsections.push_back({});
297         debugSections.push_back(isec);
298       }
299     }
300   }
301 }
302 
303 // Find the subsection corresponding to the greatest section offset that is <=
304 // that of the given offset.
305 //
306 // offset: an offset relative to the start of the original InputSection (before
307 // any subsection splitting has occurred). It will be updated to represent the
308 // same location as an offset relative to the start of the containing
309 // subsection.
310 static InputSection *findContainingSubsection(SubsectionMap &map,
311                                               uint64_t *offset) {
312   auto it = std::prev(llvm::upper_bound(
313       map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
314         return value < subsecEntry.offset;
315       }));
316   *offset -= it->offset;
317   return it->isec;
318 }
319 
320 template <class Section>
321 static bool validateRelocationInfo(InputFile *file, const Section &sec,
322                                    relocation_info rel) {
323   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
324   bool valid = true;
325   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
326     valid = false;
327     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
328             std::to_string(rel.r_address) + " of " + sec.segname + "," +
329             sec.sectname + " in " + toString(file))
330         .str();
331   };
332 
333   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
334     error(message("must be extern"));
335   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
336     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
337                   "be PC-relative"));
338   if (isThreadLocalVariables(sec.flags) &&
339       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
340     error(message("not allowed in thread-local section, must be UNSIGNED"));
341   if (rel.r_length < 2 || rel.r_length > 3 ||
342       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
343     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
344     error(message("has width " + std::to_string(1 << rel.r_length) +
345                   " bytes, but must be " +
346                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
347                   " bytes"));
348   }
349   return valid;
350 }
351 
352 template <class Section>
353 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
354                                const Section &sec, SubsectionMap &subsecMap) {
355   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
356   ArrayRef<relocation_info> relInfos(
357       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
358 
359   for (size_t i = 0; i < relInfos.size(); i++) {
360     // Paired relocations serve as Mach-O's method for attaching a
361     // supplemental datum to a primary relocation record. ELF does not
362     // need them because the *_RELOC_RELA records contain the extra
363     // addend field, vs. *_RELOC_REL which omit the addend.
364     //
365     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
366     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
367     // datum for each is a symbolic address. The result is the offset
368     // between two addresses.
369     //
370     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
371     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
372     // base symbolic address.
373     //
374     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
375     // addend into the instruction stream. On X86, a relocatable address
376     // field always occupies an entire contiguous sequence of byte(s),
377     // so there is no need to merge opcode bits with address
378     // bits. Therefore, it's easy and convenient to store addends in the
379     // instruction-stream bytes that would otherwise contain zeroes. By
380     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
381     // address bits so that bitwise arithmetic is necessary to extract
382     // and insert them. Storing addends in the instruction stream is
383     // possible, but inconvenient and more costly at link time.
384 
385     int64_t pairedAddend = 0;
386     relocation_info relInfo = relInfos[i];
387     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
388       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
389       relInfo = relInfos[++i];
390     }
391     assert(i < relInfos.size());
392     if (!validateRelocationInfo(this, sec, relInfo))
393       continue;
394     if (relInfo.r_address & R_SCATTERED)
395       fatal("TODO: Scattered relocations not supported");
396 
397     bool isSubtrahend =
398         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
399     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
400     assert(!(embeddedAddend && pairedAddend));
401     int64_t totalAddend = pairedAddend + embeddedAddend;
402     Reloc r;
403     r.type = relInfo.r_type;
404     r.pcrel = relInfo.r_pcrel;
405     r.length = relInfo.r_length;
406     r.offset = relInfo.r_address;
407     if (relInfo.r_extern) {
408       r.referent = symbols[relInfo.r_symbolnum];
409       r.addend = isSubtrahend ? 0 : totalAddend;
410     } else {
411       assert(!isSubtrahend);
412       const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
413       uint64_t referentOffset;
414       if (relInfo.r_pcrel) {
415         // The implicit addend for pcrel section relocations is the pcrel offset
416         // in terms of the addresses in the input file. Here we adjust it so
417         // that it describes the offset from the start of the referent section.
418         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
419         // have pcrel section relocations. We may want to factor this out into
420         // the arch-specific .cpp file.
421         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
422         referentOffset =
423             sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
424       } else {
425         // The addend for a non-pcrel relocation is its absolute address.
