1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 70 using namespace llvm; 71 using namespace llvm::MachO; 72 using namespace llvm::support::endian; 73 using namespace llvm::sys; 74 using namespace lld; 75 using namespace lld::macho; 76 77 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 78 std::string lld::toString(const InputFile *f) { 79 if (!f) 80 return "<internal>"; 81 if (f->archiveName.empty()) 82 return std::string(f->getName()); 83 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 84 ")") 85 .str(); 86 } 87 88 std::vector<InputFile *> macho::inputFiles; 89 std::unique_ptr<TarWriter> macho::tar; 90 int InputFile::idCount = 0; 91 92 // Open a given file path and return it as a memory-mapped file. 93 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 94 // Open a file. 95 auto mbOrErr = MemoryBuffer::getFile(path); 96 if (auto ec = mbOrErr.getError()) { 97 error("cannot open " + path + ": " + ec.message()); 98 return None; 99 } 100 101 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 102 MemoryBufferRef mbref = mb->getMemBufferRef(); 103 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 104 105 // If this is a regular non-fat file, return it. 106 const char *buf = mbref.getBufferStart(); 107 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 108 if (read32be(&hdr->magic) != MachO::FAT_MAGIC) { 109 if (tar) 110 tar->append(relativeToRoot(path), mbref.getBuffer()); 111 return mbref; 112 } 113 114 // Object files and archive files may be fat files, which contains 115 // multiple real files for different CPU ISAs. Here, we search for a 116 // file that matches with the current link target and returns it as 117 // a MemoryBufferRef. 118 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 119 120 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 121 if (reinterpret_cast<const char *>(arch + i + 1) > 122 buf + mbref.getBufferSize()) { 123 error(path + ": fat_arch struct extends beyond end of file"); 124 return None; 125 } 126 127 if (read32be(&arch[i].cputype) != target->cpuType || 128 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 129 continue; 130 131 uint32_t offset = read32be(&arch[i].offset); 132 uint32_t size = read32be(&arch[i].size); 133 if (offset + size > mbref.getBufferSize()) 134 error(path + ": slice extends beyond end of file"); 135 if (tar) 136 tar->append(relativeToRoot(path), mbref.getBuffer()); 137 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 138 } 139 140 error("unable to find matching architecture in " + path); 141 return None; 142 } 143 144 const load_command *macho::findCommand(const mach_header_64 *hdr, 145 uint32_t type) { 146 const uint8_t *p = 147 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 148 149 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 150 auto *cmd = reinterpret_cast<const load_command *>(p); 151 if (cmd->cmd == type) 152 return cmd; 153 p += cmd->cmdsize; 154 } 155 return nullptr; 156 } 157 158 void InputFile::parseSections(ArrayRef<section_64> sections) { 159 subsections.reserve(sections.size()); 160 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 161 162 for (const section_64 &sec : sections) { 163 InputSection *isec = make<InputSection>(); 164 isec->file = this; 165 isec->name = 166 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 167 isec->segname = 168 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 169 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 170 static_cast<size_t>(sec.size)}; 171 if (sec.align >= 32) 172 error("alignment " + std::to_string(sec.align) + " of section " + 173 isec->name + " is too large"); 174 else 175 isec->align = 1 << sec.align; 176 isec->flags = sec.flags; 177 subsections.push_back({{0, isec}}); 178 } 179 } 180 181 // Find the subsection corresponding to the greatest section offset that is <= 182 // that of the given offset. 183 // 184 // offset: an offset relative to the start of the original InputSection (before 185 // any subsection splitting has occurred). It will be updated to represent the 186 // same location as an offset relative to the start of the containing 187 // subsection. 188 static InputSection *findContainingSubsection(SubsectionMap &map, 189 uint32_t *offset) { 190 auto it = std::prev(map.upper_bound(*offset)); 191 *offset -= it->first; 192 return it->second; 193 } 194 195 void InputFile::parseRelocations(const section_64 &sec, 196 SubsectionMap &subsecMap) { 197 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 198 ArrayRef<any_relocation_info> anyRelInfos( 199 reinterpret_cast<const any_relocation_info *>(buf + sec.reloff), 200 sec.nreloc); 201 202 for (const any_relocation_info &anyRelInfo : anyRelInfos) { 203 if (anyRelInfo.r_word0 & R_SCATTERED) 204 fatal("TODO: Scattered relocations not supported"); 205 206 auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo); 207 208 Reloc r; 209 r.type = relInfo.r_type; 210 r.pcrel = relInfo.r_pcrel; 211 r.length = relInfo.r_length; 212 uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo); 213 214 if (relInfo.r_extern) { 215 r.referent = symbols[relInfo.r_symbolnum]; 216 r.addend = rawAddend; 217 } else { 218 if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size()) 219 fatal("invalid section index in relocation for offset " + 220 std::to_string(r.offset) + " in section " + sec.sectname + 221 " of " + getName()); 222 223 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 224 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 225 uint32_t referentOffset; 226 if (relInfo.r_pcrel) { 227 // The implicit addend for pcrel section relocations is the pcrel offset 228 // in terms of the addresses in the input file. Here we adjust it so 229 // that it describes the offset from the start of the referent section. 