1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // Open a given file path and return it as a memory-mapped file. 177 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 179 if (std::error_code ec = mbOrErr.getError()) { 180 error("cannot open " + path + ": " + ec.message()); 181 return None; 182 } 183 184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 185 MemoryBufferRef mbref = mb->getMemBufferRef(); 186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 187 188 // If this is a regular non-fat file, return it. 189 const char *buf = mbref.getBufferStart(); 190 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 191 if (mbref.getBufferSize() < sizeof(uint32_t) || 192 read32be(&hdr->magic) != FAT_MAGIC) { 193 if (tar) 194 tar->append(relativeToRoot(path), mbref.getBuffer()); 195 return mbref; 196 } 197 198 // Object files and archive files may be fat files, which contain multiple 199 // real files for different CPU ISAs. Here, we search for a file that matches 200 // with the current link target and returns it as a MemoryBufferRef. 201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 202 203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 204 if (reinterpret_cast<const char *>(arch + i + 1) > 205 buf + mbref.getBufferSize()) { 206 error(path + ": fat_arch struct extends beyond end of file"); 207 return None; 208 } 209 210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 211 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 212 continue; 213 214 uint32_t offset = read32be(&arch[i].offset); 215 uint32_t size = read32be(&arch[i].size); 216 if (offset + size > mbref.getBufferSize()) 217 error(path + ": slice extends beyond end of file"); 218 if (tar) 219 tar->append(relativeToRoot(path), mbref.getBuffer()); 220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 221 } 222 223 error("unable to find matching architecture in " + path); 224 return None; 225 } 226 227 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 229 230 // Some sections comprise of fixed-size records, so instead of splitting them at 231 // symbol boundaries, we split them based on size. Records are distinct from 232 // literals in that they may contain references to other sections, instead of 233 // being leaf nodes in the InputSection graph. 234 // 235 // Note that "record" is a term I came up with. In contrast, "literal" is a term 236 // used by the Mach-O format. 237 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 238 if (name == section_names::cfString) { 239 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 240 return target->wordSize == 8 ? 32 : 16; 241 } else if (name == section_names::compactUnwind) { 242 if (segname == segment_names::ld) 243 return target->wordSize == 8 ? 32 : 20; 244 } 245 return {}; 246 } 247 248 template <class Section> 249 void ObjFile::parseSections(ArrayRef<Section> sections) { 250 subsections.reserve(sections.size()); 251 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 252 253 for (const Section &sec : sections) { 254 StringRef name = 255 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 256 StringRef segname = 257 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 258 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 259 : buf + sec.offset, 260 static_cast<size_t>(sec.size)}; 261 if (sec.align >= 32) { 262 error("alignment " + std::to_string(sec.align) + " of section " + name + 263 " is too large"); 264 subsections.push_back({}); 265 continue; 266 } 267 uint32_t align = 1 << sec.align; 268 uint32_t flags = sec.flags; 269 270 auto splitRecords = [&](int recordSize) -> void { 271 subsections.push_back({}); 272 if (data.size() == 0) 273 return; 274 275 SubsectionMap &subsecMap = subsections.back(); 276 subsecMap.reserve(data.size() / recordSize); 277 auto *isec = make<ConcatInputSection>( 278 segname, name, this, data.slice(0, recordSize), align, flags); 279 subsecMap.push_back({0, isec}); 280 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 281 // Copying requires less memory than constructing a fresh InputSection. 282 auto *copy = make<ConcatInputSection>(*isec); 283 copy->data = data.slice(off, recordSize); 284 subsecMap.push_back({off, copy}); 285 } 286 }; 287 288 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 289 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 290 if (sec.nreloc && config->dedupLiterals) 291 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 292 sec.sectname + 293 ", so LLD cannot deduplicate literals. Try re-running without " 294 "--deduplicate-literals."); 295 296 InputSection *isec; 297 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 298 isec = 299 make<CStringInputSection>(segname, name, this, data, align, flags); 300 // FIXME: parallelize this? 301 cast<CStringInputSection>(isec)->splitIntoPieces(); 302 } else { 303 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 304 flags); 305 } 306 subsections.push_back({{0, isec}}); 307 } else if (auto recordSize = getRecordSize(segname, name)) { 308 splitRecords(*recordSize); 309 } else if (segname == segment_names::llvm) { 310 // ld64 does not appear to emit contents from sections within the __LLVM 311 // segment. Symbols within those sections point to bitcode metadata 312 // instead of actual symbols. Global symbols within those sections could 313 // have the same name without causing duplicate symbol errors. Push an 314 // empty map to ensure indices line up for the remaining sections. 315 // TODO: Evaluate whether the bitcode metadata is needed. 316 subsections.push_back({}); 317 } else { 318 auto *isec = 319 make<ConcatInputSection>(segname, name, this, data, align, flags); 320 if (isDebugSection(isec->getFlags()) && 321 isec->getSegName() == segment_names::dwarf) { 322 // Instead of emitting DWARF sections, we emit STABS symbols to the 323 // object files that contain them. We filter them out early to avoid 324 // parsing their relocations unnecessarily. But we must still push an 325 // empty map to ensure the indices line up for the remaining sections. 