1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 SetVector<InputFile *> macho::inputFiles; 99 std::unique_ptr<TarWriter> macho::tar; 100 int InputFile::idCount = 0; 101 102 static VersionTuple decodeVersion(uint32_t version) { 103 unsigned major = version >> 16; 104 unsigned minor = (version >> 8) & 0xffu; 105 unsigned subMinor = version & 0xffu; 106 return VersionTuple(major, minor, subMinor); 107 } 108 109 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 110 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 111 return {}; 112 113 const char *hdr = input->mb.getBufferStart(); 114 115 std::vector<PlatformInfo> platformInfos; 116 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 117 PlatformInfo info; 118 info.target.Platform = static_cast<PlatformType>(cmd->platform); 119 info.minimum = decodeVersion(cmd->minos); 120 platformInfos.emplace_back(std::move(info)); 121 } 122 for (auto *cmd : findCommands<version_min_command>( 123 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 124 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 125 PlatformInfo info; 126 switch (cmd->cmd) { 127 case LC_VERSION_MIN_MACOSX: 128 info.target.Platform = PLATFORM_MACOS; 129 break; 130 case LC_VERSION_MIN_IPHONEOS: 131 info.target.Platform = PLATFORM_IOS; 132 break; 133 case LC_VERSION_MIN_TVOS: 134 info.target.Platform = PLATFORM_TVOS; 135 break; 136 case LC_VERSION_MIN_WATCHOS: 137 info.target.Platform = PLATFORM_WATCHOS; 138 break; 139 } 140 info.minimum = decodeVersion(cmd->version); 141 platformInfos.emplace_back(std::move(info)); 142 } 143 144 return platformInfos; 145 } 146 147 static bool checkCompatibility(const InputFile *input) { 148 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 149 if (platformInfos.empty()) 150 return true; 151 152 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 153 return removeSimulator(info.target.Platform) == 154 removeSimulator(config->platform()); 155 }); 156 if (it == platformInfos.end()) { 157 std::string platformNames; 158 raw_string_ostream os(platformNames); 159 interleave( 160 platformInfos, os, 161 [&](const PlatformInfo &info) { 162 os << getPlatformName(info.target.Platform); 163 }, 164 "/"); 165 error(toString(input) + " has platform " + platformNames + 166 Twine(", which is different from target platform ") + 167 getPlatformName(config->platform())); 168 return false; 169 } 170 171 if (it->minimum > config->platformInfo.minimum) 172 warn(toString(input) + " has version " + it->minimum.getAsString() + 173 ", which is newer than target minimum of " + 174 config->platformInfo.minimum.getAsString()); 175 176 return true; 177 } 178 179 // This cache mostly exists to store system libraries (and .tbds) as they're 180 // loaded, rather than the input archives, which are already cached at a higher 181 // level, and other files like the filelist that are only read once. 182 // Theoretically this caching could be more efficient by hoisting it, but that 183 // would require altering many callers to track the state. 184 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 185 // Open a given file path and return it as a memory-mapped file. 186 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 187 CachedHashStringRef key(path); 188 auto entry = cachedReads.find(key); 189 if (entry != cachedReads.end()) 190 return entry->second; 191 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return cachedReads[key] = mbref; 210 } 211 212 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 213 214 // Object files and archive files may be fat files, which contain multiple 215 // real files for different CPU ISAs. Here, we search for a file that matches 216 // with the current link target and returns it as a MemoryBufferRef. 217 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 218 219 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 220 if (reinterpret_cast<const char *>(arch + i + 1) > 221 buf + mbref.getBufferSize()) { 222 error(path + ": fat_arch struct extends beyond end of file"); 223 return None; 224 } 225 226 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 227 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 228 continue; 229 230 uint32_t offset = read32be(&arch[i].offset); 231 uint32_t size = read32be(&arch[i].size); 232 if (offset + size > mbref.getBufferSize()) 233 error(path + ": slice extends beyond end of file"); 234 if (tar) 235 tar->append(relativeToRoot(path), mbref.getBuffer()); 236 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 237 path.copy(bAlloc)); 238 } 239 240 error("unable to find matching architecture in " + path); 241 return None; 242 } 243 244 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 245 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 246 247 // Some sections comprise of fixed-size records, so instead of splitting them at 248 // symbol boundaries, we split them based on size. Records are distinct from 249 // literals in that they may contain references to other sections, instead of 250 // being leaf nodes in the InputSection graph. 251 // 252 // Note that "record" is a term I came up with. In contrast, "literal" is a term 253 // used by the Mach-O format. 254 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 255 if (name == section_names::cfString) { 256 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 257 return target->wordSize == 8 ? 32 : 16; 258 } else if (name == section_names::compactUnwind) { 259 if (segname == segment_names::ld) 260 return target->wordSize == 8 ? 32 : 20; 261 } 262 return {}; 263 } 264 265 // Parse the sequence of sections within a single LC_SEGMENT(_64). 266 // Split each section into subsections. 267 template <class SectionHeader> 268 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 269 sections.reserve(sectionHeaders.size()); 270 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 271 272 for (const SectionHeader &sec : sectionHeaders) { 273 StringRef name = 274 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 275 StringRef segname = 276 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 277 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 278 : buf + sec.offset, 279 static_cast<size_t>(sec.size)}; 280 sections.push_back(sec.addr); 281 if (sec.align >= 32) { 282 error("alignment " + std::to_string(sec.align) + " of section " + name + 283 " is too large"); 284 continue; 285 } 286 uint32_t align = 1 << sec.align; 287 uint32_t flags = sec.flags; 288 289 auto splitRecords = [&](int recordSize) -> void { 290 if (data.empty()) 291 return; 292 Subsections &subsections = sections.back().subsections; 293 subsections.reserve(data.size() / recordSize); 294 auto *isec = make<ConcatInputSection>( 295 segname, name, this, data.slice(0, recordSize), align, flags); 296 subsections.push_back({0, isec}); 297 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 298 // Copying requires less memory than constructing a fresh InputSection. 