426         referentOffset = totalAddend - referentSec.addr;
427       }
428       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
429       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
430       r.addend = referentOffset;
431     }
432 
433     InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
434     subsec->relocs.push_back(r);
435 
436     if (isSubtrahend) {
437       relocation_info minuendInfo = relInfos[++i];
438       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
439       // attached to the same address.
440       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
441              relInfo.r_address == minuendInfo.r_address);
442       Reloc p;
443       p.type = minuendInfo.r_type;
444       if (minuendInfo.r_extern) {
445         p.referent = symbols[minuendInfo.r_symbolnum];
446         p.addend = totalAddend;
447       } else {
448         uint64_t referentOffset =
449             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
450         SubsectionMap &referentSubsecMap =
451             subsections[minuendInfo.r_symbolnum - 1];
452         p.referent =
453             findContainingSubsection(referentSubsecMap, &referentOffset);
454         p.addend = referentOffset;
455       }
456       subsec->relocs.push_back(p);
457     }
458   }
459 }
460 
461 template <class NList>
462 static macho::Symbol *createDefined(const NList &sym, StringRef name,
463                                     InputSection *isec, uint64_t value,
464                                     uint64_t size) {
465   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
466   // N_EXT: Global symbols. These go in the symbol table during the link,
467   //        and also in the export table of the output so that the dynamic
468   //        linker sees them.
469   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
470   //                 symbol table during the link so that duplicates are
471   //                 either reported (for non-weak symbols) or merged
472   //                 (for weak symbols), but they do not go in the export
473   //                 table of the output.
474   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
475   //         object files) may produce them. LLD does not yet support -r.
476   //         These are translation-unit scoped, identical to the `0` case.
477   // 0: Translation-unit scoped. These are not in the symbol table during
478   //    link, and not in the export table of the output either.
479   bool isWeakDefCanBeHidden =
480       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
481 
482   if (sym.n_type & N_EXT) {
483     bool isPrivateExtern = sym.n_type & N_PEXT;
484     // lld's behavior for merging symbols is slightly different from ld64:
485     // ld64 picks the winning symbol based on several criteria (see
486     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
487     // just merges metadata and keeps the contents of the first symbol
488     // with that name (see SymbolTable::addDefined). For:
489     // * inline function F in a TU built with -fvisibility-inlines-hidden
490     // * and inline function F in another TU built without that flag
491     // ld64 will pick the one from the file built without
492     // -fvisibility-inlines-hidden.
493     // lld will instead pick the one listed first on the link command line and
494     // give it visibility as if the function was built without
495     // -fvisibility-inlines-hidden.
496     // If both functions have the same contents, this will have the same
497     // behavior. If not, it won't, but the input had an ODR violation in
498     // that case.
499     //
500     // Similarly, merging a symbol
501     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
502     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
503     // should produce one
504     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
505     // with ld64's semantics, because it means the non-private-extern
506     // definition will continue to take priority if more private extern
507     // definitions are encountered. With lld's semantics there's no observable
508     // difference between a symbol that's isWeakDefCanBeHidden or one that's
509     // privateExtern -- neither makes it into the dynamic symbol table. So just
510     // promote isWeakDefCanBeHidden to isPrivateExtern here.
511     if (isWeakDefCanBeHidden)
512       isPrivateExtern = true;
513 
514     return symtab->addDefined(
515         name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF,
516         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
517         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
518   }
519 
520   assert(!isWeakDefCanBeHidden &&
521          "weak_def_can_be_hidden on already-hidden symbol?");
522   return make<Defined>(
523       name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF,
524       /*isExternal=*/false, /*isPrivateExtern=*/false,
525       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
526       sym.n_desc & N_NO_DEAD_STRIP);
527 }
528 
529 // Absolute symbols are defined symbols that do not have an associated
530 // InputSection. They cannot be weak.
