1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "ExportTrie.h" 48 #include "InputSection.h" 49 #include "MachOStructs.h" 50 #include "ObjC.h" 51 #include "OutputSection.h" 52 #include "OutputSegment.h" 53 #include "SymbolTable.h" 54 #include "Symbols.h" 55 #include "Target.h" 56 57 #include "lld/Common/ErrorHandler.h" 58 #include "lld/Common/Memory.h" 59 #include "lld/Common/Reproduce.h" 60 #include "llvm/ADT/iterator.h" 61 #include "llvm/BinaryFormat/MachO.h" 62 #include "llvm/LTO/LTO.h" 63 #include "llvm/Support/Endian.h" 64 #include "llvm/Support/MemoryBuffer.h" 65 #include "llvm/Support/Path.h" 66 #include "llvm/Support/TarWriter.h" 67 68 using namespace llvm; 69 using namespace llvm::MachO; 70 using namespace llvm::support::endian; 71 using namespace llvm::sys; 72 using namespace lld; 73 using namespace lld::macho; 74 75 std::vector<InputFile *> macho::inputFiles; 76 std::unique_ptr<TarWriter> macho::tar; 77 78 // Open a given file path and return it as a memory-mapped file. 79 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 80 // Open a file. 81 auto mbOrErr = MemoryBuffer::getFile(path); 82 if (auto ec = mbOrErr.getError()) { 83 error("cannot open " + path + ": " + ec.message()); 84 return None; 85 } 86 87 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 88 MemoryBufferRef mbref = mb->getMemBufferRef(); 89 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 90 91 // If this is a regular non-fat file, return it. 92 const char *buf = mbref.getBufferStart(); 93 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 94 if (read32be(&hdr->magic) != MachO::FAT_MAGIC) { 95 if (tar) 96 tar->append(relativeToRoot(path), mbref.getBuffer()); 97 return mbref; 98 } 99 100 // Object files and archive files may be fat files, which contains 101 // multiple real files for different CPU ISAs. Here, we search for a 102 // file that matches with the current link target and returns it as 103 // a MemoryBufferRef. 104 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 105 106 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 107 if (reinterpret_cast<const char *>(arch + i + 1) > 108 buf + mbref.getBufferSize()) { 109 error(path + ": fat_arch struct extends beyond end of file"); 110 return None; 111 } 112 113 if (read32be(&arch[i].cputype) != target->cpuType || 114 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 115 continue; 116 117 uint32_t offset = read32be(&arch[i].offset); 118 uint32_t size = read32be(&arch[i].size); 119 if (offset + size > mbref.getBufferSize()) 120 error(path + ": slice extends beyond end of file"); 121 if (tar) 122 tar->append(relativeToRoot(path), mbref.getBuffer()); 123 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 124 } 125 126 error("unable to find matching architecture in " + path); 127 return None; 128 } 129 130 const load_command *macho::findCommand(const mach_header_64 *hdr, 131 uint32_t type) { 132 const uint8_t *p = 133 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 134 135 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 136 auto *cmd = reinterpret_cast<const load_command *>(p); 137 if (cmd->cmd == type) 138 return cmd; 139 p += cmd->cmdsize; 140 } 141 return nullptr; 142 } 143 144 void InputFile::parseSections(ArrayRef<section_64> sections) { 145 subsections.reserve(sections.size()); 146 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 147 148 for (const section_64 &sec : sections) { 149 InputSection *isec = make<InputSection>(); 150 isec->file = this; 151 isec->name = 152 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 153 isec->segname = 154 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 155 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 156 static_cast<size_t>(sec.size)}; 157 if (sec.align >= 32) 158 error("alignment " + std::to_string(sec.align) + " of section " + 159 isec->name + " is too large"); 160 else 161 isec->align = 1 << sec.align; 162 isec->flags = sec.flags; 163 subsections.push_back({{0, isec}}); 164 } 165 } 166 167 // Find the subsection corresponding to the greatest section offset that is <= 168 // that of the given offset. 169 // 170 // offset: an offset relative to the start of the original InputSection (before 171 // any subsection splitting has occurred). It will be updated to represent the 172 // same location as an offset relative to the start of the containing 173 // subsection. 