326 subsections.push_back({}); 327 debugSections.push_back(isec); 328 } else { 329 subsections.push_back({{0, isec}}); 330 } 331 } 332 } 333 } 334 335 // Find the subsection corresponding to the greatest section offset that is <= 336 // that of the given offset. 337 // 338 // offset: an offset relative to the start of the original InputSection (before 339 // any subsection splitting has occurred). It will be updated to represent the 340 // same location as an offset relative to the start of the containing 341 // subsection. 342 static InputSection *findContainingSubsection(SubsectionMap &map, 343 uint64_t *offset) { 344 auto it = std::prev(llvm::upper_bound( 345 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 346 return value < subsecEntry.offset; 347 })); 348 *offset -= it->offset; 349 return it->isec; 350 } 351 352 template <class Section> 353 static bool validateRelocationInfo(InputFile *file, const Section &sec, 354 relocation_info rel) { 355 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 356 bool valid = true; 357 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 358 valid = false; 359 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 360 std::to_string(rel.r_address) + " of " + sec.segname + "," + 361 sec.sectname + " in " + toString(file)) 362 .str(); 363 }; 364 365 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 366 error(message("must be extern")); 367 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 368 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 369 "be PC-relative")); 370 if (isThreadLocalVariables(sec.flags) && 371 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 372 error(message("not allowed in thread-local section, must be UNSIGNED")); 373 if (rel.r_length < 2 || rel.r_length > 3 || 374 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 375 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 376 error(message("has width " + std::to_string(1 << rel.r_length) + 377 " bytes, but must be " + 378 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 379 " bytes")); 380 } 381 return valid; 382 } 383 384 template <class Section> 385 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 386 const Section &sec, SubsectionMap &subsecMap) { 387 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 388 ArrayRef<relocation_info> relInfos( 389 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 390 391 auto subsecIt = subsecMap.rbegin(); 392 for (size_t i = 0; i < relInfos.size(); i++) { 393 // Paired relocations serve as Mach-O's method for attaching a 394 // supplemental datum to a primary relocation record. ELF does not 395 // need them because the *_RELOC_RELA records contain the extra 396 // addend field, vs. *_RELOC_REL which omit the addend. 397 // 398 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 399 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 400 // datum for each is a symbolic address. The result is the offset 401 // between two addresses. 402 // 403 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 404 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 405 // base symbolic address. 406 // 407 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 408 // addend into the instruction stream. On X86, a relocatable address 409 // field always occupies an entire contiguous sequence of byte(s), 410 // so there is no need to merge opcode bits with address 411 // bits. Therefore, it's easy and convenient to store addends in the 412 // instruction-stream bytes that would otherwise contain zeroes. By 413 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 414 // address bits so that bitwise arithmetic is necessary to extract 415 // and insert them. Storing addends in the instruction stream is 416 // possible, but inconvenient and more costly at link time. 417 418 int64_t pairedAddend = 0; 419 relocation_info relInfo = relInfos[i]; 420 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 421 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 422 relInfo = relInfos[++i]; 423 } 424 assert(i < relInfos.size()); 425 if (!validateRelocationInfo(this, sec, relInfo)) 426 continue; 427 if (relInfo.r_address & R_SCATTERED) 428 fatal("TODO: Scattered relocations not supported"); 429 430 bool isSubtrahend = 431 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 432 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 433 assert(!(embeddedAddend && pairedAddend)); 434 int64_t totalAddend = pairedAddend + embeddedAddend; 435 Reloc r; 436 r.type = relInfo.r_type; 437 r.pcrel = relInfo.r_pcrel; 438 r.length = relInfo.r_length; 439 r.offset = relInfo.r_address; 440 if (relInfo.r_extern) { 441 r.referent = symbols[relInfo.r_symbolnum]; 442 r.addend = isSubtrahend ? 0 : totalAddend; 443 } else { 444 assert(!isSubtrahend); 445 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 446 uint64_t referentOffset; 447 if (relInfo.r_pcrel) { 448 // The implicit addend for pcrel section relocations is the pcrel offset 449 // in terms of the addresses in the input file. Here we adjust it so 450 // that it describes the offset from the start of the referent section. 451 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 452 // have pcrel section relocations. We may want to factor this out into 453 // the arch-specific .cpp file. 454 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 455 referentOffset = 456 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 457 } else { 458 // The addend for a non-pcrel relocation is its absolute address. 