531 template <class NList>
532 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
533                                      StringRef name) {
534   if (sym.n_type & N_EXT) {
535     return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
536                               /*isWeakDef=*/false, sym.n_type & N_PEXT,
537                               sym.n_desc & N_ARM_THUMB_DEF,
538                               /*isReferencedDynamically=*/false,
539                               sym.n_desc & N_NO_DEAD_STRIP);
540   }
541   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
542                        /*isWeakDef=*/false,
543                        /*isExternal=*/false, /*isPrivateExtern=*/false,
544                        sym.n_desc & N_ARM_THUMB_DEF,
545                        /*isReferencedDynamically=*/false,
546                        sym.n_desc & N_NO_DEAD_STRIP);
547 }
548 
549 template <class NList>
550 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
551                                               StringRef name) {
552   uint8_t type = sym.n_type & N_TYPE;
553   switch (type) {
554   case N_UNDF:
555     return sym.n_value == 0
556                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
557                : symtab->addCommon(name, this, sym.n_value,
558                                    1 << GET_COMM_ALIGN(sym.n_desc),
559                                    sym.n_type & N_PEXT);
560   case N_ABS:
561     return createAbsolute(sym, this, name);
562   case N_PBUD:
563   case N_INDR:
564     error("TODO: support symbols of type " + std::to_string(type));
565     return nullptr;
566   case N_SECT:
567     llvm_unreachable(
568         "N_SECT symbols should not be passed to parseNonSectionSymbol");
569   default:
570     llvm_unreachable("invalid symbol type");
571   }
572 }
573 
574 template <class LP>
575 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
576                            ArrayRef<typename LP::nlist> nList,
577                            const char *strtab, bool subsectionsViaSymbols) {
578   using NList = typename LP::nlist;
579 
580   // Groups indices of the symbols by the sections that contain them.
581   std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
582   symbols.resize(nList.size());
583   for (uint32_t i = 0; i < nList.size(); ++i) {
584     const NList &sym = nList[i];
585     StringRef name = strtab + sym.n_strx;
586     if ((sym.n_type & N_TYPE) == N_SECT) {
587       SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
588       // parseSections() may have chosen not to parse this section.
589       if (subsecMap.empty())
590         continue;
591       symbolsBySection[sym.n_sect - 1].push_back(i);
592     } else {
593       symbols[i] = parseNonSectionSymbol(sym, name);
594     }
595   }
596 
597   // Calculate symbol sizes and create subsections by splitting the sections
598   // along symbol boundaries.
599   for (size_t i = 0; i < subsections.size(); ++i) {
600     SubsectionMap &subsecMap = subsections[i];
601     if (subsecMap.empty())
602       continue;
603 
604     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
605     llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
606       return nList[lhs].n_value < nList[rhs].n_value;
607     });
608     uint64_t sectionAddr = sectionHeaders[i].addr;
609     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
610 
611     // We populate subsecMap by repeatedly splitting the last (highest address)
612     // subsection.
613     SubsectionEntry subsecEntry = subsecMap.back();
614     for (size_t j = 0; j < symbolIndices.size(); ++j) {
615       uint32_t symIndex = symbolIndices[j];
616       const NList &sym = nList[symIndex];
617       StringRef name = strtab + sym.n_strx;
618       InputSection *isec = subsecEntry.isec;
619 
620       uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
621       size_t symbolOffset = sym.n_value - subsecAddr;
622       uint64_t symbolSize =
623           j + 1 < symbolIndices.size()
624               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
625               : isec->data.size() - symbolOffset;
626       // There are 4 cases where we do not need to create a new subsection:
627       //   1. If the input file does not use subsections-via-symbols.
628       //   2. Multiple symbols at the same address only induce one subsection.
629       //      (The symbolOffset == 0 check covers both this case as well as
630       //      the first loop iteration.)
631       //   3. Alternative entry points do not induce new subsections.
632       //   4. If we have a literal section (e.g. __cstring and __literal4).
633       if (!subsectionsViaSymbols || symbolOffset == 0 ||
634           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
635         symbols[symIndex] =
636             createDefined(sym, name, isec, symbolOffset, symbolSize);
637         continue;
638       }
639       auto *concatIsec = cast<ConcatInputSection>(isec);
640 
641       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
642       nextIsec->numRefs = 0;
643       nextIsec->wasCoalesced = false;
644       if (isZeroFill(isec->flags)) {
645         // Zero-fill sections have NULL data.data() non-zero data.size()
646         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
647         isec->data = {nullptr, symbolOffset};
648       } else {
649         nextIsec->data = isec->data.slice(symbolOffset);
650         isec->data = isec->data.slice(0, symbolOffset);
651       }
652 
653       // By construction, the symbol will be at offset zero in the new
654       // subsection.
655       symbols[symIndex] =
656           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
657       // TODO: ld64 appears to preserve the original alignment as well as each
658       // subsection's offset from the last aligned address. We should consider
659       // emulating that behavior.