299 auto *copy = make<ConcatInputSection>(*isec); 300 copy->data = data.slice(off, recordSize); 301 subsections.push_back({off, copy}); 302 } 303 }; 304 305 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 306 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 307 if (sec.nreloc && config->dedupLiterals) 308 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 309 sec.sectname + 310 ", so LLD cannot deduplicate literals. Try re-running without " 311 "--deduplicate-literals."); 312 313 InputSection *isec; 314 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 315 isec = 316 make<CStringInputSection>(segname, name, this, data, align, flags); 317 // FIXME: parallelize this? 318 cast<CStringInputSection>(isec)->splitIntoPieces(); 319 } else { 320 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 321 flags); 322 } 323 sections.back().subsections.push_back({0, isec}); 324 } else if (auto recordSize = getRecordSize(segname, name)) { 325 splitRecords(*recordSize); 326 if (name == section_names::compactUnwind) 327 compactUnwindSection = §ions.back(); 328 } else if (segname == segment_names::llvm) { 329 if (name == "__cg_profile" && config->callGraphProfileSort) { 330 TimeTraceScope timeScope("Parsing call graph section"); 331 BinaryStreamReader reader(data, support::little); 332 while (!reader.empty()) { 333 uint32_t fromIndex, toIndex; 334 uint64_t count; 335 if (Error err = reader.readInteger(fromIndex)) 336 fatal(toString(this) + ": Expected 32-bit integer"); 337 if (Error err = reader.readInteger(toIndex)) 338 fatal(toString(this) + ": Expected 32-bit integer"); 339 if (Error err = reader.readInteger(count)) 340 fatal(toString(this) + ": Expected 64-bit integer"); 341 callGraph.emplace_back(); 342 CallGraphEntry &entry = callGraph.back(); 343 entry.fromIndex = fromIndex; 344 entry.toIndex = toIndex; 345 entry.count = count; 346 } 347 } 348 // ld64 does not appear to emit contents from sections within the __LLVM 349 // segment. Symbols within those sections point to bitcode metadata 350 // instead of actual symbols. Global symbols within those sections could 351 // have the same name without causing duplicate symbol errors. To avoid 352 // spurious duplicate symbol errors, we do not parse these sections. 353 // TODO: Evaluate whether the bitcode metadata is needed. 354 } else { 355 auto *isec = 356 make<ConcatInputSection>(segname, name, this, data, align, flags); 357 if (isDebugSection(isec->getFlags()) && 358 isec->getSegName() == segment_names::dwarf) { 359 // Instead of emitting DWARF sections, we emit STABS symbols to the 360 // object files that contain them. We filter them out early to avoid 361 // parsing their relocations unnecessarily. 362 debugSections.push_back(isec); 363 } else { 364 sections.back().subsections.push_back({0, isec}); 365 } 366 } 367 } 368 } 369 370 // Find the subsection corresponding to the greatest section offset that is <= 371 // that of the given offset. 372 // 373 // offset: an offset relative to the start of the original InputSection (before 374 // any subsection splitting has occurred). It will be updated to represent the 375 // same location as an offset relative to the start of the containing 376 // subsection. 377 template <class T> 378 static InputSection *findContainingSubsection(const Subsections &subsections, 379 T *offset) { 380 static_assert(std::is_same<uint64_t, T>::value || 381 std::is_same<uint32_t, T>::value, 382 "unexpected type for offset"); 383 auto it = std::prev(llvm::upper_bound( 384 subsections, *offset, 385 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 386 *offset -= it->offset; 387 return it->isec; 388 } 389 390 template <class SectionHeader> 391 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 392 relocation_info rel) { 393 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 394 bool valid = true; 395 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 396 valid = false; 397 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 398 std::to_string(rel.r_address) + " of " + sec.segname + "," + 399 sec.sectname + " in " + toString(file)) 400 .str(); 401 }; 402 403 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 404 error(message("must be extern")); 405 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 406 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 407 "be PC-relative")); 408 if (isThreadLocalVariables(sec.flags) && 409 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 410 error(message("not allowed in thread-local section, must be UNSIGNED")); 411 if (rel.r_length < 2 || rel.r_length > 3 || 412 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 413 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 414 error(message("has width " + std::to_string(1 << rel.r_length) + 415 " bytes, but must be " + 416 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 417 " bytes")); 418 } 419 return valid; 420 } 421 422 template <class SectionHeader> 423 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 424 const SectionHeader &sec, 425 Subsections &subsections) { 426 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 427 ArrayRef<relocation_info> relInfos( 428 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 429 430 auto subsecIt = subsections.rbegin(); 431 for (size_t i = 0; i < relInfos.size(); i++) { 432 // Paired relocations serve as Mach-O's method for attaching a 433 // supplemental datum to a primary relocation record. ELF does not 434 // need them because the *_RELOC_RELA records contain the extra 435 // addend field, vs. *_RELOC_REL which omit the addend. 436 // 437 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 438 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 439 // datum for each is a symbolic address. The result is the offset 440 // between two addresses. 441 // 442 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 443 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 444 // base symbolic address. 445 // 446 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 447 // addend into the instruction stream. On X86, a relocatable address 448 // field always occupies an entire contiguous sequence of byte(s), 449 // so there is no need to merge opcode bits with address 450 // bits. Therefore, it's easy and convenient to store addends in the 451 // instruction-stream bytes that would otherwise contain zeroes. By 452 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 453 // address bits so that bitwise arithmetic is necessary to extract 454 // and insert them. Storing addends in the instruction stream is 455 // possible, but inconvenient and more costly at link time. 456 457 relocation_info relInfo = relInfos[i]; 458 bool isSubtrahend = 459 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 460 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 461 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 462 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 463 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 464 ++i; 465 continue; 466 } 467 int64_t pairedAddend = 0; 468 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 469 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 470 relInfo = relInfos[++i]; 471 } 472 assert(i < relInfos.size()); 473 if (!validateRelocationInfo(this, sec, relInfo)) 474 continue; 475 if (relInfo.r_address & R_SCATTERED) 476 fatal("TODO: Scattered relocations not supported"); 477 478 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 479 assert(!