1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // Open a given file path and return it as a memory-mapped file. 177 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 179 if (std::error_code ec = mbOrErr.getError()) { 180 error("cannot open " + path + ": " + ec.message()); 181 return None; 182 } 183 184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 185 MemoryBufferRef mbref = mb->getMemBufferRef(); 186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 187 188 // If this is a regular non-fat file, return it. 189 const char *buf = mbref.getBufferStart(); 190 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 191 if (mbref.getBufferSize() < sizeof(uint32_t) || 192 read32be(&hdr->magic) != FAT_MAGIC) { 193 if (tar) 194 tar->append(relativeToRoot(path), mbref.getBuffer()); 195 return mbref; 196 } 197 198 // Object files and archive files may be fat files, which contain multiple 199 // real files for different CPU ISAs. Here, we search for a file that matches 200 // with the current link target and returns it as a MemoryBufferRef. 201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 202 203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 204 if (reinterpret_cast<const char *>(arch + i + 1) > 205 buf + mbref.getBufferSize()) { 206 error(path + ": fat_arch struct extends beyond end of file"); 207 return None; 208 } 209 210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 211 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 212 continue; 213 214 uint32_t offset = read32be(&arch[i].offset); 215 uint32_t size = read32be(&arch[i].size); 216 if (offset + size > mbref.getBufferSize()) 217 error(path + ": slice extends beyond end of file"); 218 if (tar) 219 tar->append(relativeToRoot(path), mbref.getBuffer()); 220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 221 } 222 223 error("unable to find matching architecture in " + path); 224 return None; 225 } 226 227 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 229 230 template <class Section> 231 void ObjFile::parseSections(ArrayRef<Section> sections) { 232 subsections.reserve(sections.size()); 233 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 234 235 for (const Section &sec : sections) { 236 StringRef name = 237 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 238 StringRef segname = 239 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 240 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 241 : buf + sec.offset, 242 static_cast<size_t>(sec.size)}; 243 if (sec.align >= 32) { 244 error("alignment " + std::to_string(sec.align) + " of section " + name + 245 " is too large"); 246 subsections.push_back({}); 247 continue; 248 } 249 uint32_t align = 1 << sec.align; 250 uint32_t flags = sec.flags; 251 252 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 253 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 254 if (sec.nreloc && config->dedupLiterals) 255 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 256 sec.sectname + 257 ", so LLD cannot deduplicate literals. Try re-running without " 258 "--deduplicate-literals."); 259 260 InputSection *isec; 261 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 262 isec = 263 make<CStringInputSection>(segname, name, this, data, align, flags); 264 // FIXME: parallelize this? 265 cast<CStringInputSection>(isec)->splitIntoPieces(); 266 } else { 267 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 268 flags); 269 } 270 subsections.push_back({{0, isec}}); 271 } else if (config->icfLevel != ICFLevel::none && 272 (name == section_names::cfString && 273 segname == segment_names::data)) { 274 uint64_t literalSize = target->wordSize == 8 ? 32 : 16; 275 subsections.push_back({}); 276 SubsectionMap &subsecMap = subsections.back(); 277 for (uint64_t off = 0; off < data.size(); off += literalSize) 278 subsecMap.push_back( 279 {off, make<ConcatInputSection>(segname, name, this, 280 data.slice(off, literalSize), align, 281 flags)}); 282 } else if (segname == segment_names::llvm) { 283 // ld64 does not appear to emit contents from sections within the __LLVM 284 // segment. Symbols within those sections point to bitcode metadata 285 // instead of actual symbols. Global symbols within those sections could 286 // have the same name without causing duplicate symbol errors. Push an 287 // empty map to ensure indices line up for the remaining sections. 288 // TODO: Evaluate whether the bitcode metadata is needed. 289 subsections.push_back({}); 290 } else { 291 auto *isec = 292 make<ConcatInputSection>(segname, name, this, data, align, flags); 293 if (isDebugSection(isec->getFlags()) && 294 isec->getSegName() == segment_names::dwarf) { 295 // Instead of emitting DWARF sections, we emit STABS symbols to the 296 // object files that contain them. We filter them out early to avoid 297 // parsing their relocations unnecessarily. But we must still push an 298 // empty map to ensure the indices line up for the remaining sections. 299 subsections.push_back({}); 300 debugSections.push_back(isec); 301 } else { 302 subsections.push_back({{0, isec}}); 303 } 304 } 305 } 306 } 307 308 // Find the subsection corresponding to the greatest section offset that is <= 309 // that of the given offset. 310 // 311 // offset: an offset relative to the start of the original InputSection (before 312 // any subsection splitting has occurred). It will be updated to represent the 313 // same location as an offset relative to the start of the containing 314 // subsection. 