174 static InputSection *findContainingSubsection(SubsectionMap &map, 175 uint32_t *offset) { 176 auto it = std::prev(map.upper_bound(*offset)); 177 *offset -= it->first; 178 return it->second; 179 } 180 181 void InputFile::parseRelocations(const section_64 &sec, 182 SubsectionMap &subsecMap) { 183 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 184 ArrayRef<any_relocation_info> anyRelInfos( 185 reinterpret_cast<const any_relocation_info *>(buf + sec.reloff), 186 sec.nreloc); 187 188 for (const any_relocation_info &anyRelInfo : anyRelInfos) { 189 if (anyRelInfo.r_word0 & R_SCATTERED) 190 fatal("TODO: Scattered relocations not supported"); 191 192 auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo); 193 194 Reloc r; 195 r.type = relInfo.r_type; 196 r.pcrel = relInfo.r_pcrel; 197 r.length = relInfo.r_length; 198 uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo); 199 200 if (relInfo.r_extern) { 201 r.referent = symbols[relInfo.r_symbolnum]; 202 r.addend = rawAddend; 203 } else { 204 if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size()) 205 fatal("invalid section index in relocation for offset " + 206 std::to_string(r.offset) + " in section " + sec.sectname + 207 " of " + getName()); 208 209 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 210 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 211 uint32_t referentOffset; 212 if (relInfo.r_pcrel) { 213 // The implicit addend for pcrel section relocations is the pcrel offset 214 // in terms of the addresses in the input file. Here we adjust it so 215 // that it describes the offset from the start of the referent section. 216 // TODO: The offset of 4 is probably not right for ARM64, nor for 217 // relocations with r_length != 2. 218 referentOffset = 219 sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr; 220 } else { 221 // The addend for a non-pcrel relocation is its absolute address. 222 referentOffset = rawAddend - referentSec.addr; 223 } 224 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 225 r.addend = referentOffset; 226 } 227 228 r.offset = relInfo.r_address; 229 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 230 subsec->relocs.push_back(r); 231 } 232 } 233 234 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 235 StringRef name, InputSection *isec, 236 uint32_t value) { 237 if (sym.n_type & N_EXT) 238 // Global defined symbol 239 return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF); 240 // Local defined symbol 241 return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF, 242 /*isExternal=*/false); 243 } 244 245 // Absolute symbols are defined symbols that do not have an associated 246 // InputSection. They cannot be weak. 247 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 248 StringRef name) { 249 if (sym.n_type & N_EXT) 250 return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false); 251 return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false, 252 /*isExternal=*/false); 253 } 254 255 macho::Symbol *InputFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 256 StringRef name) { 257 uint8_t type = sym.n_type & N_TYPE; 258 switch (type) { 259 case N_UNDF: 260 return sym.n_value == 0 261 ? symtab->addUndefined(name) 262 : symtab->addCommon(name, this, sym.n_value, 263 1 << GET_COMM_ALIGN(sym.n_desc)); 264 case N_ABS: 265 return createAbsolute(sym, name); 266 case N_PBUD: 267 case N_INDR: 268 error("TODO: support symbols of type " + std::to_string(type)); 269 return nullptr; 270 case N_SECT: 271 llvm_unreachable( 272 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 273 default: 274 llvm_unreachable("invalid symbol type"); 275 } 276 } 277 278 void InputFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 279 const char *strtab, bool subsectionsViaSymbols) { 280 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 281 // out-of-sequence. 282 symbols.resize(nList.size()); 283 std::vector<size_t> altEntrySymIdxs; 284 285 for (size_t i = 0, n = nList.size(); i < n; ++i) { 286 const structs::nlist_64 &sym = nList[i]; 287 StringRef name = strtab + sym.n_strx; 288 289 if ((sym.n_type & N_TYPE) != N_SECT) { 290 symbols[i] = parseNonSectionSymbol(sym, name); 291 continue; 292 } 293 294 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 295 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 296 uint64_t offset = sym.n_value - sec.addr; 297 298 // If the input file does not use subsections-via-symbols, all symbols can 299 // use the same subsection. Otherwise, we must split the sections along 300 // symbol boundaries. 301 if (!subsectionsViaSymbols) { 302 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 303 continue; 304 } 305 306 // nList entries aren't necessarily arranged in address order. Therefore, 307 // we can't create alt-entry symbols at this point because a later symbol 308 // may split its section, which may affect which subsection the alt-entry 309 // symbol is assigned to. So we need to handle them in a second pass below. 310 if (sym.n_desc & N_ALT_ENTRY) { 311 altEntrySymIdxs.push_back(i); 312 continue; 313 } 314 315 // Find the subsection corresponding to the greatest section offset that is 316 // <= that of the current symbol. The subsection that we find either needs 317 // to be used directly or split in two. 318 uint32_t firstSize = offset; 319 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 320 321 if (firstSize == 0) { 322 // Alias of an existing symbol, or the first symbol in the section. These 323 // are handled by reusing the existing section. 