459 referentOffset = totalAddend - referentSec.addr; 460 } 461 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 462 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 463 r.addend = referentOffset; 464 } 465 466 // Find the subsection that this relocation belongs to. 467 // Though not required by the Mach-O format, clang and gcc seem to emit 468 // relocations in order, so let's take advantage of it. However, ld64 emits 469 // unsorted relocations (in `-r` mode), so we have a fallback for that 470 // uncommon case. 471 InputSection *subsec; 472 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 473 ++subsecIt; 474 if (subsecIt == subsecMap.rend() || 475 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 476 subsec = findContainingSubsection(subsecMap, &r.offset); 477 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 478 // for the other relocations. 479 subsecIt = subsecMap.rend(); 480 } else { 481 subsec = subsecIt->isec; 482 r.offset -= subsecIt->offset; 483 } 484 subsec->relocs.push_back(r); 485 486 if (isSubtrahend) { 487 relocation_info minuendInfo = relInfos[++i]; 488 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 489 // attached to the same address. 490 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 491 relInfo.r_address == minuendInfo.r_address); 492 Reloc p; 493 p.type = minuendInfo.r_type; 494 if (minuendInfo.r_extern) { 495 p.referent = symbols[minuendInfo.r_symbolnum]; 496 p.addend = totalAddend; 497 } else { 498 uint64_t referentOffset = 499 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 500 SubsectionMap &referentSubsecMap = 501 subsections[minuendInfo.r_symbolnum - 1]; 502 p.referent = 503 findContainingSubsection(referentSubsecMap, &referentOffset); 504 p.addend = referentOffset; 505 } 506 subsec->relocs.push_back(p); 507 } 508 } 509 } 510 511 template <class NList> 512 static macho::Symbol *createDefined(const NList &sym, StringRef name, 513 InputSection *isec, uint64_t value, 514 uint64_t size) { 515 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 516 // N_EXT: Global symbols. These go in the symbol table during the link, 517 // and also in the export table of the output so that the dynamic 518 // linker sees them. 519 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 520 // symbol table during the link so that duplicates are 521 // either reported (for non-weak symbols) or merged 522 // (for weak symbols), but they do not go in the export 523 // table of the output. 524 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 525 // object files) may produce them. LLD does not yet support -r. 526 // These are translation-unit scoped, identical to the `0` case. 527 // 0: Translation-unit scoped. These are not in the symbol table during 528 // link, and not in the export table of the output either. 529 bool isWeakDefCanBeHidden = 530 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 531 532 if (sym.n_type & N_EXT) { 533 bool isPrivateExtern = sym.n_type & N_PEXT; 534 // lld's behavior for merging symbols is slightly different from ld64: 535 // ld64 picks the winning symbol based on several criteria (see 536 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 537 // just merges metadata and keeps the contents of the first symbol 538 // with that name (see SymbolTable::addDefined). For: 539 // * inline function F in a TU built with -fvisibility-inlines-hidden 540 // * and inline function F in another TU built without that flag 541 // ld64 will pick the one from the file built without 542 // -fvisibility-inlines-hidden. 543 // lld will instead pick the one listed first on the link command line and 544 // give it visibility as if the function was built without 545 // -fvisibility-inlines-hidden. 546 // If both functions have the same contents, this will have the same 547 // behavior. If not, it won't, but the input had an ODR violation in 548 // that case. 549 // 550 // Similarly, merging a symbol 551 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 552 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 553 // should produce one 554 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 555 // with ld64's semantics, because it means the non-private-extern 556 // definition will continue to take priority if more private extern 557 // definitions are encountered. With lld's semantics there's no observable 558 // difference between a symbol that's isWeakDefCanBeHidden or one that's 559 // privateExtern -- neither makes it into the dynamic symbol table. So just 560 // promote isWeakDefCanBeHidden to isPrivateExtern here. 561 if (isWeakDefCanBeHidden) 562 isPrivateExtern = true; 563 564 return symtab->addDefined( 565 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 566 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 567 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 568 } 569 assert(!isWeakDefCanBeHidden && 570 "weak_def_can_be_hidden on already-hidden symbol?"); 571 return make<Defined>( 572 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 573 /*isExternal=*/false, /*isPrivateExtern=*/false, 574 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 575 sym.n_desc & N_NO_DEAD_STRIP); 576 } 577 578 // Absolute symbols are defined symbols that do not have an associated 579 // InputSection. They cannot be weak. 580 template <class NList> 581 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 582 StringRef name) { 583 if (sym.n_type & N_EXT) { 584 return symtab->addDefined( 585 name, file, nullptr, sym.n_value, /*size=*/0, 586 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 587 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 588 } 589 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 590 /*isWeakDef=*/false, 591 /*isExternal=*/false, /*isPrivateExtern=*/false, 592 sym.n_desc & N_ARM_THUMB_DEF, 593 /*isReferencedDynamically=*/false, 594 sym.n_desc & N_NO_DEAD_STRIP); 595 } 596 597 template <class NList> 598 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 599 StringRef name) { 600 uint8_t type = sym.n_type & N_TYPE; 601 switch (type) { 602 case N_UNDF: 603 return sym.n_value == 0 604 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 605 : symtab->addCommon(name, this, sym.n_value, 606 1 << GET_COMM_ALIGN(sym.n_desc), 607 sym.n_type & N_PEXT); 608 case N_ABS: 609 return createAbsolute(sym, this, name); 610 case N_PBUD: 611 case N_INDR: 612 error("TODO: support symbols