660       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
661       subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
662       subsecEntry = subsecMap.back();
663     }
664   }
665 }
666 
667 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
668                        StringRef sectName)
669     : InputFile(OpaqueKind, mb) {
670   ConcatInputSection *isec =
671       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16));
672   isec->file = this;
673   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
674   isec->data = {buf, mb.getBufferSize()};
675   isec->live = true;
676   subsections.push_back({{0, isec}});
677 }
678 
679 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
680     : InputFile(ObjKind, mb), modTime(modTime) {
681   this->archiveName = std::string(archiveName);
682   if (target->wordSize == 8)
683     parse<LP64>();
684   else
685     parse<ILP32>();
686 }
687 
688 template <class LP> void ObjFile::parse() {
689   using Header = typename LP::mach_header;
690   using SegmentCommand = typename LP::segment_command;
691   using Section = typename LP::section;
692   using NList = typename LP::nlist;
693 
694   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
695   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
696 
697   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
698   if (arch != config->arch()) {
699     error(toString(this) + " has architecture " + getArchitectureName(arch) +
700           " which is incompatible with target architecture " +
701           getArchitectureName(config->arch()));
702     return;
703   }
704 
705   if (!checkCompatibility(this))
706     return;
707 
708   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
709     StringRef data{reinterpret_cast<const char *>(cmd + 1),
710                    cmd->cmdsize - sizeof(linker_option_command)};
711     parseLCLinkerOption(this, cmd->count, data);
712   }
713 
714   ArrayRef<Section> sectionHeaders;
715   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
716     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
717     sectionHeaders =
718         ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
719     parseSections(sectionHeaders);
720   }
721 
722   // TODO: Error on missing LC_SYMTAB?
723   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
724     auto *c = reinterpret_cast<const symtab_command *>(cmd);
725     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
726                           c->nsyms);
727     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
728     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
729     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
730   }
731 
732   // The relocations may refer to the symbols, so we parse them after we have
733   // parsed all the symbols.
734   for (size_t i = 0, n = subsections.size(); i < n; ++i)
735     if (!subsections[i].empty())
736       parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
737 
738   parseDebugInfo();
739   if (config->emitDataInCodeInfo)
740     parseDataInCode();
741 }
742 
743 void ObjFile::parseDebugInfo() {
744   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
745   if (!dObj)
746     return;
747 
748   auto *ctx = make<DWARFContext>(
749       std::move(dObj), "",
750       [&](Error err) {
751         warn(toString(this) + ": " + toString(std::move(err)));
752       },
753       [&](Error warning) {
754         warn(toString(this) + ": " + toString(std::move(warning)));
755       });
756 
757   // TODO: Since object files can contain a lot of DWARF info, we should verify
758   // that we are parsing just the info we need
759   const DWARFContext::compile_unit_range &units = ctx->compile_units();
760   // FIXME: There can be more than one compile unit per object file. See
761   // PR48637.
762   auto it = units.begin();
763   compileUnit = it->get();
764 }
765 
766 void ObjFile::parseDataInCode() {
767   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
768   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
769   if (!cmd)
770     return;
771   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
772   dataInCodeEntries = {
773       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
774       c->datasize / sizeof(data_in_code_entry)};
775   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
776                                          const data_in_code_entry &rhs) {
777     return lhs.offset < rhs.offset;
778   }));
779 }
780 
781 // The path can point to either a dylib or a .tbd file.
782 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
783   Optional<MemoryBufferRef> mbref = readFile(path);
784   if (!mbref) {
785     error("could not read dylib file at " + path);
786     return nullptr;
787   }
788   return loadDylib(*mbref, umbrella);
789 }
790 
791 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
792 // the first document storing child pointers to the rest of them. When we are
793 // processing a given TBD file, we store that top-level document in
794 // currentTopLevelTapi. When processing re-exports, we search its children for
795 // potentially matching documents in the same TBD file. Note that the children
796 // themselves don't point to further documents, i.e. this is a two-level tree.
797 //
798 // Re-exports can either refer to on-disk files, or to documents within .tbd
799 // files.
800 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
801                             const InterfaceFile *currentTopLevelTapi) {
802   if (path::is_absolute(path, path::Style::posix))
803     for (StringRef root : config->systemLibraryRoots)
804       if (Optional<std::string> dylibPath =
805               resolveDylibPath((root + path).str()))
806         return loadDylib(*dylibPath, umbrella);
807 
808   // TODO: Handle -dylib_file
809 
810   SmallString<128> newPath;
811   if (config->outputType == MH_EXECUTE &&
812       path.consume_front("@executable_path/")) {
813     // ld64 allows overriding this with the undocumented flag -executable_path.