(embeddedAddend && pairedAddend)); 480 int64_t totalAddend = pairedAddend + embeddedAddend; 481 Reloc r; 482 r.type = relInfo.r_type; 483 r.pcrel = relInfo.r_pcrel; 484 r.length = relInfo.r_length; 485 r.offset = relInfo.r_address; 486 if (relInfo.r_extern) { 487 r.referent = symbols[relInfo.r_symbolnum]; 488 r.addend = isSubtrahend ? 0 : totalAddend; 489 } else { 490 assert(!isSubtrahend); 491 const SectionHeader &referentSecHead = 492 sectionHeaders[relInfo.r_symbolnum - 1]; 493 uint64_t referentOffset; 494 if (relInfo.r_pcrel) { 495 // The implicit addend for pcrel section relocations is the pcrel offset 496 // in terms of the addresses in the input file. Here we adjust it so 497 // that it describes the offset from the start of the referent section. 498 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 499 // have pcrel section relocations. We may want to factor this out into 500 // the arch-specific .cpp file. 501 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 502 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 503 referentSecHead.addr; 504 } else { 505 // The addend for a non-pcrel relocation is its absolute address. 506 referentOffset = totalAddend - referentSecHead.addr; 507 } 508 Subsections &referentSubsections = 509 sections[relInfo.r_symbolnum - 1].subsections; 510 r.referent = 511 findContainingSubsection(referentSubsections, &referentOffset); 512 r.addend = referentOffset; 513 } 514 515 // Find the subsection that this relocation belongs to. 516 // Though not required by the Mach-O format, clang and gcc seem to emit 517 // relocations in order, so let's take advantage of it. However, ld64 emits 518 // unsorted relocations (in `-r` mode), so we have a fallback for that 519 // uncommon case. 520 InputSection *subsec; 521 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 522 ++subsecIt; 523 if (subsecIt == subsections.rend() || 524 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 525 subsec = findContainingSubsection(subsections, &r.offset); 526 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 527 // for the other relocations. 528 subsecIt = subsections.rend(); 529 } else { 530 subsec = subsecIt->isec; 531 r.offset -= subsecIt->offset; 532 } 533 subsec->relocs.push_back(r); 534 535 if (isSubtrahend) { 536 relocation_info minuendInfo = relInfos[++i]; 537 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 538 // attached to the same address. 539 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 540 relInfo.r_address == minuendInfo.r_address); 541 Reloc p; 542 p.type = minuendInfo.r_type; 543 if (minuendInfo.r_extern) { 544 p.referent = symbols[minuendInfo.r_symbolnum]; 545 p.addend = totalAddend; 546 } else { 547 uint64_t referentOffset = 548 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 549 Subsections &referentSubsectVec = 550 sections[minuendInfo.r_symbolnum - 1].subsections; 551 p.referent = 552 findContainingSubsection(referentSubsectVec, &referentOffset); 553 p.addend = referentOffset; 554 } 555 subsec->relocs.push_back(p); 556 } 557 } 558 } 559 560 template <class NList> 561 static macho::Symbol *createDefined(const NList &sym, StringRef name, 562 InputSection *isec, uint64_t value, 563 uint64_t size) { 564 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 565 // N_EXT: Global symbols. These go in the symbol table during the link, 566 // and also in the export table of the output so that the dynamic 567 // linker sees them. 568 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 569 // symbol table during the link so that duplicates are 570 // either reported (for non-weak symbols) or merged 571 // (for weak symbols), but they do not go in the export 572 // table of the output. 573 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 574 // object files) may produce them. LLD does not yet support -r. 575 // These are translation-unit scoped, identical to the `0` case. 576 // 0: Translation-unit scoped. These are not in the symbol table during 577 // link, and not in the export table of the output either. 578 bool isWeakDefCanBeHidden = 579 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 580 581 if (sym.n_type & N_EXT) { 582 bool isPrivateExtern = sym.n_type & N_PEXT; 583 // lld's behavior for merging symbols is slightly different from ld64: 584 // ld64 picks the winning symbol based on several criteria (see 585 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 586 // just merges metadata and keeps the contents of the first symbol 587 // with that name (see SymbolTable::addDefined). For: 588 // * inline function F in a TU built with -fvisibility-inlines-hidden 589 // * and inline function F in another TU built without that flag 590 // ld64 will pick the one from the file built without 591 // -fvisibility-inlines-hidden. 592 // lld will instead pick the one listed first on the link command line and 593 // give it visibility as if the function was built without 594 // -fvisibility-inlines-hidden. 595 // If both functions have the same contents, this will have the same 596 // behavior. If not, it won't, but the input had an ODR violation in 597 // that case. 598 // 599 // Similarly, merging a symbol 600 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 601 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 602 // should produce one 603 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 604 // with ld64's semantics, because it means the non-private-extern 605 // definition will continue to take priority if more private extern 606 // definitions are encountered. With lld's semantics there's no observable 607 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 608 // that's privateExtern -- neither makes it into the dynamic symbol table, 609 // unless the autohide symbol is explicitly exported. 610 // But if a symbol is both privateExtern and autohide then it can't 611 // be exported. 612 // So we nullify the autohide flag when privateExtern is present 613 // and promote the symbol to privateExtern when it is not already. 614 if (isWeakDefCanBeHidden && isPrivateExtern) 615 isWeakDefCanBeHidden = false; 616 else if (isWeakDefCanBeHidden) 617 isPrivateExtern = true; 618 return symtab->addDefined( 619 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 620 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 621 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 622 isWeakDefCanBeHidden); 623 } 624 assert(!isWeakDefCanBeHidden && 625 "weak_def_can_be_hidden on already-hidden symbol?"); 626 return make<Defined>( 627 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 628 /*isExternal=*/false, /*isPrivateExtern=*/false, 629 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 630 sym.n_desc & N_NO_DEAD_STRIP); 631 } 632 633 // Absolute symbols are defined symbols that do not have an associated 634 // InputSection. They cannot be weak. 635 template <class NList> 636 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 637 StringRef name) { 638 if (sym.n_type & N_EXT) { 639 return symtab->addDefined( 640 name, file, nullptr, sym.n_value, /*size=*/0, 641 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 