of type " + std::to_string(type)); 613 return nullptr; 614 case N_SECT: 615 llvm_unreachable( 616 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 617 default: 618 llvm_unreachable("invalid symbol type"); 619 } 620 } 621 622 template <class NList> 623 static bool isUndef(const NList &sym) { 624 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 625 } 626 627 template <class LP> 628 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 629 ArrayRef<typename LP::nlist> nList, 630 const char *strtab, bool subsectionsViaSymbols) { 631 using NList = typename LP::nlist; 632 633 // Groups indices of the symbols by the sections that contain them. 634 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 635 symbols.resize(nList.size()); 636 SmallVector<unsigned, 32> undefineds; 637 for (uint32_t i = 0; i < nList.size(); ++i) { 638 const NList &sym = nList[i]; 639 640 // Ignore debug symbols for now. 641 // FIXME: may need special handling. 642 if (sym.n_type & N_STAB) 643 continue; 644 645 StringRef name = strtab + sym.n_strx; 646 if ((sym.n_type & N_TYPE) == N_SECT) { 647 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 648 // parseSections() may have chosen not to parse this section. 649 if (subsecMap.empty()) 650 continue; 651 symbolsBySection[sym.n_sect - 1].push_back(i); 652 } else if (isUndef(sym)) { 653 undefineds.push_back(i); 654 } else { 655 symbols[i] = parseNonSectionSymbol(sym, name); 656 } 657 } 658 659 for (size_t i = 0; i < subsections.size(); ++i) { 660 SubsectionMap &subsecMap = subsections[i]; 661 if (subsecMap.empty()) 662 continue; 663 664 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 665 uint64_t sectionAddr = sectionHeaders[i].addr; 666 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 667 668 InputSection *lastIsec = subsecMap.back().isec; 669 // Record-based sections have already been split into subsections during 670 // parseSections(), so we simply need to match Symbols to the corresponding 671 // subsection here. 672 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 673 for (size_t j = 0; j < symbolIndices.size(); ++j) { 674 uint32_t symIndex = symbolIndices[j]; 675 const NList &sym = nList[symIndex]; 676 StringRef name = strtab + sym.n_strx; 677 uint64_t symbolOffset = sym.n_value - sectionAddr; 678 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 679 if (symbolOffset != 0) { 680 error(toString(lastIsec) + ": symbol " + name + 681 " at misaligned offset"); 682 continue; 683 } 684 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 685 } 686 continue; 687 } 688 689 // Calculate symbol sizes and create subsections by splitting the sections 690 // along symbol boundaries. 691 // We populate subsecMap by repeatedly splitting the last (highest address) 692 // subsection. 693 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 694 return nList[lhs].n_value < nList[rhs].n_value; 695 }); 696 SubsectionEntry subsecEntry = subsecMap.back(); 697 for (size_t j = 0; j < symbolIndices.size(); ++j) { 698 uint32_t symIndex = symbolIndices[j]; 699 const NList &sym = nList[symIndex]; 700 StringRef name = strtab + sym.n_strx; 701 InputSection *isec = subsecEntry.isec; 702 703 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 704 size_t symbolOffset = sym.n_value - subsecAddr; 705 uint64_t symbolSize = 706 j + 1 < symbolIndices.size() 707 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 708 : isec->data.size() - symbolOffset; 709 // There are 4 cases where we do not need to create a new subsection: 710 // 1. If the input file does not use subsections-via-symbols. 711 // 2. Multiple symbols at the same address only induce one subsection. 712 // (The symbolOffset == 0 check covers both this case as well as 713 // the first loop iteration.) 714 // 3. Alternative entry points do not induce new subsections. 715 // 4. If we have a literal section (e.g. __cstring and __literal4). 716 if (!subsectionsViaSymbols || symbolOffset == 0 || 717 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 718 symbols[symIndex] = 719 createDefined(sym, name, isec, symbolOffset, symbolSize); 720 continue; 721 } 722 auto *concatIsec = cast<ConcatInputSection>(isec); 723 724 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 725 nextIsec->wasCoalesced = false; 726 if (isZeroFill(isec->getFlags())) { 727 // Zero-fill sections have NULL data.data() non-zero data.size() 728 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 729 isec->data = {nullptr, symbolOffset}; 730 } else { 731 nextIsec->data = isec->data.slice(symbolOffset); 732 isec->data = isec->data.slice(0, symbolOffset); 733 } 734 735 // By construction, the symbol will be at offset zero in the new 736 // subsection. 737 symbols[symIndex] = 738 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 739 // TODO: ld64 appears to preserve the original alignment as well as each 740 // subsection's offset from the last aligned address. We should consider 741 // emulating that behavior. 742 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 743 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 744 subsecEntry = subsecMap.back(); 745 } 746 } 747 748 // Undefined symbols can trigger recursive fetch from Archives due to 749 // LazySymbols. Process defined symbols first so that the relative order 750 // between a defined symbol and an undefined symbol does not change the 751 // symbol resolution behavior. In addition, a set of interconnected symbols 752 // will all be resolved to the same file, instead of being resolved to 753 // different files. 