315 static InputSection *findContainingSubsection(SubsectionMap &map, 316 uint64_t *offset) { 317 auto it = std::prev(llvm::upper_bound( 318 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 319 return value < subsecEntry.offset; 320 })); 321 *offset -= it->offset; 322 return it->isec; 323 } 324 325 template <class Section> 326 static bool validateRelocationInfo(InputFile *file, const Section &sec, 327 relocation_info rel) { 328 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 329 bool valid = true; 330 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 331 valid = false; 332 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 333 std::to_string(rel.r_address) + " of " + sec.segname + "," + 334 sec.sectname + " in " + toString(file)) 335 .str(); 336 }; 337 338 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 339 error(message("must be extern")); 340 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 341 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 342 "be PC-relative")); 343 if (isThreadLocalVariables(sec.flags) && 344 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 345 error(message("not allowed in thread-local section, must be UNSIGNED")); 346 if (rel.r_length < 2 || rel.r_length > 3 || 347 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 348 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 349 error(message("has width " + std::to_string(1 << rel.r_length) + 350 " bytes, but must be " + 351 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 352 " bytes")); 353 } 354 return valid; 355 } 356 357 template <class Section> 358 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 359 const Section &sec, SubsectionMap &subsecMap) { 360 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 361 ArrayRef<relocation_info> relInfos( 362 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 363 364 auto subsecIt = subsecMap.rbegin(); 365 for (size_t i = 0; i < relInfos.size(); i++) { 366 // Paired relocations serve as Mach-O's method for attaching a 367 // supplemental datum to a primary relocation record. ELF does not 368 // need them because the *_RELOC_RELA records contain the extra 369 // addend field, vs. *_RELOC_REL which omit the addend. 370 // 371 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 372 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 373 // datum for each is a symbolic address. The result is the offset 374 // between two addresses. 375 // 376 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 377 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 378 // base symbolic address. 379 // 380 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 381 // addend into the instruction stream. On X86, a relocatable address 382 // field always occupies an entire contiguous sequence of byte(s), 383 // so there is no need to merge opcode bits with address 384 // bits. Therefore, it's easy and convenient to store addends in the 385 // instruction-stream bytes that would otherwise contain zeroes. By 386 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 387 // address bits so that bitwise arithmetic is necessary to extract 388 // and insert them. Storing addends in the instruction stream is 389 // possible, but inconvenient and more costly at link time. 390 391 int64_t pairedAddend = 0; 392 relocation_info relInfo = relInfos[i]; 393 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 394 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 395 relInfo = relInfos[++i]; 396 } 397 assert(i < relInfos.size()); 398 if (!validateRelocationInfo(this, sec, relInfo)) 399 continue; 400 if (relInfo.r_address & R_SCATTERED) 401 fatal("TODO: Scattered relocations not supported"); 402 403 bool isSubtrahend = 404 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 405 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 406 assert(!(embeddedAddend && pairedAddend)); 407 int64_t totalAddend = pairedAddend + embeddedAddend; 408 Reloc r; 409 r.type = relInfo.r_type; 410 r.pcrel = relInfo.r_pcrel; 411 r.length = relInfo.r_length; 412 r.offset = relInfo.r_address; 413 if (relInfo.r_extern) { 414 r.referent = symbols[relInfo.r_symbolnum]; 415 r.addend = isSubtrahend ? 0 : totalAddend; 416 } else { 417 assert(!isSubtrahend); 418 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 419 uint64_t referentOffset; 420 if (relInfo.r_pcrel) { 421 // The implicit addend for pcrel section relocations is the pcrel offset 422 // in terms of the addresses in the input file. Here we adjust it so 423 // that it describes the offset from the start of the referent section. 424 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 425 // have pcrel section relocations. We may want to factor this out into 426 // the arch-specific .cpp file. 427 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 428 referentOffset = 429 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 430 } else { 431 // The addend for a non-pcrel relocation is its absolute address. 432 referentOffset = totalAddend - referentSec.addr; 433 } 434 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 435 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 436 r.addend = referentOffset; 437 } 438 439 // Find the subsection that this relocation belongs to. 440 // Though not required by the Mach-O format, clang and gcc seem to emit 441 // relocations in order, so let's take advantage of it. However, ld64 emits 442 // unsorted relocations (in `-r` mode), so we have a fallback for that 443 // uncommon case. 444 InputSection *subsec; 445 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 446 ++subsecIt; 447 if (subsecIt == subsecMap.rend() || 448 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 449 subsec = findContainingSubsection(subsecMap, &r.offset); 450 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 451 // for the other relocations. 