230 // TODO: The offset of 4 is probably not right for ARM64, nor for 231 // relocations with r_length != 2. 232 referentOffset = 233 sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr; 234 } else { 235 // The addend for a non-pcrel relocation is its absolute address. 236 referentOffset = rawAddend - referentSec.addr; 237 } 238 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 239 r.addend = referentOffset; 240 } 241 242 r.offset = relInfo.r_address; 243 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 244 subsec->relocs.push_back(r); 245 } 246 } 247 248 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 249 StringRef name, InputSection *isec, 250 uint32_t value) { 251 if (sym.n_type & N_EXT) 252 // Global defined symbol 253 return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF); 254 // Local defined symbol 255 return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF, 256 /*isExternal=*/false); 257 } 258 259 // Absolute symbols are defined symbols that do not have an associated 260 // InputSection. They cannot be weak. 261 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 262 StringRef name) { 263 if (sym.n_type & N_EXT) 264 return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false); 265 return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false, 266 /*isExternal=*/false); 267 } 268 269 macho::Symbol *InputFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 270 StringRef name) { 271 uint8_t type = sym.n_type & N_TYPE; 272 switch (type) { 273 case N_UNDF: 274 return sym.n_value == 0 275 ? symtab->addUndefined(name) 276 : symtab->addCommon(name, this, sym.n_value, 277 1 << GET_COMM_ALIGN(sym.n_desc)); 278 case N_ABS: 279 return createAbsolute(sym, name); 280 case N_PBUD: 281 case N_INDR: 282 error("TODO: support symbols of type " + std::to_string(type)); 283 return nullptr; 284 case N_SECT: 285 llvm_unreachable( 286 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 287 default: 288 llvm_unreachable("invalid symbol type"); 289 } 290 } 291 292 void InputFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 293 const char *strtab, bool subsectionsViaSymbols) { 294 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 295 // out-of-sequence. 296 symbols.resize(nList.size()); 297 std::vector<size_t> altEntrySymIdxs; 298 299 for (size_t i = 0, n = nList.size(); i < n; ++i) { 300 const structs::nlist_64 &sym = nList[i]; 301 StringRef name = strtab + sym.n_strx; 302 303 if ((sym.n_type & N_TYPE) != N_SECT) { 304 symbols[i] = parseNonSectionSymbol(sym, name); 305 continue; 306 } 307 308 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 309 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 310 uint64_t offset = sym.n_value - sec.addr; 311 312 // If the input file does not use subsections-via-symbols, all symbols can 313 // use the same subsection. Otherwise, we must split the sections along 314 // symbol boundaries. 315 if (!subsectionsViaSymbols) { 316 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 317 continue; 318 } 319 320 // nList entries aren't necessarily arranged in address order. Therefore, 321 // we can't create alt-entry symbols at this point because a later symbol 322 // may split its section, which may affect which subsection the alt-entry 323 // symbol is assigned to. So we need to handle them in a second pass below. 324 if (sym.n_desc & N_ALT_ENTRY) { 325 altEntrySymIdxs.push_back(i); 326 continue; 327 } 328 329 // Find the subsection corresponding to the greatest section offset that is 330 // <= that of the current symbol. The subsection that we find either needs 331 // to be used directly or split in two. 332 uint32_t firstSize = offset; 333 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 334 335 if (firstSize == 0) { 336 // Alias of an existing symbol, or the first symbol in the section. These 337 // are handled by reusing the existing section. 338 symbols[i] = createDefined(sym, name, firstIsec, 0); 339 continue; 340 } 341 342 // We saw a symbol definition at a new offset. Split the section into two 343 // subsections. The new symbol uses the second subsection. 344 auto *secondIsec = make<InputSection>(*firstIsec); 345 secondIsec->data = firstIsec->data.slice(firstSize); 346 firstIsec->data = firstIsec->data.slice(0, firstSize); 347 // TODO: ld64 appears to preserve the original alignment as well as each 348 // subsection's offset from the last aligned address. We should consider 349 // emulating that behavior. 350 secondIsec->align = MinAlign(firstIsec->align, offset); 351 352 subsecMap[offset] = secondIsec; 353 // By construction, the symbol will be at offset zero in the new section. 