754 for (unsigned i : undefineds) { 755 const NList &sym = nList[i]; 756 StringRef name = strtab + sym.n_strx; 757 symbols[i] = parseNonSectionSymbol(sym, name); 758 } 759 } 760 761 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 762 StringRef sectName) 763 : InputFile(OpaqueKind, mb) { 764 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 765 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 766 ConcatInputSection *isec = 767 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 768 /*file=*/this, data); 769 isec->live = true; 770 subsections.push_back({{0, isec}}); 771 } 772 773 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 774 : InputFile(ObjKind, mb), modTime(modTime) { 775 this->archiveName = std::string(archiveName); 776 if (target->wordSize == 8) 777 parse<LP64>(); 778 else 779 parse<ILP32>(); 780 } 781 782 template <class LP> void ObjFile::parse() { 783 using Header = typename LP::mach_header; 784 using SegmentCommand = typename LP::segment_command; 785 using Section = typename LP::section; 786 using NList = typename LP::nlist; 787 788 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 789 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 790 791 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 792 if (arch != config->arch()) { 793 error(toString(this) + " has architecture " + getArchitectureName(arch) + 794 " which is incompatible with target architecture " + 795 getArchitectureName(config->arch())); 796 return; 797 } 798 799 if (!checkCompatibility(this)) 800 return; 801 802 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 803 StringRef data{reinterpret_cast<const char *>(cmd + 1), 804 cmd->cmdsize - sizeof(linker_option_command)}; 805 parseLCLinkerOption(this, cmd->count, data); 806 } 807 808 ArrayRef<Section> sectionHeaders; 809 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 810 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 811 sectionHeaders = 812 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 813 parseSections(sectionHeaders); 814 } 815 816 // TODO: Error on missing LC_SYMTAB? 817 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 818 auto *c = reinterpret_cast<const symtab_command *>(cmd); 819 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 820 c->nsyms); 821 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 822 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 823 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 824 } 825 826 // The relocations may refer to the symbols, so we parse them after we have 827 // parsed all the symbols. 828 for (size_t i = 0, n = subsections.size(); i < n; ++i) 829 if (!subsections[i].empty()) 830 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 831 832 parseDebugInfo(); 833 if (config->emitDataInCodeInfo) 834 parseDataInCode(); 835 registerCompactUnwind(); 836 } 837 838 void ObjFile::parseDebugInfo() { 839 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 840 if (!dObj) 841 return; 842 843 auto *ctx = make<DWARFContext>( 844 std::move(dObj), "", 845 [&](Error err) { 846 warn(toString(this) + ": " + toString(std::move(err))); 847 }, 848 [&](Error warning) { 849 warn(toString(this) + ": " + toString(std::move(warning))); 850 }); 851 852 // TODO: Since object files can contain a lot of DWARF info, we should verify 853 // that we are parsing just the info we need 854 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 855 // FIXME: There can be more than one compile unit per object file. See 856 // PR48637. 857 auto it = units.begin(); 858 compileUnit = it->get(); 859 } 860 861 void ObjFile::parseDataInCode() { 862 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 863 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 864 if (!cmd) 865 return; 866 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 867 dataInCodeEntries = { 868 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 869 c->datasize / sizeof(data_in_code_entry)}; 870 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 871 const data_in_code_entry &rhs) { 872 return lhs.offset < rhs.offset; 873 })); 874 } 875 876 // Create pointers from symbols to their associated compact unwind entries. 877 void ObjFile::registerCompactUnwind() { 878 // First, locate the __compact_unwind section. 879 SubsectionMap *cuSubsecMap = nullptr; 880 for (SubsectionMap &map : subsections) { 881 if (map.empty()) 882 continue; 883 if (map[0].isec->getSegName() != segment_names::ld) 884 continue; 885 cuSubsecMap = ↦ 886 break; 887 } 888 if (!cuSubsecMap) 889 return; 890 891 for (SubsectionEntry &entry : *cuSubsecMap) { 892 ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec); 893 ConcatInputSection *referentIsec; 894 for (const Reloc &r : isec->relocs) { 895 if (r.offset != 0) 896 continue; 897 uint64_t add = r.addend; 898 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 899 add += sym->value; 900 referentIsec = cast<ConcatInputSection>(sym->isec); 901 } else { 902 referentIsec = 903 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 904 } 905 if (referentIsec->getSegName() != segment_names::text) 906 error("compact unwind references address in " + toString(referentIsec) + 907 " which is not in segment __TEXT"); 908 // The functionAddress relocations are typically section relocations. 909 // However, unwind info operates on a per-symbol basis, so we search for 910 // the function symbol here. 911 auto it = llvm::lower_bound( 912 referentIsec->symbols, add, 913 [](Defined *d, uint64_t add) { return d->value < add; }); 914 // The relocation should point at the exact address of a symbol (with no 915 // addend). 916 if (it == referentIsec->symbols.end() || (*it)->value != add) { 917 assert(referentIsec->wasCoalesced); 918 continue; 919 } 920 (*it)->compactUnwind = isec; 921 } 922 } 923 } 924 925 // The path can point to either a dylib or a .tbd file. 926 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 927 Optional<MemoryBufferRef> mbref = readFile(path); 928 if (!mbref) { 929 error("could not read dylib file at " + path); 930 return nullptr; 931 } 932 return loadDylib(*mbref, umbrella); 933 } 934 935 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 936 // the first document storing child pointers to the rest of them. When we are 937 // processing a given TBD file, we store that top-level document in 938 // currentTopLevelTapi. When processing re-exports, we search its children for 939 // potentially matching documents in the same TBD file. Note that the children 940 // themselves don't point to further documents, i.e. this is a two-level tree. 941 // 942 // Re-exports can either refer to on-disk files, or to documents within .tbd 943 // files. 