814     // lld doesn't currently implement that flag.
815     path::append(newPath, path::parent_path(config->outputFile), path);
816     path = newPath;
817   } else if (path.consume_front("@loader_path/")) {
818     fs::real_path(umbrella->getName(), newPath);
819     path::remove_filename(newPath);
820     path::append(newPath, path);
821     path = newPath;
822   } else if (path.startswith("@rpath/")) {
823     for (StringRef rpath : umbrella->rpaths) {
824       newPath.clear();
825       if (rpath.consume_front("@loader_path/")) {
826         fs::real_path(umbrella->getName(), newPath);
827         path::remove_filename(newPath);
828       }
829       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
830       if (Optional<std::string> dylibPath = resolveDylibPath(newPath))
831         return loadDylib(*dylibPath, umbrella);
832     }
833   }
834 
835   if (currentTopLevelTapi) {
836     for (InterfaceFile &child :
837          make_pointee_range(currentTopLevelTapi->documents())) {
838       assert(child.documents().empty());
839       if (path == child.getInstallName()) {
840         auto file = make<DylibFile>(child, umbrella);
841         file->parseReexports(child);
842         return file;
843       }
844     }
845   }
846 
847   if (Optional<std::string> dylibPath = resolveDylibPath(path))
848     return loadDylib(*dylibPath, umbrella);
849 
850   return nullptr;
851 }
852 
853 // If a re-exported dylib is public (lives in /usr/lib or
854 // /System/Library/Frameworks), then it is considered implicitly linked: we
855 // should bind to its symbols directly instead of via the re-exporting umbrella
856 // library.
857 static bool isImplicitlyLinked(StringRef path) {
858   if (!config->implicitDylibs)
859     return false;
860 
861   if (path::parent_path(path) == "/usr/lib")
862     return true;
863 
864   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
865   if (path.consume_front("/System/Library/Frameworks/")) {
866     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
867     return path::filename(path) == frameworkName;
868   }
869 
870   return false;
871 }
872 
873 static void loadReexport(StringRef path, DylibFile *umbrella,
874                          const InterfaceFile *currentTopLevelTapi) {
875   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
876   if (!reexport)
877     error("unable to locate re-export with install name " + path);
878 }
879 
880 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
881                      bool isBundleLoader)
882     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
883       isBundleLoader(isBundleLoader) {
884   assert(!isBundleLoader || !umbrella);
885   if (umbrella == nullptr)
886     umbrella = this;
887   this->umbrella = umbrella;
888 
889   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
890   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
891 
892   // Initialize installName.
893   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
894     auto *c = reinterpret_cast<const dylib_command *>(cmd);
895     currentVersion = read32le(&c->dylib.current_version);
896     compatibilityVersion = read32le(&c->dylib.compatibility_version);
897     installName =
898         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
899   } else if (!isBundleLoader) {
900     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
901     // so it's OK.
902     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
903     return;
904   }
905 
906   if (config->printEachFile)
907     message(toString(this));
908   inputFiles.insert(this);
909 
910   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
911 
912   if (!checkCompatibility(this))
913     return;
914 
915   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
916     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
917     rpaths.push_back(rpath);
918   }
919 
920   // Initialize symbols.
921   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
922   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
923     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
924     parseTrie(buf + c->export_off, c->export_size,
925               [&](const Twine &name, uint64_t flags) {
926                 StringRef savedName = saver.save(name);
927                 if (handleLDSymbol(savedName))
928                   return;
929                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
930                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
931                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
932                                                    isWeakDef, isTlv));
933               });
934   } else {
935     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
936     return;
937   }
938 }
939 
940 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
941   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
942   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
943                      target->headerSize;
944   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
945     auto *cmd = reinterpret_cast<const load_command *>(p);
946     p += cmd->cmdsize;
947 
948     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
949         cmd->cmd == LC_REEXPORT_DYLIB) {
950       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
951       StringRef reexportPath =
952           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
953       loadReexport(reexportPath, exportingFile, nullptr);
954     }
955 
956     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
957     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
958     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
959     if (config->namespaceKind == NamespaceKind::flat &&
960         cmd->cmd == LC_LOAD_DYLIB) {
961       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
962       StringRef dylibPath =
963           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
964       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
965       if (!dylib)
966         error(Twine("unable to locate library '") + dylibPath +
967               "' loaded from '" + toString(this) + "' for -flat_namespace");
968     }
969   }
970 }
971 
972 // Some versions of XCode ship with .tbd files that don't have the right
973 // platform settings.