642 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 643 /*isWeakDefCanBeHidden=*/false); 644 } 645 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 646 /*isWeakDef=*/false, 647 /*isExternal=*/false, /*isPrivateExtern=*/false, 648 sym.n_desc & N_ARM_THUMB_DEF, 649 /*isReferencedDynamically=*/false, 650 sym.n_desc & N_NO_DEAD_STRIP); 651 } 652 653 template <class NList> 654 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 655 StringRef name) { 656 uint8_t type = sym.n_type & N_TYPE; 657 switch (type) { 658 case N_UNDF: 659 return sym.n_value == 0 660 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 661 : symtab->addCommon(name, this, sym.n_value, 662 1 << GET_COMM_ALIGN(sym.n_desc), 663 sym.n_type & N_PEXT); 664 case N_ABS: 665 return createAbsolute(sym, this, name); 666 case N_PBUD: 667 case N_INDR: 668 error("TODO: support symbols of type " + std::to_string(type)); 669 return nullptr; 670 case N_SECT: 671 llvm_unreachable( 672 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 673 default: 674 llvm_unreachable("invalid symbol type"); 675 } 676 } 677 678 template <class NList> static bool isUndef(const NList &sym) { 679 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 680 } 681 682 template <class LP> 683 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 684 ArrayRef<typename LP::nlist> nList, 685 const char *strtab, bool subsectionsViaSymbols) { 686 using NList = typename LP::nlist; 687 688 // Groups indices of the symbols by the sections that contain them. 689 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 690 symbols.resize(nList.size()); 691 SmallVector<unsigned, 32> undefineds; 692 for (uint32_t i = 0; i < nList.size(); ++i) { 693 const NList &sym = nList[i]; 694 695 // Ignore debug symbols for now. 696 // FIXME: may need special handling. 697 if (sym.n_type & N_STAB) 698 continue; 699 700 StringRef name = strtab + sym.n_strx; 701 if ((sym.n_type & N_TYPE) == N_SECT) { 702 Subsections &subsections = sections[sym.n_sect - 1].subsections; 703 // parseSections() may have chosen not to parse this section. 704 if (subsections.empty()) 705 continue; 706 symbolsBySection[sym.n_sect - 1].push_back(i); 707 } else if (isUndef(sym)) { 708 undefineds.push_back(i); 709 } else { 710 symbols[i] = parseNonSectionSymbol(sym, name); 711 } 712 } 713 714 for (size_t i = 0; i < sections.size(); ++i) { 715 Subsections &subsections = sections[i].subsections; 716 if (subsections.empty()) 717 continue; 718 InputSection *lastIsec = subsections.back().isec; 719 if (lastIsec->getName() == section_names::ehFrame) { 720 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 721 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 722 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 723 continue; 724 } 725 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 726 uint64_t sectionAddr = sectionHeaders[i].addr; 727 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 728 729 // Record-based sections have already been split into subsections during 730 // parseSections(), so we simply need to match Symbols to the corresponding 731 // subsection here. 732 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 733 for (size_t j = 0; j < symbolIndices.size(); ++j) { 734 uint32_t symIndex = symbolIndices[j]; 735 const NList &sym = nList[symIndex]; 736 StringRef name = strtab + sym.n_strx; 737 uint64_t symbolOffset = sym.n_value - sectionAddr; 738 InputSection *isec = 739 findContainingSubsection(subsections, &symbolOffset); 740 if (symbolOffset != 0) { 741 error(toString(lastIsec) + ": symbol " + name + 742 " at misaligned offset"); 743 continue; 744 } 745 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 746 } 747 continue; 748 } 749 750 // Calculate symbol sizes and create subsections by splitting the sections 751 // along symbol boundaries. 752 // We populate subsections by repeatedly splitting the last (highest 753 // address) subsection. 754 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 755 return nList[lhs].n_value < nList[rhs].n_value; 756 }); 757 for (size_t j = 0; j < symbolIndices.size(); ++j) { 758 uint32_t symIndex = symbolIndices[j]; 759 const NList &sym = nList[symIndex]; 760 StringRef name = strtab + sym.n_strx; 761 Subsection &subsec = subsections.back(); 762 InputSection *isec = subsec.isec; 763 764 uint64_t subsecAddr = sectionAddr + subsec.offset; 765 size_t symbolOffset = sym.n_value - subsecAddr; 766 uint64_t symbolSize = 767 j + 1 < symbolIndices.size() 768 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 769 : isec->data.size() - symbolOffset; 770 // There are 4 cases where we do not need to create a new subsection: 771 // 1. If the input file does not use subsections-via-symbols. 772 // 2. Multiple symbols at the same address only induce one subsection. 773 // (The symbolOffset == 0 check covers both this case as well as 774 // the first loop iteration.) 775 // 3. Alternative entry points do not induce new subsections. 776 // 4. If we have a literal section (e.g. __cstring and __literal4). 777 if (!subsectionsViaSymbols || symbolOffset == 0 || 778 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 779 symbols[symIndex] = 780 createDefined(sym, name, isec, symbolOffset, symbolSize); 781 continue; 782 } 783 auto *concatIsec = cast<ConcatInputSection>(isec); 784 785 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 786 nextIsec->wasCoalesced = false; 787 if (isZeroFill(isec->getFlags())) { 788 // Zero-fill sections have NULL data.data() non-zero data.size() 789 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 790 isec->data = {nullptr, symbolOffset}; 791 } else { 792 nextIsec->data = isec->data.slice(symbolOffset); 793 isec->data = isec->data.slice(0, symbolOffset); 794 } 795 796 // By construction, the symbol will be at offset zero in the new 797 // subsection. 798 symbols[symIndex] = 799 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 800 // TODO: ld64 appears to preserve the original alignment as well as each 801 // subsection's offset from the last aligned address. We should consider 802 // emulating that behavior. 803 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 804 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 805 } 806 } 807 808 // Undefined symbols can trigger recursive fetch from Archives due to 809 // LazySymbols. Process defined symbols first so that the relative order 810 // between a defined symbol and an undefined symbol does not change the 811 // symbol resolution behavior. In addition, a set of interconnected symbols 812 // will all be resolved to the same file, instead of being resolved to 813 // different files. 