452 subsecIt = subsecMap.rend(); 453 } else { 454 subsec = subsecIt->isec; 455 r.offset -= subsecIt->offset; 456 } 457 subsec->relocs.push_back(r); 458 459 if (isSubtrahend) { 460 relocation_info minuendInfo = relInfos[++i]; 461 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 462 // attached to the same address. 463 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 464 relInfo.r_address == minuendInfo.r_address); 465 Reloc p; 466 p.type = minuendInfo.r_type; 467 if (minuendInfo.r_extern) { 468 p.referent = symbols[minuendInfo.r_symbolnum]; 469 p.addend = totalAddend; 470 } else { 471 uint64_t referentOffset = 472 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 473 SubsectionMap &referentSubsecMap = 474 subsections[minuendInfo.r_symbolnum - 1]; 475 p.referent = 476 findContainingSubsection(referentSubsecMap, &referentOffset); 477 p.addend = referentOffset; 478 } 479 subsec->relocs.push_back(p); 480 } 481 } 482 } 483 484 template <class NList> 485 static macho::Symbol *createDefined(const NList &sym, StringRef name, 486 InputSection *isec, uint64_t value, 487 uint64_t size) { 488 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 489 // N_EXT: Global symbols. These go in the symbol table during the link, 490 // and also in the export table of the output so that the dynamic 491 // linker sees them. 492 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 493 // symbol table during the link so that duplicates are 494 // either reported (for non-weak symbols) or merged 495 // (for weak symbols), but they do not go in the export 496 // table of the output. 497 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 498 // object files) may produce them. LLD does not yet support -r. 499 // These are translation-unit scoped, identical to the `0` case. 500 // 0: Translation-unit scoped. These are not in the symbol table during 501 // link, and not in the export table of the output either. 502 bool isWeakDefCanBeHidden = 503 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 504 505 if (sym.n_type & N_EXT) { 506 bool isPrivateExtern = sym.n_type & N_PEXT; 507 // lld's behavior for merging symbols is slightly different from ld64: 508 // ld64 picks the winning symbol based on several criteria (see 509 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 510 // just merges metadata and keeps the contents of the first symbol 511 // with that name (see SymbolTable::addDefined). For: 512 // * inline function F in a TU built with -fvisibility-inlines-hidden 513 // * and inline function F in another TU built without that flag 514 // ld64 will pick the one from the file built without 515 // -fvisibility-inlines-hidden. 516 // lld will instead pick the one listed first on the link command line and 517 // give it visibility as if the function was built without 518 // -fvisibility-inlines-hidden. 519 // If both functions have the same contents, this will have the same 520 // behavior. If not, it won't, but the input had an ODR violation in 521 // that case. 522 // 523 // Similarly, merging a symbol 524 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 525 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 526 // should produce one 527 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 528 // with ld64's semantics, because it means the non-private-extern 529 // definition will continue to take priority if more private extern 530 // definitions are encountered. With lld's semantics there's no observable 531 // difference between a symbol that's isWeakDefCanBeHidden or one that's 532 // privateExtern -- neither makes it into the dynamic symbol table. So just 533 // promote isWeakDefCanBeHidden to isPrivateExtern here. 534 if (isWeakDefCanBeHidden) 535 isPrivateExtern = true; 536 537 return symtab->addDefined( 538 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 539 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 540 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 541 } 542 543 assert(!isWeakDefCanBeHidden && 544 "weak_def_can_be_hidden on already-hidden symbol?"); 545 return make<Defined>( 546 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 547 /*isExternal=*/false, /*isPrivateExtern=*/false, 548 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 549 sym.n_desc & N_NO_DEAD_STRIP); 550 } 551 552 // Absolute symbols are defined symbols that do not have an associated 553 // InputSection. They cannot be weak. 554 template <class NList> 555 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 556 StringRef name) { 557 if (sym.n_type & N_EXT) { 558 return symtab->addDefined( 559 name, file, nullptr, sym.n_value, /*size=*/0, 560 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 561 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 562 } 563 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 564 /*isWeakDef=*/false, 565 /*isExternal=*/false, /*isPrivateExtern=*/false, 566 sym.n_desc & N_ARM_THUMB_DEF, 567 /*isReferencedDynamically=*/false, 568 sym.n_desc & N_NO_DEAD_STRIP); 569 } 570 571 template <class NList> 572 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 573 StringRef name) { 574 uint8_t type = sym.n_type & N_TYPE; 575 switch (type) { 576 case N_UNDF: 577 return sym.n_value == 0 578 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 579 : symtab->addCommon(name, this, sym.n_value, 580 1 << GET_COMM_ALIGN(sym.n_desc), 581 sym.n_type & N_PEXT); 582 case N_ABS: 583 return createAbsolute(sym, this, name); 584 case N_PBUD: 585 case N_INDR: 586 error("TODO: support symbols of type " + std::to_string(type)); 