944 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 945 const InterfaceFile *currentTopLevelTapi) { 946 // Search order: 947 // 1. Install name basename in -F / -L directories. 948 { 949 StringRef stem = path::stem(path); 950 SmallString<128> frameworkName; 951 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 952 bool isFramework = path.endswith(frameworkName); 953 if (isFramework) { 954 for (StringRef dir : config->frameworkSearchPaths) { 955 SmallString<128> candidate = dir; 956 path::append(candidate, frameworkName); 957 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 958 return loadDylib(*dylibPath, umbrella); 959 } 960 } else if (Optional<StringRef> dylibPath = findPathCombination( 961 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 962 return loadDylib(*dylibPath, umbrella); 963 } 964 965 // 2. As absolute path. 966 if (path::is_absolute(path, path::Style::posix)) 967 for (StringRef root : config->systemLibraryRoots) 968 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 969 return loadDylib(*dylibPath, umbrella); 970 971 // 3. As relative path. 972 973 // TODO: Handle -dylib_file 974 975 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 976 SmallString<128> newPath; 977 if (config->outputType == MH_EXECUTE && 978 path.consume_front("@executable_path/")) { 979 // ld64 allows overriding this with the undocumented flag -executable_path. 980 // lld doesn't currently implement that flag. 981 // FIXME: Consider using finalOutput instead of outputFile. 982 path::append(newPath, path::parent_path(config->outputFile), path); 983 path = newPath; 984 } else if (path.consume_front("@loader_path/")) { 985 fs::real_path(umbrella->getName(), newPath); 986 path::remove_filename(newPath); 987 path::append(newPath, path); 988 path = newPath; 989 } else if (path.startswith("@rpath/")) { 990 for (StringRef rpath : umbrella->rpaths) { 991 newPath.clear(); 992 if (rpath.consume_front("@loader_path/")) { 993 fs::real_path(umbrella->getName(), newPath); 994 path::remove_filename(newPath); 995 } 996 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 997 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 998 return loadDylib(*dylibPath, umbrella); 999 } 1000 } 1001 1002 // FIXME: Should this be further up? 1003 if (currentTopLevelTapi) { 1004 for (InterfaceFile &child : 1005 make_pointee_range(currentTopLevelTapi->documents())) { 1006 assert(child.documents().empty()); 1007 if (path == child.getInstallName()) { 1008 auto file = make<DylibFile>(child, umbrella); 1009 file->parseReexports(child); 1010 return file; 1011 } 1012 } 1013 } 1014 1015 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1016 return loadDylib(*dylibPath, umbrella); 1017 1018 return nullptr; 1019 } 1020 1021 // If a re-exported dylib is public (lives in /usr/lib or 1022 // /System/Library/Frameworks), then it is considered implicitly linked: we 1023 // should bind to its symbols directly instead of via the re-exporting umbrella 1024 // library. 1025 static bool isImplicitlyLinked(StringRef path) { 1026 if (!config->implicitDylibs) 1027 return false; 1028 1029 if (path::parent_path(path) == "/usr/lib") 1030 return true; 1031 1032 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1033 if (path.consume_front("/System/Library/Frameworks/")) { 1034 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1035 return path::filename(path) == frameworkName; 1036 } 1037 1038 return false; 1039 } 1040 1041 static void loadReexport(StringRef path, DylibFile *umbrella, 1042 const InterfaceFile *currentTopLevelTapi) { 1043 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1044 if (!reexport) 1045 error("unable to locate re-export with install name " + path); 1046 } 1047 1048 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1049 bool isBundleLoader) 1050 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1051 isBundleLoader(isBundleLoader) { 1052 assert(!isBundleLoader || !umbrella); 1053 if (umbrella == nullptr) 1054 umbrella = this; 1055 this->umbrella = umbrella; 1056 1057 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1058 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1059 1060 // Initialize installName. 1061 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1062 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1063 currentVersion = read32le(&c->dylib.current_version); 1064 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1065 installName = 1066 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1067 } else if (!isBundleLoader) { 1068 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1069 // so it's OK. 1070 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1071 return; 1072 } 1073 1074 if (config->printEachFile) 1075 message(toString(this)); 1076 inputFiles.insert(this); 1077 1078 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1079 1080 if (!checkCompatibility(this)) 1081 return; 1082 1083 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1084 1085 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1086 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1087 rpaths.push_back(rpath); 1088 } 1089 1090 // Initialize symbols. 