814 for (unsigned i : undefineds) { 815 const NList &sym = nList[i]; 816 StringRef name = strtab + sym.n_strx; 817 symbols[i] = parseNonSectionSymbol(sym, name); 818 } 819 } 820 821 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 822 StringRef sectName) 823 : InputFile(OpaqueKind, mb) { 824 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 825 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 826 ConcatInputSection *isec = 827 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 828 /*file=*/this, data); 829 isec->live = true; 830 sections.push_back(0); 831 sections.back().subsections.push_back({0, isec}); 832 } 833 834 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 835 bool lazy) 836 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 837 this->archiveName = std::string(archiveName); 838 if (lazy) { 839 if (target->wordSize == 8) 840 parseLazy<LP64>(); 841 else 842 parseLazy<ILP32>(); 843 } else { 844 if (target->wordSize == 8) 845 parse<LP64>(); 846 else 847 parse<ILP32>(); 848 } 849 } 850 851 template <class LP> void ObjFile::parse() { 852 using Header = typename LP::mach_header; 853 using SegmentCommand = typename LP::segment_command; 854 using SectionHeader = typename LP::section; 855 using NList = typename LP::nlist; 856 857 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 858 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 859 860 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 861 if (arch != config->arch()) { 862 auto msg = config->errorForArchMismatch 863 ? static_cast<void (*)(const Twine &)>(error) 864 : warn; 865 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 866 " which is incompatible with target architecture " + 867 getArchitectureName(config->arch())); 868 return; 869 } 870 871 if (!checkCompatibility(this)) 872 return; 873 874 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 875 StringRef data{reinterpret_cast<const char *>(cmd + 1), 876 cmd->cmdsize - sizeof(linker_option_command)}; 877 parseLCLinkerOption(this, cmd->count, data); 878 } 879 880 ArrayRef<SectionHeader> sectionHeaders; 881 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 882 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 883 sectionHeaders = ArrayRef<SectionHeader>{ 884 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 885 parseSections(sectionHeaders); 886 } 887 888 // TODO: Error on missing LC_SYMTAB? 889 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 890 auto *c = reinterpret_cast<const symtab_command *>(cmd); 891 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 892 c->nsyms); 893 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 894 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 895 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 896 } 897 898 // The relocations may refer to the symbols, so we parse them after we have 899 // parsed all the symbols. 900 for (size_t i = 0, n = sections.size(); i < n; ++i) 901 if (!sections[i].subsections.empty()) 902 parseRelocations(sectionHeaders, sectionHeaders[i], 903 sections[i].subsections); 904 905 parseDebugInfo(); 906 if (compactUnwindSection) 907 registerCompactUnwind(); 908 } 909 910 template <class LP> void ObjFile::parseLazy() { 911 using Header = typename LP::mach_header; 912 using NList = typename LP::nlist; 913 914 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 915 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 916 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 917 if (!cmd) 918 return; 919 auto *c = reinterpret_cast<const symtab_command *>(cmd); 920 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 921 c->nsyms); 922 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 923 symbols.resize(nList.size()); 924 for (auto it : llvm::enumerate(nList)) { 925 const NList &sym = it.value(); 926 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 927 // TODO: Bound checking 928 StringRef name = strtab + sym.n_strx; 929 symbols[it.index()] = symtab->addLazyObject(name, *this); 930 if (!lazy) 931 break; 932 } 933 } 934 } 935 936 void ObjFile::parseDebugInfo() { 937 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 938 if (!dObj) 939 return; 940 941 auto *ctx = make<DWARFContext>( 942 std::move(dObj), "", 943 [&](Error err) { 944 warn(toString(this) + ": " + toString(std::move(err))); 945 }, 946 [&](Error warning) { 947 warn(toString(this) + ": " + toString(std::move(warning))); 948 }); 949 950 // TODO: Since object files can contain a lot of DWARF info, we should verify 951 // that we are parsing just the info we need 952 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 953 // FIXME: There can be more than one compile unit per object file. See 954 // PR48637. 955 auto it = units.begin(); 956 compileUnit = it->get(); 957 } 958 959 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 960 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 961 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 962 if (!cmd) 963 return {}; 964 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 965 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 966 c->datasize / sizeof(data_in_code_entry)}; 967 } 968 969 // Create pointers from symbols to their associated compact unwind entries. 970 void ObjFile::registerCompactUnwind() { 971 for (const Subsection &subsection : compactUnwindSection->subsections) { 972 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 973 // Hack!! Since each CUE contains a different function address, if ICF 974 // operated naively and compared the entire contents of each CUE, entries 975 // with identical unwind info but belonging to different functions would 976 // never be considered equivalent. To work around this problem, we slice 977 // away the function address here. (Note that we do not adjust the offsets 978 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 979 // to correctly handle these truncated input sections. 980 isec->data = isec->data.slice(target->wordSize); 981 982 ConcatInputSection *referentIsec; 983 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 984 Reloc &r = *it; 985 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 986 if (r.offset != 0) { 987 ++it; 988 continue; 989 } 990 uint64_t add = r.addend; 991 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 992 // Check whether the symbol defined in this file is the prevailing one. 993 // Skip if it is e.g. a weak def that didn't prevail. 994 if (sym->getFile() != this) { 995 ++it; 996 continue; 997 } 998 add += sym->value; 999 referentIsec = cast<ConcatInputSection>(sym->isec); 1000 } else { 1001 referentIsec = 1002 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1003 } 1004 if (referentIsec->getSegName() != segment_names::text) 1005 error("compact unwind references address in " + toString(referentIsec) + 1006 " which is not in segment __TEXT"); 1007 // The functionAddress relocations are typically section relocations. 1008 // However, unwind info operates on a per-symbol basis, so we search for 1009 // the function symbol here. 1010 auto symIt = llvm::lower_bound( 1011 referentIsec->symbols, add, 1012 [](Defined *d, uint64_t add) { return d->value < add; }); 1013 // The relocation should point at the exact address of a symbol (with no 1014 // addend). 1015 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 1016 assert(referentIsec->wasCoalesced); 1017 ++it; 1018 continue; 1019 } 1020 (*symIt)->unwindEntry = isec; 1021 // Since we've sliced away the functionAddress, we should remove the 1022 // corresponding relocation too. Given that clang emits relocations in 1023 // reverse order of address, this relocation should be at the end of the 1024 // vector for most of our input object files, so this is typically an O(1) 1025 // operation. 