974 static constexpr std::array<StringRef, 3> skipPlatformChecks{
975     "/usr/lib/system/libsystem_kernel.dylib",
976     "/usr/lib/system/libsystem_platform.dylib",
977     "/usr/lib/system/libsystem_pthread.dylib"};
978 
979 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
980                      bool isBundleLoader)
981     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
982       isBundleLoader(isBundleLoader) {
983   // FIXME: Add test for the missing TBD code path.
984 
985   if (umbrella == nullptr)
986     umbrella = this;
987   this->umbrella = umbrella;
988 
989   installName = saver.save(interface.getInstallName());
990   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
991   currentVersion = interface.getCurrentVersion().rawValue();
992 
993   if (config->printEachFile)
994     message(toString(this));
995   inputFiles.insert(this);
996 
997   if (!is_contained(skipPlatformChecks, installName) &&
998       !is_contained(interface.targets(), config->platformInfo.target)) {
999     error(toString(this) + " is incompatible with " +
1000           std::string(config->platformInfo.target));
1001     return;
1002   }
1003 
1004   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1005   auto addSymbol = [&](const Twine &name) -> void {
1006     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1007                                        /*isWeakDef=*/false,
1008                                        /*isTlv=*/false));
1009   };
1010   // TODO(compnerd) filter out symbols based on the target platform
1011   // TODO: handle weak defs, thread locals
1012   for (const auto *symbol : interface.symbols()) {
1013     if (!symbol->getArchitectures().has(config->arch()))
1014       continue;
1015 
1016     if (handleLDSymbol(symbol->getName()))
1017       continue;
1018 
1019     switch (symbol->getKind()) {
1020     case SymbolKind::GlobalSymbol:
1021       addSymbol(symbol->getName());
1022       break;
1023     case SymbolKind::ObjectiveCClass:
1024       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1025       // want to emulate that.
1026       addSymbol(objc::klass + symbol->getName());
1027       addSymbol(objc::metaclass + symbol->getName());
1028       break;
1029     case SymbolKind::ObjectiveCClassEHType:
1030       addSymbol(objc::ehtype + symbol->getName());
1031       break;
1032     case SymbolKind::ObjectiveCInstanceVariable:
1033       addSymbol(objc::ivar + symbol->getName());
1034       break;
1035     }
1036   }
1037 }
1038 
1039 void DylibFile::parseReexports(const InterfaceFile &interface) {
1040   const InterfaceFile *topLevel =
1041       interface.getParent() == nullptr ? &interface : interface.getParent();
1042   for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
1043     InterfaceFile::const_target_range targets = intfRef.targets();
1044     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1045         is_contained(targets, config->platformInfo.target))
1046       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1047   }
1048 }
1049 
1050 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1051 // name, compatibility version or hide/add symbols) for specific target
1052 // versions.
1053 bool DylibFile::handleLDSymbol(StringRef originalName) {
1054   if (!originalName.startswith("$ld$"))
1055     return false;
1056 
1057   StringRef action;
1058   StringRef name;
1059   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1060   if (action == "previous")
1061     handleLDPreviousSymbol(name, originalName);
1062   else if (action == "install_name")
1063     handleLDInstallNameSymbol(name, originalName);
1064   return true;
1065 }
1066 
1067 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1068   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1069   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1070   StringRef installName;
1071   StringRef compatVersion;
1072   StringRef platformStr;
1073   StringRef startVersion;
1074   StringRef endVersion;
1075   StringRef symbolName;
1076   StringRef rest;
1077 
1078   std::tie(installName, name) = name.split('$');
1079   std::tie(compatVersion, name) = name.split('$');
1080   std::tie(platformStr, name) = name.split('$');
1081   std::tie(startVersion, name) = name.split('$');
1082   std::tie(endVersion, name) = name.split('$');
1083   std::tie(symbolName, rest) = name.split('$');
1084   // TODO: ld64 contains some logic for non-empty symbolName as well.