587 return nullptr; 588 case N_SECT: 589 llvm_unreachable( 590 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 591 default: 592 llvm_unreachable("invalid symbol type"); 593 } 594 } 595 596 template <class NList> 597 static bool isUndef(const NList &sym) { 598 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 599 } 600 601 template <class LP> 602 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 603 ArrayRef<typename LP::nlist> nList, 604 const char *strtab, bool subsectionsViaSymbols) { 605 using NList = typename LP::nlist; 606 607 // Groups indices of the symbols by the sections that contain them. 608 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 609 symbols.resize(nList.size()); 610 SmallVector<unsigned, 32> undefineds; 611 for (uint32_t i = 0; i < nList.size(); ++i) { 612 const NList &sym = nList[i]; 613 614 // Ignore debug symbols for now. 615 // FIXME: may need special handling. 616 if (sym.n_type & N_STAB) 617 continue; 618 619 StringRef name = strtab + sym.n_strx; 620 if ((sym.n_type & N_TYPE) == N_SECT) { 621 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 622 // parseSections() may have chosen not to parse this section. 623 if (subsecMap.empty()) 624 continue; 625 symbolsBySection[sym.n_sect - 1].push_back(i); 626 } else if (isUndef(sym)) { 627 undefineds.push_back(i); 628 } else { 629 symbols[i] = parseNonSectionSymbol(sym, name); 630 } 631 } 632 633 for (size_t i = 0; i < subsections.size(); ++i) { 634 SubsectionMap &subsecMap = subsections[i]; 635 if (subsecMap.empty()) 636 continue; 637 638 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 639 uint64_t sectionAddr = sectionHeaders[i].addr; 640 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 641 642 InputSection *isec = subsecMap.back().isec; 643 // __cfstring has already been split into subsections during 644 // parseSections(), so we simply need to match Symbols to the corresponding 645 // subsection here. 646 if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) { 647 for (size_t j = 0; j < symbolIndices.size(); ++j) { 648 uint32_t symIndex = symbolIndices[j]; 649 const NList &sym = nList[symIndex]; 650 StringRef name = strtab + sym.n_strx; 651 uint64_t symbolOffset = sym.n_value - sectionAddr; 652 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 653 if (symbolOffset != 0) { 654 error(toString(this) + ": __cfstring contains symbol " + name + 655 " at misaligned offset"); 656 continue; 657 } 658 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 659 } 660 continue; 661 } 662 663 // Calculate symbol sizes and create subsections by splitting the sections 664 // along symbol boundaries. 665 // We populate subsecMap by repeatedly splitting the last (highest address) 666 // subsection. 667 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 668 return nList[lhs].n_value < nList[rhs].n_value; 669 }); 670 SubsectionEntry subsecEntry = subsecMap.back(); 671 for (size_t j = 0; j < symbolIndices.size(); ++j) { 672 uint32_t symIndex = symbolIndices[j]; 673 const NList &sym = nList[symIndex]; 674 StringRef name = strtab + sym.n_strx; 675 InputSection *isec = subsecEntry.isec; 676 677 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 678 size_t symbolOffset = sym.n_value - subsecAddr; 679 uint64_t symbolSize = 680 j + 1 < symbolIndices.size() 681 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 682 : isec->data.size() - symbolOffset; 683 // There are 4 cases where we do not need to create a new subsection: 684 // 1. If the input file does not use subsections-via-symbols. 685 // 2. Multiple symbols at the same address only induce one subsection. 686 // (The symbolOffset == 0 check covers both this case as well as 687 // the first loop iteration.) 688 // 3. Alternative entry points do not induce new subsections. 689 // 4. If we have a literal section (e.g. __cstring and __literal4). 690 if (!subsectionsViaSymbols || symbolOffset == 0 || 691 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 692 symbols[symIndex] = 693 createDefined(sym, name, isec, symbolOffset, symbolSize); 694 continue; 695 } 696 auto *concatIsec = cast<ConcatInputSection>(isec); 697 698 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 699 nextIsec->numRefs = 0; 700 nextIsec->wasCoalesced = false; 701 if (isZeroFill(isec->getFlags())) { 702 // Zero-fill sections have NULL data.data() non-zero data.size() 703 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 704 isec->data = {nullptr, symbolOffset}; 705 } else { 706 nextIsec->data = isec->data.slice(symbolOffset); 707 isec->data = isec->data.slice(0, symbolOffset); 708 } 709 710 // By construction, the symbol will be at offset zero in the new 711 // subsection. 712 symbols[symIndex] = 713 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 714 // TODO: ld64 appears to preserve the original alignment as well as each 715 // subsection's offset from the last aligned address. We should consider 716 // emulating that behavior. 717 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 718 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 719 subsecEntry = subsecMap.back(); 720 } 721 } 722 723 // Undefined symbols can trigger recursive fetch from Archives due to 724 // LazySymbols. Process defined symbols first so that the relative order 725 // between a defined symbol and an undefined symbol does not change the 726 // symbol resolution behavior. In addition, a set of interconnected symbols 727 // will all be resolved to the same file, instead of being resolved to 728 // different files. 