1026 it = isec->relocs.erase(it); 1027 } 1028 } 1029 } 1030 1031 // The path can point to either a dylib or a .tbd file. 1032 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1033 Optional<MemoryBufferRef> mbref = readFile(path); 1034 if (!mbref) { 1035 error("could not read dylib file at " + path); 1036 return nullptr; 1037 } 1038 return loadDylib(*mbref, umbrella); 1039 } 1040 1041 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1042 // the first document storing child pointers to the rest of them. When we are 1043 // processing a given TBD file, we store that top-level document in 1044 // currentTopLevelTapi. When processing re-exports, we search its children for 1045 // potentially matching documents in the same TBD file. Note that the children 1046 // themselves don't point to further documents, i.e. this is a two-level tree. 1047 // 1048 // Re-exports can either refer to on-disk files, or to documents within .tbd 1049 // files. 1050 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1051 const InterfaceFile *currentTopLevelTapi) { 1052 // Search order: 1053 // 1. Install name basename in -F / -L directories. 1054 { 1055 StringRef stem = path::stem(path); 1056 SmallString<128> frameworkName; 1057 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1058 bool isFramework = path.endswith(frameworkName); 1059 if (isFramework) { 1060 for (StringRef dir : config->frameworkSearchPaths) { 1061 SmallString<128> candidate = dir; 1062 path::append(candidate, frameworkName); 1063 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1064 return loadDylib(*dylibPath, umbrella); 1065 } 1066 } else if (Optional<StringRef> dylibPath = findPathCombination( 1067 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1068 return loadDylib(*dylibPath, umbrella); 1069 } 1070 1071 // 2. As absolute path. 1072 if (path::is_absolute(path, path::Style::posix)) 1073 for (StringRef root : config->systemLibraryRoots) 1074 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1075 return loadDylib(*dylibPath, umbrella); 1076 1077 // 3. As relative path. 1078 1079 // TODO: Handle -dylib_file 1080 1081 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1082 SmallString<128> newPath; 1083 if (config->outputType == MH_EXECUTE && 1084 path.consume_front("@executable_path/")) { 1085 // ld64 allows overriding this with the undocumented flag -executable_path. 1086 // lld doesn't currently implement that flag. 1087 // FIXME: Consider using finalOutput instead of outputFile. 1088 path::append(newPath, path::parent_path(config->outputFile), path); 1089 path = newPath; 1090 } else if (path.consume_front("@loader_path/")) { 1091 fs::real_path(umbrella->getName(), newPath); 1092 path::remove_filename(newPath); 1093 path::append(newPath, path); 1094 path = newPath; 1095 } else if (path.startswith("@rpath/")) { 1096 for (StringRef rpath : umbrella->rpaths) { 1097 newPath.clear(); 1098 if (rpath.consume_front("@loader_path/")) { 1099 fs::real_path(umbrella->getName(), newPath); 1100 path::remove_filename(newPath); 1101 } 1102 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1103 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1104 return loadDylib(*dylibPath, umbrella); 1105 } 1106 } 1107 1108 // FIXME: Should this be further up? 1109 if (currentTopLevelTapi) { 1110 for (InterfaceFile &child : 1111 make_pointee_range(currentTopLevelTapi->documents())) { 1112 assert(child.documents().empty()); 1113 if (path == child.getInstallName()) { 1114 auto file = make<DylibFile>(child, umbrella); 1115 file->parseReexports(child); 1116 return file; 1117 } 1118 } 1119 } 1120 1121 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1122 return loadDylib(*dylibPath, umbrella); 1123 1124 return nullptr; 1125 } 1126 1127 // If a re-exported dylib is public (lives in /usr/lib or 1128 // /System/Library/Frameworks), then it is considered implicitly linked: we 1129 // should bind to its symbols directly instead of via the re-exporting umbrella 1130 // library. 1131 static bool isImplicitlyLinked(StringRef path) { 1132 if (!config->implicitDylibs) 1133 return false; 1134 1135 if (path::parent_path(path) == "/usr/lib") 1136 return true; 1137 1138 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1139 if (path.consume_front("/System/Library/Frameworks/")) { 1140 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1141 return path::filename(path) == frameworkName; 1142 } 1143 1144 return false; 1145 } 1146 1147 static void loadReexport(StringRef path, DylibFile *umbrella, 1148 const InterfaceFile *currentTopLevelTapi) { 1149 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1150 if (!reexport) 1151 error("unable to locate re-export with install name " + path); 1152 } 1153 1154 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1155 bool isBundleLoader) 1156 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1157 isBundleLoader(isBundleLoader) { 1158 assert(!isBundleLoader || !umbrella); 1159 if (umbrella == nullptr) 1160 umbrella = this; 1161 this->umbrella = umbrella; 1162 1163 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1164 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1165 1166 // Initialize installName. 1167 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1168 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1169 currentVersion = read32le(&c->dylib.current_version); 1170 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1171 installName = 1172 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1173 } else if (!isBundleLoader) { 1174 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1175 // so it's OK. 1176 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1177 return; 1178 } 1179 1180 if (config->printEachFile) 1181 message(toString(this)); 1182 inputFiles.insert(this); 1183 1184 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1185 1186 if (!checkCompatibility(this)) 1187 return; 1188 1189 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1190 1191 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1192 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1193 rpaths.push_back(rpath); 1194 } 1195 1196 // Initialize symbols. 1197 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1198 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1199 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1200 struct TrieEntry { 1201 StringRef name; 1202 uint64_t flags; 1203 }; 1204 1205 std::vector<TrieEntry> entries; 1206 // Find all the $ld$* symbols to process first. 1207 parseTrie(buf + c->export_off, c->export_size, 1208 [&](const Twine &name, uint64_t flags) { 1209 StringRef savedName = saver().save(name); 1210 if (handleLDSymbol(savedName)) 1211 return; 1212 entries.push_back({savedName, flags}); 1213 }); 1214 1215 // Process the "normal" symbols. 