324 symbols[i] = createDefined(sym, name, firstIsec, 0); 325 continue; 326 } 327 328 // We saw a symbol definition at a new offset. Split the section into two 329 // subsections. The new symbol uses the second subsection. 330 auto *secondIsec = make<InputSection>(*firstIsec); 331 secondIsec->data = firstIsec->data.slice(firstSize); 332 firstIsec->data = firstIsec->data.slice(0, firstSize); 333 // TODO: ld64 appears to preserve the original alignment as well as each 334 // subsection's offset from the last aligned address. We should consider 335 // emulating that behavior. 336 secondIsec->align = MinAlign(firstIsec->align, offset); 337 338 subsecMap[offset] = secondIsec; 339 // By construction, the symbol will be at offset zero in the new section. 340 symbols[i] = createDefined(sym, name, secondIsec, 0); 341 } 342 343 for (size_t idx : altEntrySymIdxs) { 344 const structs::nlist_64 &sym = nList[idx]; 345 StringRef name = strtab + sym.n_strx; 346 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 347 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 348 InputSection *subsec = findContainingSubsection(subsecMap, &off); 349 symbols[idx] = createDefined(sym, name, subsec, off); 350 } 351 } 352 353 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 354 StringRef sectName) 355 : InputFile(OpaqueKind, mb) { 356 InputSection *isec = make<InputSection>(); 357 isec->file = this; 358 isec->name = sectName.take_front(16); 359 isec->segname = segName.take_front(16); 360 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 361 isec->data = {buf, mb.getBufferSize()}; 362 subsections.push_back({{0, isec}}); 363 } 364 365 ObjFile::ObjFile(MemoryBufferRef mb) : InputFile(ObjKind, mb) { 366 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 367 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 368 369 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 370 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 371 sectionHeaders = ArrayRef<section_64>{ 372 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 373 parseSections(sectionHeaders); 374 } 375 376 // TODO: Error on missing LC_SYMTAB? 377 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 378 auto *c = reinterpret_cast<const symtab_command *>(cmd); 379 ArrayRef<structs::nlist_64> nList( 380 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 381 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 382 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 383 parseSymbols(nList, strtab, subsectionsViaSymbols); 384 } 385 386 // The relocations may refer to the symbols, so we parse them after we have 387 // parsed all the symbols. 388 for (size_t i = 0, n = subsections.size(); i < n; ++i) 389 parseRelocations(sectionHeaders[i], subsections[i]); 390 } 391 392 // The path can point to either a dylib or a .tbd file. 393 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 394 Optional<MemoryBufferRef> mbref = readFile(path); 395 if (!mbref) { 396 error("could not read dylib file at " + path); 397 return {}; 398 } 399 400 file_magic magic = identify_magic(mbref->getBuffer()); 401 if (magic == file_magic::tapi_file) 402 return makeDylibFromTAPI(*mbref, umbrella); 403 assert(magic == file_magic::macho_dynamically_linked_shared_lib); 404 return make<DylibFile>(*mbref, umbrella); 405 } 406 407 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 408 // the first document storing child pointers to the rest of them. When we are 409 // processing a given TBD file, we store that top-level document here. When 410 // processing re-exports, we search its children for potentially matching 411 // documents in the same TBD file. Note that the children themselves don't 412 // point to further documents, i.e. this is a two-level tree. 413 // 414 // ld64 allows a TAPI re-export to reference documents nested within other TBD 415 // files, but that seems like a strange design, so this is an intentional 416 // deviation. 417 const InterfaceFile *currentTopLevelTapi = nullptr; 418 419 // Re-exports can either refer to on-disk files, or to documents within .tbd 420 // files. 421 static Optional<DylibFile *> loadReexport(StringRef path, DylibFile *umbrella) { 422 if (path::is_absolute(path, path::Style::posix)) 423 for (StringRef root : config->systemLibraryRoots) 424 if (Optional<std::string> dylibPath = 425 resolveDylibPath((root + path).str())) 426 return loadDylib(*dylibPath, umbrella); 427 428 // TODO: Expand @loader_path, @executable_path etc 429 430 if (currentTopLevelTapi) { 431 for (InterfaceFile &child : 432 make_pointee_range(currentTopLevelTapi->documents())) { 433 if (path == child.getInstallName()) 434 return make<DylibFile>(child, umbrella); 435 assert(child.documents().empty()); 436 } 437 } 438 439 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 440 return loadDylib(*dylibPath, umbrella); 441 442 error("unable to locate re-export with install name " + path); 443 return {}; 444 } 445 446 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) 447 : InputFile(DylibKind, mb) { 448 if (umbrella == nullptr) 449 umbrella = this; 450 451 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 452 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 453 454 // Initialize dylibName. 