354 symbols[i] = createDefined(sym, name, secondIsec, 0); 355 } 356 357 for (size_t idx : altEntrySymIdxs) { 358 const structs::nlist_64 &sym = nList[idx]; 359 StringRef name = strtab + sym.n_strx; 360 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 361 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 362 InputSection *subsec = findContainingSubsection(subsecMap, &off); 363 symbols[idx] = createDefined(sym, name, subsec, off); 364 } 365 } 366 367 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 368 StringRef sectName) 369 : InputFile(OpaqueKind, mb) { 370 InputSection *isec = make<InputSection>(); 371 isec->file = this; 372 isec->name = sectName.take_front(16); 373 isec->segname = segName.take_front(16); 374 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 375 isec->data = {buf, mb.getBufferSize()}; 376 subsections.push_back({{0, isec}}); 377 } 378 379 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 380 : InputFile(ObjKind, mb), modTime(modTime) { 381 this->archiveName = std::string(archiveName); 382 383 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 384 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 385 386 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 387 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 388 StringRef data{reinterpret_cast<const char *>(c + 1), 389 c->cmdsize - sizeof(linker_option_command)}; 390 parseLCLinkerOption(this, c->count, data); 391 } 392 393 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 394 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 395 sectionHeaders = ArrayRef<section_64>{ 396 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 397 parseSections(sectionHeaders); 398 } 399 400 // TODO: Error on missing LC_SYMTAB? 401 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 402 auto *c = reinterpret_cast<const symtab_command *>(cmd); 403 ArrayRef<structs::nlist_64> nList( 404 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 405 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 406 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 407 parseSymbols(nList, strtab, subsectionsViaSymbols); 408 } 409 410 // The relocations may refer to the symbols, so we parse them after we have 411 // parsed all the symbols. 412 for (size_t i = 0, n = subsections.size(); i < n; ++i) 413 parseRelocations(sectionHeaders[i], subsections[i]); 414 415 parseDebugInfo(); 416 } 417 418 void ObjFile::parseDebugInfo() { 419 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 420 if (!dObj) 421 return; 422 423 auto *ctx = make<DWARFContext>( 424 std::move(dObj), "", 425 [&](Error err) { 426 warn(toString(this) + ": " + toString(std::move(err))); 427 }, 428 [&](Error warning) { 429 warn(toString(this) + ": " + toString(std::move(warning))); 430 }); 431 432 // TODO: Since object files can contain a lot of DWARF info, we should verify 433 // that we are parsing just the info we need 434 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 435 auto it = units.begin(); 436 compileUnit = it->get(); 437 assert(std::next(it) == units.end()); 438 } 439 440 // The path can point to either a dylib or a .tbd file. 441 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 442 Optional<MemoryBufferRef> mbref = readFile(path); 443 if (!mbref) { 444 error("could not read dylib file at " + path); 445 return {}; 446 } 447 448 file_magic magic = identify_magic(mbref->getBuffer()); 449 if (magic == file_magic::tapi_file) 450 return makeDylibFromTAPI(*mbref, umbrella); 451 assert(magic == file_magic::macho_dynamically_linked_shared_lib); 452 return make<DylibFile>(*mbref, umbrella); 453 } 454 455 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 456 // the first document storing child pointers to the rest of them. When we are 457 // processing a given TBD file, we store that top-level document here. When 458 // processing re-exports, we search its children for potentially matching 459 // documents in the same TBD file. Note that the children themselves don't 460 // point to further documents, i.e. this is a two-level tree. 461 // 462 // ld64 allows a TAPI re-export to reference documents nested within other TBD 463 // files, but that seems like a strange design, so this is an intentional 464 // deviation. 465 const InterfaceFile *currentTopLevelTapi = nullptr; 466 467 // Re-exports can either refer to on-disk files, or to documents within .tbd 468 // files. 469 static Optional<DylibFile *> loadReexport(StringRef path, DylibFile *umbrella) { 470 if (path::is_absolute(path, path::Style::posix)) 471 for (StringRef root : config->systemLibraryRoots) 472 if (Optional<std::string> dylibPath = 473 resolveDylibPath((root + path).str())) 474 return loadDylib(*dylibPath, umbrella); 475 476 // TODO: Expand @loader_path, @executable_path etc 477 478 if (currentTopLevelTapi) { 479 for (InterfaceFile &child : 480 make_pointee_range(currentTopLevelTapi->documents())) { 481 if (path == child.getInstallName()) 482 return make<DylibFile>(child, umbrella); 483 assert(child.documents().empty()); 484 } 485 } 486 487 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 488 return loadDylib(*dylibPath, umbrella); 489 490 error("unable to locate re-export with install name " + path); 491 return {}; 492 } 493 494 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) 495 : InputFile(DylibKind, mb) { 496 if (umbrella == nullptr) 497 umbrella = this; 498 499 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 500 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 501 502 // Initialize dylibName. 