1216 for (TrieEntry &entry : entries) { 1217 if (exportingFile->hiddenSymbols.contains( 1218 CachedHashStringRef(entry.name))) 1219 continue; 1220 1221 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1222 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1223 1224 symbols.push_back( 1225 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1226 } 1227 1228 } else { 1229 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1230 return; 1231 } 1232 } 1233 1234 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1235 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1236 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1237 target->headerSize; 1238 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1239 auto *cmd = reinterpret_cast<const load_command *>(p); 1240 p += cmd->cmdsize; 1241 1242 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1243 cmd->cmd == LC_REEXPORT_DYLIB) { 1244 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1245 StringRef reexportPath = 1246 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1247 loadReexport(reexportPath, exportingFile, nullptr); 1248 } 1249 1250 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1251 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1252 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1253 if (config->namespaceKind == NamespaceKind::flat && 1254 cmd->cmd == LC_LOAD_DYLIB) { 1255 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1256 StringRef dylibPath = 1257 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1258 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1259 if (!dylib) 1260 error(Twine("unable to locate library '") + dylibPath + 1261 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1262 } 1263 } 1264 } 1265 1266 // Some versions of XCode ship with .tbd files that don't have the right 1267 // platform settings. 1268 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1269 "/usr/lib/system/libsystem_kernel.dylib", 1270 "/usr/lib/system/libsystem_platform.dylib", 1271 "/usr/lib/system/libsystem_pthread.dylib"}; 1272 1273 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1274 bool isBundleLoader) 1275 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1276 isBundleLoader(isBundleLoader) { 1277 // FIXME: Add test for the missing TBD code path. 1278 1279 if (umbrella == nullptr) 1280 umbrella = this; 1281 this->umbrella = umbrella; 1282 1283 installName = saver().save(interface.getInstallName()); 1284 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1285 currentVersion = interface.getCurrentVersion().rawValue(); 1286 1287 if (config->printEachFile) 1288 message(toString(this)); 1289 inputFiles.insert(this); 1290 1291 if (!is_contained(skipPlatformChecks, installName) && 1292 !is_contained(interface.targets(), config->platformInfo.target)) { 1293 error(toString(this) + " is incompatible with " + 1294 std::string(config->platformInfo.target)); 1295 return; 1296 } 1297 1298 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1299 1300 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1301 auto addSymbol = [&](const Twine &name) -> void { 1302 StringRef savedName = saver().save(name); 1303 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1304 return; 1305 1306 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1307 /*isWeakDef=*/false, 1308 /*isTlv=*/false)); 1309 }; 1310 1311 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1312 normalSymbols.reserve(interface.symbolsCount()); 1313 for (const auto *symbol : interface.symbols()) { 1314 if (!symbol->getArchitectures().has(config->arch())) 1315 continue; 1316 if (handleLDSymbol(symbol->getName())) 1317 continue; 1318 1319 switch (symbol->getKind()) { 1320 case SymbolKind::GlobalSymbol: // Fallthrough 1321 case SymbolKind::ObjectiveCClass: // Fallthrough 1322 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1323 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1324 normalSymbols.push_back(symbol); 1325 } 1326 } 1327 1328 // TODO(compnerd) filter out symbols based on the target platform 1329 // TODO: handle weak defs, thread locals 1330 for (const auto *symbol : normalSymbols) { 1331 switch (symbol->getKind()) { 1332 case SymbolKind::GlobalSymbol: 1333 addSymbol(symbol->getName()); 1334 break; 1335 case SymbolKind::ObjectiveCClass: 1336 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1337 // want to emulate that. 1338 addSymbol(objc::klass + symbol->getName()); 1339 addSymbol(objc::metaclass + symbol->getName()); 1340 break; 1341 case SymbolKind::ObjectiveCClassEHType: 1342 addSymbol(objc::ehtype + symbol->getName()); 1343 break; 1344 case SymbolKind::ObjectiveCInstanceVariable: 1345 addSymbol(objc::ivar + symbol->getName()); 1346 break; 1347 } 1348 } 1349 } 1350 1351 void DylibFile::parseReexports(const InterfaceFile &interface) { 1352 const InterfaceFile *topLevel = 1353 interface.getParent() == nullptr ? &interface : interface.getParent(); 1354 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1355 InterfaceFile::const_target_range targets = intfRef.targets(); 1356 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1357 is_contained(targets, config->platformInfo.target)) 1358 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1359 } 1360 } 1361 1362 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1363 // name, compatibility version or hide/add symbols) for specific target 1364 // versions. 1365 bool DylibFile::handleLDSymbol(StringRef originalName) { 1366 if (!originalName.startswith("$ld$")) 1367 return false; 1368 1369 StringRef action; 1370 StringRef name; 1371 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1372 if (action == "previous") 1373 handleLDPreviousSymbol(name, originalName); 1374 else if (action == "install_name") 1375 handleLDInstallNameSymbol(name, originalName); 1376 else if (action == "hide") 1377 handleLDHideSymbol(name, originalName); 1378 return true; 1379 } 1380 1381 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1382 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1383 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1384 StringRef installName; 1385 StringRef compatVersion; 1386 StringRef platformStr; 1387 StringRef startVersion; 1388 StringRef endVersion; 1389 StringRef symbolName; 1390 StringRef rest; 1391 1392 std::tie(installName, name) = name.split('$'); 1393 std::tie(compatVersion, name) = name.split('$'); 1394 std::tie(platformStr, name) = name.split('$'); 1395 std::tie(startVersion, name) = name.split('$'); 1396 std::tie(endVersion, name) = name.split('$'); 1397 std::tie(symbolName, rest) = name.split('$'); 1398 // TODO: ld64 contains some logic for non-empty symbolName as well. 1399 if (!symbolName.empty()) 1400 return; 1401 unsigned platform; 1402 if (platformStr.getAsInteger(10, platform) || 1403 platform != static_cast<unsigned>(config->platform())) 1404 return; 1405 1406 VersionTuple start; 1407 if (start.tryParse(startVersion)) { 1408 warn("failed to parse start version, symbol '" + originalName + 1409 "' ignored"); 1410 return; 1411 } 1412 VersionTuple end; 1413 if (end.tryParse(endVersion)) { 1414 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1415 return; 1416 } 1417 if (config->platformInfo.minimum < start || 1418 config->platformInfo.minimum >= end) 1419 return; 1420 1421 this->installName = saver().save(installName); 1422 1423 if (!compatVersion.empty()) { 1424 VersionTuple cVersion; 1425 if (cVersion.tryParse(compatVersion)) { 1426 warn("failed to parse compatibility version, symbol '" + originalName + 1427 "' ignored"); 1428 return; 1429 } 1430 compatibilityVersion = encodeVersion(cVersion); 1431 } 1432 } 1433 1434 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1435 StringRef originalName) { 1436 // originalName: $ld$ install_name $ os<version> $ install_name 1437 StringRef condition, installName; 1438 std::tie(condition, installName) = name.split('$'); 1439 VersionTuple version; 1440 if (!condition.consume_front("os") || version.tryParse(condition)) 1441 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1442 else if (version == config->platformInfo.minimum) 1443 this->installName = saver().save(installName); 1444 } 1445 1446 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1447 StringRef symbolName; 1448 bool shouldHide = true; 1449 if (name.startswith("os")) { 1450 // If it's hidden based on versions. 