1091 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1092 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1093 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1094 parseTrie(buf + c->export_off, c->export_size, 1095 [&](const Twine &name, uint64_t flags) { 1096 StringRef savedName = saver.save(name); 1097 if (handleLDSymbol(savedName)) 1098 return; 1099 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1100 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1101 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1102 isWeakDef, isTlv)); 1103 }); 1104 } else { 1105 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1106 return; 1107 } 1108 } 1109 1110 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1111 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1112 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1113 target->headerSize; 1114 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1115 auto *cmd = reinterpret_cast<const load_command *>(p); 1116 p += cmd->cmdsize; 1117 1118 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1119 cmd->cmd == LC_REEXPORT_DYLIB) { 1120 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1121 StringRef reexportPath = 1122 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1123 loadReexport(reexportPath, exportingFile, nullptr); 1124 } 1125 1126 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1127 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1128 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1129 if (config->namespaceKind == NamespaceKind::flat && 1130 cmd->cmd == LC_LOAD_DYLIB) { 1131 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1132 StringRef dylibPath = 1133 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1134 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1135 if (!dylib) 1136 error(Twine("unable to locate library '") + dylibPath + 1137 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1138 } 1139 } 1140 } 1141 1142 // Some versions of XCode ship with .tbd files that don't have the right 1143 // platform settings. 1144 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1145 "/usr/lib/system/libsystem_kernel.dylib", 1146 "/usr/lib/system/libsystem_platform.dylib", 1147 "/usr/lib/system/libsystem_pthread.dylib"}; 1148 1149 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1150 bool isBundleLoader) 1151 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1152 isBundleLoader(isBundleLoader) { 1153 // FIXME: Add test for the missing TBD code path. 1154 1155 if (umbrella == nullptr) 1156 umbrella = this; 1157 this->umbrella = umbrella; 1158 1159 installName = saver.save(interface.getInstallName()); 1160 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1161 currentVersion = interface.getCurrentVersion().rawValue(); 1162 1163 if (config->printEachFile) 1164 message(toString(this)); 1165 inputFiles.insert(this); 1166 1167 if (!is_contained(skipPlatformChecks, installName) && 1168 !is_contained(interface.targets(), config->platformInfo.target)) { 1169 error(toString(this) + " is incompatible with " + 1170 std::string(config->platformInfo.target)); 1171 return; 1172 } 1173 1174 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1175 1176 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1177 auto addSymbol = [&](const Twine &name) -> void { 1178 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1179 /*isWeakDef=*/false, 1180 /*isTlv=*/false)); 1181 }; 1182 // TODO(compnerd) filter out symbols based on the target platform 1183 // TODO: handle weak defs, thread locals 1184 for (const auto *symbol : interface.symbols()) { 1185 if (!symbol->getArchitectures().has(config->arch())) 1186 continue; 1187 1188 if (handleLDSymbol(symbol->getName())) 1189 continue; 1190 1191 switch (symbol->getKind()) { 1192 case SymbolKind::GlobalSymbol: 1193 addSymbol(symbol->getName()); 1194 break; 1195 case SymbolKind::ObjectiveCClass: 1196 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1197 // want to emulate that. 1198 addSymbol(objc::klass + symbol->getName()); 1199 addSymbol(objc::metaclass + symbol->getName()); 1200 break; 1201 case SymbolKind::ObjectiveCClassEHType: 1202 addSymbol(objc::ehtype + symbol->getName()); 1203 break; 1204 case SymbolKind::ObjectiveCInstanceVariable: 1205 addSymbol(objc::ivar + symbol->getName()); 1206 break; 1207 } 1208 } 1209 } 1210 1211 void DylibFile::parseReexports(const InterfaceFile &interface) { 1212 const InterfaceFile *topLevel = 1213 interface.getParent() == nullptr ? &interface : interface.getParent(); 1214 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1215 InterfaceFile::const_target_range targets = intfRef.targets(); 1216 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1217 is_contained(targets, config->platformInfo.target)) 1218 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1219 } 1220 } 1221 1222 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1223 // name, compatibility version or hide/add symbols) for specific target 1224 // versions. 1225 bool DylibFile::handleLDSymbol(StringRef originalName) { 1226 if (!originalName.startswith("$ld$")) 1227 return false; 1228 1229 StringRef action; 1230 StringRef name; 1231 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1232 if (action == "previous") 1233 handleLDPreviousSymbol(name, originalName); 1234 else if (action == "install_name") 1235 handleLDInstallNameSymbol(name, originalName); 1236 return true; 1237 } 1238 1239 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1240 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1241 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1242 StringRef installName; 1243 StringRef compatVersion; 1244 StringRef platformStr; 1245 StringRef startVersion; 1246 StringRef endVersion; 1247 StringRef symbolName; 1248 StringRef rest; 1249 1250 std::tie(installName, name) = name.split('$'); 1251 std::tie(compatVersion, name) = name.split('$'); 1252 std::tie(platformStr, name) = name.split('$'); 1253 std::tie(startVersion, name) = name.split('$'); 1254 std::tie(endVersion, name) = name.split('$'); 1255 std::tie(symbolName, rest) = name.split('$'); 1256 // TODO: ld64 contains some logic for non-empty symbolName as well. 1257 if (!symbolName.empty()) 1258 return; 1259 unsigned platform; 1260 if (platformStr.getAsInteger(10, platform) || 1261 platform != static_cast<unsigned>(config->platform())) 1262 return; 1263 1264 VersionTuple start; 1265 if (start.tryParse(startVersion)) { 1266 warn("failed to parse start version, symbol '" + originalName + 1267 "' ignored"); 1268 return; 1269 } 1270 