729 for (unsigned i : undefineds) { 730 const NList &sym = nList[i]; 731 StringRef name = strtab + sym.n_strx; 732 symbols[i] = parseNonSectionSymbol(sym, name); 733 } 734 } 735 736 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 737 StringRef sectName) 738 : InputFile(OpaqueKind, mb) { 739 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 740 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 741 ConcatInputSection *isec = 742 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 743 /*file=*/this, data); 744 isec->live = true; 745 subsections.push_back({{0, isec}}); 746 } 747 748 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 749 : InputFile(ObjKind, mb), modTime(modTime) { 750 this->archiveName = std::string(archiveName); 751 if (target->wordSize == 8) 752 parse<LP64>(); 753 else 754 parse<ILP32>(); 755 } 756 757 template <class LP> void ObjFile::parse() { 758 using Header = typename LP::mach_header; 759 using SegmentCommand = typename LP::segment_command; 760 using Section = typename LP::section; 761 using NList = typename LP::nlist; 762 763 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 764 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 765 766 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 767 if (arch != config->arch()) { 768 error(toString(this) + " has architecture " + getArchitectureName(arch) + 769 " which is incompatible with target architecture " + 770 getArchitectureName(config->arch())); 771 return; 772 } 773 774 if (!checkCompatibility(this)) 775 return; 776 777 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 778 StringRef data{reinterpret_cast<const char *>(cmd + 1), 779 cmd->cmdsize - sizeof(linker_option_command)}; 780 parseLCLinkerOption(this, cmd->count, data); 781 } 782 783 ArrayRef<Section> sectionHeaders; 784 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 785 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 786 sectionHeaders = 787 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 788 parseSections(sectionHeaders); 789 } 790 791 // TODO: Error on missing LC_SYMTAB? 792 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 793 auto *c = reinterpret_cast<const symtab_command *>(cmd); 794 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 795 c->nsyms); 796 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 797 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 798 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 799 } 800 801 // The relocations may refer to the symbols, so we parse them after we have 802 // parsed all the symbols. 803 for (size_t i = 0, n = subsections.size(); i < n; ++i) 804 if (!subsections[i].empty()) 805 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 806 807 parseDebugInfo(); 808 if (config->emitDataInCodeInfo) 809 parseDataInCode(); 810 } 811 812 void ObjFile::parseDebugInfo() { 813 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 814 if (!dObj) 815 return; 816 817 auto *ctx = make<DWARFContext>( 818 std::move(dObj), "", 819 [&](Error err) { 820 warn(toString(this) + ": " + toString(std::move(err))); 821 }, 822 [&](Error warning) { 823 warn(toString(this) + ": " + toString(std::move(warning))); 824 }); 825 826 // TODO: Since object files can contain a lot of DWARF info, we should verify 827 // that we are parsing just the info we need 828 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 829 // FIXME: There can be more than one compile unit per object file. See 830 // PR48637. 831 auto it = units.begin(); 832 compileUnit = it->get(); 833 } 834 835 void ObjFile::parseDataInCode() { 836 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 837 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 838 if (!cmd) 839 return; 840 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 841 dataInCodeEntries = { 842 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 843 c->datasize / sizeof(data_in_code_entry)}; 844 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 845 const data_in_code_entry &rhs) { 846 return lhs.offset < rhs.offset; 847 })); 848 } 849 850 // The path can point to either a dylib or a .tbd file. 851 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 852 Optional<MemoryBufferRef> mbref = readFile(path); 853 if (!mbref) { 854 error("could not read dylib file at " + path); 855 return nullptr; 856 } 857 return loadDylib(*mbref, umbrella); 858 } 859 860 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 861 // the first document storing child pointers to the rest of them. When we are 862 // processing a given TBD file, we store that top-level document in 863 // currentTopLevelTapi. When processing re-exports, we search its children for 864 // potentially matching documents in the same TBD file. Note that the children 865 // themselves don't point to further documents, i.e. this is a two-level tree. 866 // 867 // Re-exports can either refer to on-disk files, or to documents within .tbd 868 // files. 869 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 870 const InterfaceFile *currentTopLevelTapi) { 871 // Search order: 872 // 1. Install name basename in -F / -L directories. 