1451 name = name.drop_front(2); 1452 StringRef minVersion; 1453 std::tie(minVersion, symbolName) = name.split('$'); 1454 VersionTuple versionTup; 1455 if (versionTup.tryParse(minVersion)) { 1456 warn("Failed to parse hidden version, symbol `" + originalName + 1457 "` ignored."); 1458 return; 1459 } 1460 shouldHide = versionTup == config->platformInfo.minimum; 1461 } else { 1462 symbolName = name; 1463 } 1464 1465 if (shouldHide) 1466 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1467 } 1468 1469 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1470 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1471 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1472 } 1473 1474 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1475 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1476 1477 void ArchiveFile::addLazySymbols() { 1478 for (const object::Archive::Symbol &sym : file->symbols()) 1479 symtab->addLazyArchive(sym.getName(), this, sym); 1480 } 1481 1482 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1483 uint32_t modTime, 1484 StringRef archiveName, 1485 uint64_t offsetInArchive) { 1486 if (config->zeroModTime) 1487 modTime = 0; 1488 1489 switch (identify_magic(mb.getBuffer())) { 1490 case file_magic::macho_object: 1491 return make<ObjFile>(mb, modTime, archiveName); 1492 case file_magic::bitcode: 1493 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1494 default: 1495 return createStringError(inconvertibleErrorCode(), 1496 mb.getBufferIdentifier() + 1497 " has unhandled file type"); 1498 } 1499 } 1500 1501 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1502 if (!seen.insert(c.getChildOffset()).second) 1503 return Error::success(); 1504 1505 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1506 if (!mb) 1507 return mb.takeError(); 1508 1509 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1510 if (tar && c.getParent()->isThin()) 1511 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1512 1513 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1514 if (!modTime) 1515 return modTime.takeError(); 1516 1517 Expected<InputFile *> file = 1518 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1519 1520 if (!file) 1521 return file.takeError(); 1522 1523 inputFiles.insert(*file); 1524 printArchiveMemberLoad(reason, *file); 1525 return Error::success(); 1526 } 1527 1528 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1529 object::Archive::Child c = 1530 CHECK(sym.getMember(), toString(this) + 1531 ": could not get the member defining symbol " + 1532 toMachOString(sym)); 1533 1534 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1535 // and become invalid after that call. Copy it to the stack so we can refer 1536 // to it later. 1537 const object::Archive::Symbol symCopy = sym; 1538 1539 // ld64 doesn't demangle sym here even with -demangle. 1540 // Match that: intentionally don't call toMachOString(). 1541 if (Error e = fetch(c, symCopy.getName())) 1542 error(toString(this) + ": could not get the member defining symbol " + 1543 toMachOString(symCopy) + ": " + toString(std::move(e))); 1544 } 1545 1546 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1547 BitcodeFile &file) { 1548 StringRef name = saver().save(objSym.getName()); 1549 1550 if (objSym.isUndefined()) 1551 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1552 1553 // TODO: Write a test demonstrating why computing isPrivateExtern before 1554 // LTO compilation is important. 1555 bool isPrivateExtern = false; 1556 switch (objSym.getVisibility()) { 1557 case GlobalValue::HiddenVisibility: 1558 isPrivateExtern = true; 1559 break; 1560 case GlobalValue::ProtectedVisibility: 1561 error(name + " has protected visibility, which is not supported by Mach-O"); 1562 break; 1563 case GlobalValue::DefaultVisibility: 1564 break; 1565 } 1566 1567 if (objSym.isCommon()) 1568 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1569 objSym.getCommonAlignment(), isPrivateExtern); 1570 1571 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1572 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1573 /*isThumb=*/false, 1574 /*isReferencedDynamically=*/false, 1575 /*noDeadStrip=*/false, 1576 /*isWeakDefCanBeHidden=*/false); 1577 } 1578 1579 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1580 uint64_t offsetInArchive, bool lazy) 1581 : InputFile(BitcodeKind, mb, lazy) { 1582 this->archiveName = std::string(archiveName); 1583 std::string path = mb.getBufferIdentifier().str(); 1584 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1585 // name. If two members with the same name are provided, this causes a 1586 // collision and ThinLTO can't proceed. 1587 // So, we append the archive name to disambiguate two members with the same 1588 // name from multiple different archives, and offset within the archive to 1589 // disambiguate two members of the same name from a single archive. 1590 MemoryBufferRef mbref(mb.getBuffer(), 1591 saver().save(archiveName.empty() 1592 ? path 1593 : archiveName + 1594 sys::path::filename(path) + 1595 utostr(offsetInArchive))); 1596 1597 obj = check(lto::InputFile::create(mbref)); 1598 if (lazy) 1599 parseLazy(); 1600 else 1601 parse(); 1602 } 1603 1604 void BitcodeFile::parse() { 1605 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1606 // "winning" symbol will then be marked as Prevailing at LTO compilation 1607 // time. 1608 symbols.clear(); 1609 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1610 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1611 } 1612 1613 void BitcodeFile::parseLazy() { 1614 symbols.resize(obj->symbols().size()); 1615 for (auto it : llvm::enumerate(obj->symbols())) { 1616 const lto::InputFile::Symbol &objSym = it.value(); 1617 if (!objSym.isUndefined()) { 1618 symbols[it.index()] = 1619 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1620 if (!lazy) 1621 break; 1622 } 1623 } 1624 } 1625 1626 void macho::extract(InputFile &file, StringRef reason) { 1627 assert(file.lazy); 1628 file.lazy = false; 1629 printArchiveMemberLoad(reason, &file); 1630 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1631 bitcode->parse(); 1632 } else { 1633 auto &f = cast<ObjFile>(file); 1634 if (target->wordSize == 8) 1635 f.parse<LP64>(); 1636 else 1637 f.parse<ILP32>(); 1638 } 1639 } 1640 1641 template void ObjFile::parse<LP64>(); 1642