1085   if (!symbolName.empty())
1086     return;
1087   unsigned platform;
1088   if (platformStr.getAsInteger(10, platform) ||
1089       platform != static_cast<unsigned>(config->platform()))
1090     return;
1091 
1092   VersionTuple start;
1093   if (start.tryParse(startVersion)) {
1094     warn("failed to parse start version, symbol '" + originalName +
1095          "' ignored");
1096     return;
1097   }
1098   VersionTuple end;
1099   if (end.tryParse(endVersion)) {
1100     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1101     return;
1102   }
1103   if (config->platformInfo.minimum < start ||
1104       config->platformInfo.minimum >= end)
1105     return;
1106 
1107   this->installName = saver.save(installName);
1108 
1109   if (!compatVersion.empty()) {
1110     VersionTuple cVersion;
1111     if (cVersion.tryParse(compatVersion)) {
1112       warn("failed to parse compatibility version, symbol '" + originalName +
1113            "' ignored");
1114       return;
1115     }
1116     compatibilityVersion = encodeVersion(cVersion);
1117   }
1118 }
1119 
1120 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1121                                           StringRef originalName) {
1122   // originalName: $ld$ install_name $ os<version> $ install_name
1123   StringRef condition, installName;
1124   std::tie(condition, installName) = name.split('$');
1125   VersionTuple version;
1126   if (!condition.consume_front("os") || version.tryParse(condition))
1127     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1128   else if (version == config->platformInfo.minimum)
1129     this->installName = saver.save(installName);
1130 }
1131 
1132 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1133     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
1134   for (const object::Archive::Symbol &sym : file->symbols())
1135     symtab->addLazy(sym.getName(), this, sym);
1136 }
1137 
1138 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1139   object::Archive::Child c =
1140       CHECK(sym.getMember(), toString(this) +
1141                                  ": could not get the member for symbol " +
1142                                  toMachOString(sym));
1143 
1144   if (!seen.insert(c.getChildOffset()).second)
1145     return;
1146 
1147   MemoryBufferRef mb =
1148       CHECK(c.getMemoryBufferRef(),
1149             toString(this) +
1150                 ": could not get the buffer for the member defining symbol " +
1151                 toMachOString(sym));
1152 
1153   if (tar && c.getParent()->isThin())
1154     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1155 
1156   uint32_t modTime = toTimeT(
1157       CHECK(c.getLastModified(), toString(this) +
1158                                      ": could not get the modification time "
1159                                      "for the member defining symbol " +
1160                                      toMachOString(sym)));
1161 
1162   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1163   // and become invalid after that call. Copy it to the stack so we can refer
1164   // to it later.
1165   const object::Archive::Symbol symCopy = sym;
1166 
1167   if (Optional<InputFile *> file =
1168           loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) {
1169     inputFiles.insert(*file);
1170     // ld64 doesn't demangle sym here even with -demangle.
1171     // Match that: intentionally don't call toMachOString().
1172     printArchiveMemberLoad(symCopy.getName(), *file);
1173   }
1174 }
1175 
1176 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1177                                           BitcodeFile &file) {
1178   StringRef name = saver.save(objSym.getName());
1179 
1180   // TODO: support weak references
1181   if (objSym.isUndefined())
1182     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1183 
1184   assert(!objSym.isCommon() && "TODO: support common symbols in LTO");
1185 
1186   // TODO: Write a test demonstrating why computing isPrivateExtern before
1187   // LTO compilation is important.
1188   bool isPrivateExtern = false;
1189   switch (objSym.getVisibility()) {
1190   case GlobalValue::HiddenVisibility:
1191     isPrivateExtern = true;
1192     break;
1193   case GlobalValue::ProtectedVisibility:
1194     error(name + " has protected visibility, which is not supported by Mach-O");
1195     break;
1196   case GlobalValue::DefaultVisibility:
1197     break;
1198   }
1199 
1200   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1201                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1202                             /*isThumb=*/false,
1203                             /*isReferencedDynamically=*/false,
1204                             /*noDeadStrip=*/false);
1205 }
1206 
1207 BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
1208     : InputFile(BitcodeKind, mbref) {
1209   obj = check(lto::InputFile::create(mbref));
1210 
1211   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1212   // "winning" symbol will then be marked as Prevailing at LTO compilation
1213   // time.
1214   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1215     symbols.push_back(createBitcodeSymbol(objSym, *this));
1216 }
1217 
1218 template void ObjFile::parse<LP64>();
1219