873 { 874 StringRef stem = path::stem(path); 875 SmallString<128> frameworkName; 876 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 877 bool isFramework = path.endswith(frameworkName); 878 if (isFramework) { 879 for (StringRef dir : config->frameworkSearchPaths) { 880 SmallString<128> candidate = dir; 881 path::append(candidate, frameworkName); 882 if (Optional<std::string> dylibPath = resolveDylibPath(candidate)) 883 return loadDylib(*dylibPath, umbrella); 884 } 885 } else if (Optional<StringRef> dylibPath = findPathCombination( 886 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 887 return loadDylib(*dylibPath, umbrella); 888 } 889 890 // 2. As absolute path. 891 if (path::is_absolute(path, path::Style::posix)) 892 for (StringRef root : config->systemLibraryRoots) 893 if (Optional<std::string> dylibPath = 894 resolveDylibPath((root + path).str())) 895 return loadDylib(*dylibPath, umbrella); 896 897 // 3. As relative path. 898 899 // TODO: Handle -dylib_file 900 901 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 902 SmallString<128> newPath; 903 if (config->outputType == MH_EXECUTE && 904 path.consume_front("@executable_path/")) { 905 // ld64 allows overriding this with the undocumented flag -executable_path. 906 // lld doesn't currently implement that flag. 907 // FIXME: Consider using finalOutput instead of outputFile. 908 path::append(newPath, path::parent_path(config->outputFile), path); 909 path = newPath; 910 } else if (path.consume_front("@loader_path/")) { 911 fs::real_path(umbrella->getName(), newPath); 912 path::remove_filename(newPath); 913 path::append(newPath, path); 914 path = newPath; 915 } else if (path.startswith("@rpath/")) { 916 for (StringRef rpath : umbrella->rpaths) { 917 newPath.clear(); 918 if (rpath.consume_front("@loader_path/")) { 919 fs::real_path(umbrella->getName(), newPath); 920 path::remove_filename(newPath); 921 } 922 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 923 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 924 return loadDylib(*dylibPath, umbrella); 925 } 926 } 927 928 // FIXME: Should this be further up? 929 if (currentTopLevelTapi) { 930 for (InterfaceFile &child : 931 make_pointee_range(currentTopLevelTapi->documents())) { 932 assert(child.documents().empty()); 933 if (path == child.getInstallName()) { 934 auto file = make<DylibFile>(child, umbrella); 935 file->parseReexports(child); 936 return file; 937 } 938 } 939 } 940 941 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 942 return loadDylib(*dylibPath, umbrella); 943 944 return nullptr; 945 } 946 947 // If a re-exported dylib is public (lives in /usr/lib or 948 // /System/Library/Frameworks), then it is considered implicitly linked: we 949 // should bind to its symbols directly instead of via the re-exporting umbrella 950 // library. 951 static bool isImplicitlyLinked(StringRef path) { 952 if (!config->implicitDylibs) 953 return false; 954 955 if (path::parent_path(path) == "/usr/lib") 956 return true; 957 958 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 959 if (path.consume_front("/System/Library/Frameworks/")) { 960 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 961 return path::filename(path) == frameworkName; 962 } 963 964 return false; 965 } 966 967 static void loadReexport(StringRef path, DylibFile *umbrella, 968 const InterfaceFile *currentTopLevelTapi) { 969 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 970 if (!reexport) 971 error("unable to locate re-export with install name " + path); 972 } 973 974 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 975 bool isBundleLoader) 976 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 977 isBundleLoader(isBundleLoader) { 978 assert(!isBundleLoader || !umbrella); 979 if (umbrella == nullptr) 980 umbrella = this; 981 this->umbrella = umbrella; 982 983 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 984 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 985 986 // Initialize installName. 987 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 988 auto *c = reinterpret_cast<const dylib_command *>(cmd); 989 currentVersion = read32le(&c->dylib.current_version); 990 compatibilityVersion = read32le(&c->dylib.compatibility_version); 991 installName = 992 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 993 } else if (!isBundleLoader) { 994 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 995 // so it's OK. 996 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 997 return; 998 } 999 1000 if (config->printEachFile) 1001 message(toString(this)); 1002 inputFiles.insert(this); 1003 1004 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1005 1006 if (!checkCompatibility(this)) 1007 return; 1008 1009 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1010 1011 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1012 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1013 rpaths.push_back(rpath); 1014 } 1015 1016 // Initialize symbols. 1017 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1018 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1019 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1020 parseTrie(buf + c->export_off, c->export_size, 1021 [&](const Twine &name, uint64_t flags) { 1022 StringRef savedName = saver.save(name); 1023 if (handleLDSymbol(savedName)) 1024 return; 1025 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1026 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1027 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1028 isWeakDef, isTlv)); 1029 }); 1030 } else { 1031 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1032 return; 1033 } 1034 } 1035 1036 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1037 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1038 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1039 target->headerSize; 1040 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1041 auto *cmd = reinterpret_cast<const load_command *>(p); 1042 p += cmd->cmdsize; 1043 1044 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1045 cmd->cmd == LC_REEXPORT_DYLIB) { 1046 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1047 StringRef reexportPath = 1048 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1049 loadReexport(reexportPath, exportingFile, nullptr); 1050 } 1051 1052 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1053 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1054 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1055 if (config->namespaceKind == NamespaceKind::flat && 1056 cmd->cmd == LC_LOAD_DYLIB) { 1057 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1058 StringRef dylibPath = 1059 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1060 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1061 if (!dylib) 1062 error(Twine("unable to locate library '") + dylibPath + 1063 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1064 } 1065 } 1066 } 1067 1068 // Some versions of XCode ship with .tbd files that don't have the right 1069 // platform settings. 