VersionTuple end; 1271 if (end.tryParse(endVersion)) { 1272 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1273 return; 1274 } 1275 if (config->platformInfo.minimum < start || 1276 config->platformInfo.minimum >= end) 1277 return; 1278 1279 this->installName = saver.save(installName); 1280 1281 if (!compatVersion.empty()) { 1282 VersionTuple cVersion; 1283 if (cVersion.tryParse(compatVersion)) { 1284 warn("failed to parse compatibility version, symbol '" + originalName + 1285 "' ignored"); 1286 return; 1287 } 1288 compatibilityVersion = encodeVersion(cVersion); 1289 } 1290 } 1291 1292 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1293 StringRef originalName) { 1294 // originalName: $ld$ install_name $ os<version> $ install_name 1295 StringRef condition, installName; 1296 std::tie(condition, installName) = name.split('$'); 1297 VersionTuple version; 1298 if (!condition.consume_front("os") || version.tryParse(condition)) 1299 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1300 else if (version == config->platformInfo.minimum) 1301 this->installName = saver.save(installName); 1302 } 1303 1304 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1305 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1306 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1307 } 1308 1309 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1310 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1311 1312 void ArchiveFile::addLazySymbols() { 1313 for (const object::Archive::Symbol &sym : file->symbols()) 1314 symtab->addLazy(sym.getName(), this, sym); 1315 } 1316 1317 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1318 uint32_t modTime, 1319 StringRef archiveName, 1320 uint64_t offsetInArchive) { 1321 if (config->zeroModTime) 1322 modTime = 0; 1323 1324 switch (identify_magic(mb.getBuffer())) { 1325 case file_magic::macho_object: 1326 return make<ObjFile>(mb, modTime, archiveName); 1327 case file_magic::bitcode: 1328 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1329 default: 1330 return createStringError(inconvertibleErrorCode(), 1331 mb.getBufferIdentifier() + 1332 " has unhandled file type"); 1333 } 1334 } 1335 1336 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1337 if (!seen.insert(c.getChildOffset()).second) 1338 return Error::success(); 1339 1340 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1341 if (!mb) 1342 return mb.takeError(); 1343 1344 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1345 if (tar && c.getParent()->isThin()) 1346 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1347 1348 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1349 if (!modTime) 1350 return modTime.takeError(); 1351 1352 Expected<InputFile *> file = 1353 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1354 1355 if (!file) 1356 return file.takeError(); 1357 1358 inputFiles.insert(*file); 1359 printArchiveMemberLoad(reason, *file); 1360 return Error::success(); 1361 } 1362 1363 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1364 object::Archive::Child c = 1365 CHECK(sym.getMember(), toString(this) + 1366 ": could not get the member defining symbol " + 1367 toMachOString(sym)); 1368 1369 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1370 // and become invalid after that call. Copy it to the stack so we can refer 1371 // to it later. 1372 const object::Archive::Symbol symCopy = sym; 1373 1374 // ld64 doesn't demangle sym here even with -demangle. 1375 // Match that: intentionally don't call toMachOString(). 1376 if (Error e = fetch(c, symCopy.getName())) 1377 error(toString(this) + ": could not get the member defining symbol " + 1378 toMachOString(symCopy) + ": " + toString(std::move(e))); 1379 } 1380 1381 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1382 BitcodeFile &file) { 1383 StringRef name = saver.save(objSym.getName()); 1384 1385 // TODO: support weak references 1386 if (objSym.isUndefined()) 1387 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1388 1389 // TODO: Write a test demonstrating why computing isPrivateExtern before 1390 // LTO compilation is important. 1391 bool isPrivateExtern = false; 1392 switch (objSym.getVisibility()) { 1393 case GlobalValue::HiddenVisibility: 1394 isPrivateExtern = true; 1395 break; 1396 case GlobalValue::ProtectedVisibility: 1397 error(name + " has protected visibility, which is not supported by Mach-O"); 1398 break; 1399 case GlobalValue::DefaultVisibility: 1400 break; 1401 } 1402 1403 if (objSym.isCommon()) 1404 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1405 objSym.getCommonAlignment(), isPrivateExtern); 1406 1407 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1408 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1409 /*isThumb=*/false, 1410 /*isReferencedDynamically=*/false, 1411 /*noDeadStrip=*/false); 1412 } 1413 1414 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1415 uint64_t offsetInArchive) 1416 : InputFile(BitcodeKind, mb) { 1417 std::string path = mb.getBufferIdentifier().str(); 1418 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1419 // name. If two members with the same name are provided, this causes a 1420 // collision and ThinLTO can't proceed. 1421 // So, we append the archive name to disambiguate two members with the same 1422 // name from multiple different archives, and offset within the archive to 1423 // disambiguate two members of the same name from a single archive. 1424 MemoryBufferRef mbref( 1425 mb.getBuffer(), 1426 saver.save(archiveName.empty() ? path 1427 : archiveName + sys::path::filename(path) + 1428 utostr(offsetInArchive))); 1429 1430 obj = check(lto::InputFile::create(mbref)); 1431 1432 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1433 // "winning" symbol will then be marked as Prevailing at LTO compilation 1434 // time. 1435 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1436 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1437 } 1438 1439 template void ObjFile::parse<LP64>(); 1440