455 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 456 auto *c = reinterpret_cast<const dylib_command *>(cmd); 457 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 458 } else { 459 error("dylib " + getName() + " missing LC_ID_DYLIB load command"); 460 return; 461 } 462 463 // Initialize symbols. 464 // TODO: if a re-exported dylib is public (lives in /usr/lib or 465 // /System/Library/Frameworks), we should bind to its symbols directly 466 // instead of the re-exporting umbrella library. 467 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 468 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 469 parseTrie(buf + c->export_off, c->export_size, 470 [&](const Twine &name, uint64_t flags) { 471 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 472 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 473 symbols.push_back(symtab->addDylib(saver.save(name), umbrella, 474 isWeakDef, isTlv)); 475 }); 476 } else { 477 error("LC_DYLD_INFO_ONLY not found in " + getName()); 478 return; 479 } 480 481 if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) 482 return; 483 484 const uint8_t *p = 485 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 486 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 487 auto *cmd = reinterpret_cast<const load_command *>(p); 488 p += cmd->cmdsize; 489 if (cmd->cmd != LC_REEXPORT_DYLIB) 490 continue; 491 492 auto *c = reinterpret_cast<const dylib_command *>(cmd); 493 StringRef reexportPath = 494 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 495 if (Optional<DylibFile *> reexport = loadReexport(reexportPath, umbrella)) 496 reexported.push_back(*reexport); 497 } 498 } 499 500 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella) 501 : InputFile(DylibKind, interface) { 502 if (umbrella == nullptr) 503 umbrella = this; 504 505 dylibName = saver.save(interface.getInstallName()); 506 auto addSymbol = [&](const Twine &name) -> void { 507 symbols.push_back(symtab->addDylib(saver.save(name), umbrella, 508 /*isWeakDef=*/false, 509 /*isTlv=*/false)); 510 }; 511 // TODO(compnerd) filter out symbols based on the target platform 512 // TODO: handle weak defs, thread locals 513 for (const auto symbol : interface.symbols()) { 514 if (!symbol->getArchitectures().has(config->arch)) 515 continue; 516 517 switch (symbol->getKind()) { 518 case SymbolKind::GlobalSymbol: 519 addSymbol(symbol->getName()); 520 break; 521 case SymbolKind::ObjectiveCClass: 522 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 523 // want to emulate that. 524 addSymbol(objc::klass + symbol->getName()); 525 addSymbol(objc::metaclass + symbol->getName()); 526 break; 527 case SymbolKind::ObjectiveCClassEHType: 528 addSymbol(objc::ehtype + symbol->getName()); 529 break; 530 case SymbolKind::ObjectiveCInstanceVariable: 531 addSymbol(objc::ivar + symbol->getName()); 532 break; 533 } 534 } 535 536 bool isTopLevelTapi = false; 537 if (currentTopLevelTapi == nullptr) { 538 currentTopLevelTapi = &interface; 539 isTopLevelTapi = true; 540 } 541 542 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) 543 if (Optional<DylibFile *> reexport = 544 loadReexport(intfRef.getInstallName(), umbrella)) 545 reexported.push_back(*reexport); 546 547 if (isTopLevelTapi) 548 currentTopLevelTapi = nullptr; 549 } 550 551 ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f) 552 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 553 for (const object::Archive::Symbol &sym : file->symbols()) 554 symtab->addLazy(sym.getName(), this, sym); 555 } 556 557 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 558 object::Archive::Child c = 559 CHECK(sym.getMember(), toString(this) + 560 ": could not get the member for symbol " + 561 sym.getName()); 562 563 if (!seen.insert(c.getChildOffset()).second) 564 return; 565 566 MemoryBufferRef mb = 567 CHECK(c.getMemoryBufferRef(), 568 toString(this) + 569 ": could not get the buffer for the member defining symbol " + 570 sym.getName()); 571 auto file = make<ObjFile>(mb); 572 symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end()); 573 subsections.insert(subsections.end(), file->subsections.begin(), 574 file->subsections.end()); 575 } 576 577 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 578 : InputFile(BitcodeKind, mbref) { 579 obj = check(lto::InputFile::create(mbref)); 580 } 581 582 // Returns "<internal>" or "baz.o". 583 std::string lld::toString(const InputFile *file) { 584 return file ? std::string(file->getName()) : "<internal>"; 585 } 586