1070 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1071 "/usr/lib/system/libsystem_kernel.dylib", 1072 "/usr/lib/system/libsystem_platform.dylib", 1073 "/usr/lib/system/libsystem_pthread.dylib"}; 1074 1075 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1076 bool isBundleLoader) 1077 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1078 isBundleLoader(isBundleLoader) { 1079 // FIXME: Add test for the missing TBD code path. 1080 1081 if (umbrella == nullptr) 1082 umbrella = this; 1083 this->umbrella = umbrella; 1084 1085 installName = saver.save(interface.getInstallName()); 1086 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1087 currentVersion = interface.getCurrentVersion().rawValue(); 1088 1089 if (config->printEachFile) 1090 message(toString(this)); 1091 inputFiles.insert(this); 1092 1093 if (!is_contained(skipPlatformChecks, installName) && 1094 !is_contained(interface.targets(), config->platformInfo.target)) { 1095 error(toString(this) + " is incompatible with " + 1096 std::string(config->platformInfo.target)); 1097 return; 1098 } 1099 1100 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1101 1102 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1103 auto addSymbol = [&](const Twine &name) -> void { 1104 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1105 /*isWeakDef=*/false, 1106 /*isTlv=*/false)); 1107 }; 1108 // TODO(compnerd) filter out symbols based on the target platform 1109 // TODO: handle weak defs, thread locals 1110 for (const auto *symbol : interface.symbols()) { 1111 if (!symbol->getArchitectures().has(config->arch())) 1112 continue; 1113 1114 if (handleLDSymbol(symbol->getName())) 1115 continue; 1116 1117 switch (symbol->getKind()) { 1118 case SymbolKind::GlobalSymbol: 1119 addSymbol(symbol->getName()); 1120 break; 1121 case SymbolKind::ObjectiveCClass: 1122 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1123 // want to emulate that. 1124 addSymbol(objc::klass + symbol->getName()); 1125 addSymbol(objc::metaclass + symbol->getName()); 1126 break; 1127 case SymbolKind::ObjectiveCClassEHType: 1128 addSymbol(objc::ehtype + symbol->getName()); 1129 break; 1130 case SymbolKind::ObjectiveCInstanceVariable: 1131 addSymbol(objc::ivar + symbol->getName()); 1132 break; 1133 } 1134 } 1135 } 1136 1137 void DylibFile::parseReexports(const InterfaceFile &interface) { 1138 const InterfaceFile *topLevel = 1139 interface.getParent() == nullptr ? &interface : interface.getParent(); 1140 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1141 InterfaceFile::const_target_range targets = intfRef.targets(); 1142 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1143 is_contained(targets, config->platformInfo.target)) 1144 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1145 } 1146 } 1147 1148 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1149 // name, compatibility version or hide/add symbols) for specific target 1150 // versions. 1151 bool DylibFile::handleLDSymbol(StringRef originalName) { 1152 if (!originalName.startswith("$ld$")) 1153 return false; 1154 1155 StringRef action; 1156 StringRef name; 1157 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1158 if (action == "previous") 1159 handleLDPreviousSymbol(name, originalName); 1160 else if (action == "install_name") 1161 handleLDInstallNameSymbol(name, originalName); 1162 return true; 1163 } 1164 1165 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1166 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1167 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1168 StringRef installName; 1169 StringRef compatVersion; 1170 StringRef platformStr; 1171 StringRef startVersion; 1172 StringRef endVersion; 1173 StringRef symbolName; 1174 StringRef rest; 1175 1176 std::tie(installName, name) = name.split('$'); 1177 std::tie(compatVersion, name) = name.split('$'); 1178 std::tie(platformStr, name) = name.split('$'); 1179 std::tie(startVersion, name) = name.split('$'); 1180 std::tie(endVersion, name) = name.split('$'); 1181 std::tie(symbolName, rest) = name.split('$'); 1182 // TODO: ld64 contains some logic for non-empty symbolName as well. 1183 if (!symbolName.empty()) 1184 return; 1185 unsigned platform; 1186 if (platformStr.getAsInteger(10, platform) || 1187 platform != static_cast<unsigned>(config->platform())) 1188 return; 1189 1190 VersionTuple start; 1191 if (start.tryParse(startVersion)) { 1192 warn("failed to parse start version, symbol '" + originalName + 1193 "' ignored"); 1194 return; 1195 } 1196 VersionTuple end; 1197 if (end.tryParse(endVersion)) { 1198 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1199 return; 1200 } 1201 if (config->platformInfo.minimum < start || 1202 config->platformInfo.minimum >= end) 1203 return; 1204 1205 this->installName = saver.save(installName); 1206 1207 if (!compatVersion.empty()) { 1208 VersionTuple