503 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 504 auto *c = reinterpret_cast<const dylib_command *>(cmd); 505 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 506 } else { 507 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 508 return; 509 } 510 511 // Initialize symbols. 512 // TODO: if a re-exported dylib is public (lives in /usr/lib or 513 // /System/Library/Frameworks), we should bind to its symbols directly 514 // instead of the re-exporting umbrella library. 515 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 516 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 517 parseTrie(buf + c->export_off, c->export_size, 518 [&](const Twine &name, uint64_t flags) { 519 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 520 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 521 symbols.push_back(symtab->addDylib(saver.save(name), umbrella, 522 isWeakDef, isTlv)); 523 }); 524 } else { 525 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 526 return; 527 } 528 529 if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) 530 return; 531 532 const uint8_t *p = 533 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 534 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 535 auto *cmd = reinterpret_cast<const load_command *>(p); 536 p += cmd->cmdsize; 537 if (cmd->cmd != LC_REEXPORT_DYLIB) 538 continue; 539 540 auto *c = reinterpret_cast<const dylib_command *>(cmd); 541 StringRef reexportPath = 542 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 543 if (Optional<DylibFile *> reexport = loadReexport(reexportPath, umbrella)) 544 reexported.push_back(*reexport); 545 } 546 } 547 548 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella) 549 : InputFile(DylibKind, interface) { 550 if (umbrella == nullptr) 551 umbrella = this; 552 553 dylibName = saver.save(interface.getInstallName()); 554 auto addSymbol = [&](const Twine &name) -> void { 555 symbols.push_back(symtab->addDylib(saver.save(name), umbrella, 556 /*isWeakDef=*/false, 557 /*isTlv=*/false)); 558 }; 559 // TODO(compnerd) filter out symbols based on the target platform 560 // TODO: handle weak defs, thread locals 561 for (const auto symbol : interface.symbols()) { 562 if (!symbol->getArchitectures().has(config->arch)) 563 continue; 564 565 switch (symbol->getKind()) { 566 case SymbolKind::GlobalSymbol: 567 addSymbol(symbol->getName()); 568 break; 569 case SymbolKind::ObjectiveCClass: 570 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 571 // want to emulate that. 572 addSymbol(objc::klass + symbol->getName()); 573 addSymbol(objc::metaclass + symbol->getName()); 574 break; 575 case SymbolKind::ObjectiveCClassEHType: 576 addSymbol(objc::ehtype + symbol->getName()); 577 break; 578 case SymbolKind::ObjectiveCInstanceVariable: 579 addSymbol(objc::ivar + symbol->getName()); 580 break; 581 } 582 } 583 584 bool isTopLevelTapi = false; 585 if (currentTopLevelTapi == nullptr) { 586 currentTopLevelTapi = &interface; 587 isTopLevelTapi = true; 588 } 589 590 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) 591 if (Optional<DylibFile *> reexport = 592 loadReexport(intfRef.getInstallName(), umbrella)) 593 reexported.push_back(*reexport); 594 595 if (isTopLevelTapi) 596 currentTopLevelTapi = nullptr; 597 } 598 599 ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f) 600 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 601 for (const object::Archive::Symbol &sym : file->symbols()) 602 symtab->addLazy(sym.getName(), this, sym); 603 } 604 605 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 606 object::Archive::Child c = 607 CHECK(sym.getMember(), toString(this) + 608 ": could not get the member for symbol " + 609 toMachOString(sym)); 610 611 if (!seen.insert(c.getChildOffset()).second) 612 return; 613 614 MemoryBufferRef mb = 615 CHECK(c.getMemoryBufferRef(), 616 toString(this) + 617 ": could not get the buffer for the member defining symbol " + 618 toMachOString(sym)); 619 620 if (tar && c.getParent()->isThin()) 621 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 622 623 uint32_t modTime = toTimeT( 624 CHECK(c.getLastModified(), toString(this) + 625 ": could not get the modification time " 626 "for the member defining symbol " + 627 toMachOString(sym))); 628 629 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 630 // and become invalid after that call. Copy it to the stack so we can refer 631 // to it later. 632 const object::Archive::Symbol sym_copy = sym; 633 634 auto file = make<ObjFile>(mb, modTime, getName()); 635 636 // ld64 doesn't demangle sym here even with -demangle. Match that, so 637 // intentionally no call to toMachOString() here. 638 printArchiveMemberLoad(sym_copy.getName(), file); 639 640 symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end()); 641 subsections.insert(subsections.end(), file->subsections.begin(), 642 file->subsections.end()); 643 } 644 645 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 646 : InputFile(BitcodeKind, mbref) { 647 obj = check(lto::InputFile::create(mbref)); 648 } 649