cVersion; 1209 if (cVersion.tryParse(compatVersion)) { 1210 warn("failed to parse compatibility version, symbol '" + originalName + 1211 "' ignored"); 1212 return; 1213 } 1214 compatibilityVersion = encodeVersion(cVersion); 1215 } 1216 } 1217 1218 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1219 StringRef originalName) { 1220 // originalName: $ld$ install_name $ os<version> $ install_name 1221 StringRef condition, installName; 1222 std::tie(condition, installName) = name.split('$'); 1223 VersionTuple version; 1224 if (!condition.consume_front("os") || version.tryParse(condition)) 1225 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1226 else if (version == config->platformInfo.minimum) 1227 this->installName = saver.save(installName); 1228 } 1229 1230 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1231 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1232 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1233 } 1234 1235 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1236 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1237 1238 void ArchiveFile::addLazySymbols() { 1239 for (const object::Archive::Symbol &sym : file->symbols()) 1240 symtab->addLazy(sym.getName(), this, sym); 1241 } 1242 1243 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1244 uint32_t modTime, 1245 StringRef archiveName, 1246 uint64_t offsetInArchive) { 1247 if (config->zeroModTime) 1248 modTime = 0; 1249 1250 switch (identify_magic(mb.getBuffer())) { 1251 case file_magic::macho_object: 1252 return make<ObjFile>(mb, modTime, archiveName); 1253 case file_magic::bitcode: 1254 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1255 default: 1256 return createStringError(inconvertibleErrorCode(), 1257 mb.getBufferIdentifier() + 1258 " has unhandled file type"); 1259 } 1260 } 1261 1262 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1263 if (!seen.insert(c.getChildOffset()).second) 1264 return Error::success(); 1265 1266 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1267 if (!mb) 1268 return mb.takeError(); 1269 1270 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1271 if (tar && c.getParent()->isThin()) 1272 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1273 1274 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1275 if (!modTime) 1276 return modTime.takeError(); 1277 1278 Expected<InputFile *> file = 1279 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1280 1281 if (!file) 1282 return file.takeError(); 1283 1284 inputFiles.insert(*file); 1285 printArchiveMemberLoad(reason, *file); 1286 return Error::success(); 1287 } 1288 1289 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1290 object::Archive::Child c = 1291 CHECK(sym.getMember(), toString(this) + 1292 ": could not get the member defining symbol " + 1293 toMachOString(sym)); 1294 1295 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1296 // and become invalid after that call. Copy it to the stack so we can refer 1297 // to it later. 1298 const object::Archive::Symbol symCopy = sym; 1299 1300 // ld64 doesn't demangle sym here even with -demangle. 1301 // Match that: intentionally don't call toMachOString(). 1302 if (Error e = fetch(c, symCopy.getName())) 1303 error(toString(this) + ": could not get the member defining symbol " + 1304 toMachOString(symCopy) + ": " + toString(std::move(e))); 1305 } 1306 1307 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1308 BitcodeFile &file) { 1309 StringRef name = saver.save(objSym.getName()); 1310 1311 // TODO: support weak references 1312 if (objSym.isUndefined()) 1313 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1314 1315 // TODO: Write a test demonstrating why computing isPrivateExtern before 1316 // LTO compilation is important. 1317 bool isPrivateExtern = false; 1318 switch (objSym.getVisibility()) { 1319 case GlobalValue::HiddenVisibility: 1320 isPrivateExtern = true; 1321 break; 1322 case GlobalValue::ProtectedVisibility: 1323 error(name + " has protected visibility, which is not supported by Mach-O"); 1324 break; 1325 case GlobalValue::DefaultVisibility: 1326 break; 1327 } 1328 1329 if (objSym.isCommon()) 1330 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1331 objSym.getCommonAlignment(), isPrivateExtern); 1332 1333 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1334 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1335 /*isThumb=*/false, 1336 /*isReferencedDynamically=*/false, 1337 /*noDeadStrip=*/false); 1338 } 1339 1340 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1341 uint64_t offsetInArchive) 1342 : InputFile(BitcodeKind, mb) { 1343 std::string path = mb.getBufferIdentifier().str(); 1344 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1345 // name. If two members with the same name are provided, this causes a 1346 // collision and ThinLTO can't proceed. 1347 // So, we append the archive name to disambiguate two members with the same 1348 // name from multiple different archives, and offset within the archive to 1349 // disambiguate two members of the same name from a single archive. 1350 MemoryBufferRef mbref( 1351 mb.getBuffer(), 1352 saver.save(archiveName.empty() ? path 1353 : archiveName + sys::path::filename(path) + 1354 utostr(offsetInArchive))); 1355 1356 obj = check(lto::InputFile::create(mbref)); 1357 1358 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1359 // "winning" symbol will then be marked as Prevailing at LTO compilation 1360 // time. 1361 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1362 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1363 } 1364 1365 template void ObjFile::parse<LP64>(); 1366