1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/CommonLinkerContext.h"
60 #include "lld/Common/DWARF.h"
61 #include "lld/Common/Reproduce.h"
62 #include "llvm/ADT/iterator.h"
63 #include "llvm/BinaryFormat/MachO.h"
64 #include "llvm/LTO/LTO.h"
65 #include "llvm/Support/BinaryStreamReader.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/Support/TimeProfiler.h"
71 #include "llvm/TextAPI/Architecture.h"
72 #include "llvm/TextAPI/InterfaceFile.h"
73 
74 #include <type_traits>
75 
76 using namespace llvm;
77 using namespace llvm::MachO;
78 using namespace llvm::support::endian;
79 using namespace llvm::sys;
80 using namespace lld;
81 using namespace lld::macho;
82 
83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
84 std::string lld::toString(const InputFile *f) {
85   if (!f)
86     return "<internal>";
87 
88   // Multiple dylibs can be defined in one .tbd file.
89   if (auto dylibFile = dyn_cast<DylibFile>(f))
90     if (f->getName().endswith(".tbd"))
91       return (f->getName() + "(" + dylibFile->installName + ")").str();
92 
93   if (f->archiveName.empty())
94     return std::string(f->getName());
95   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
96 }
97 
98 std::string lld::toString(const Section &sec) {
99   return (toString(sec.file) + ":(" + sec.name + ")").str();
100 }
101 
102 SetVector<InputFile *> macho::inputFiles;
103 std::unique_ptr<TarWriter> macho::tar;
104 int InputFile::idCount = 0;
105 
106 static VersionTuple decodeVersion(uint32_t version) {
107   unsigned major = version >> 16;
108   unsigned minor = (version >> 8) & 0xffu;
109   unsigned subMinor = version & 0xffu;
110   return VersionTuple(major, minor, subMinor);
111 }
112 
113 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
114   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
115     return {};
116 
117   const char *hdr = input->mb.getBufferStart();
118 
119   std::vector<PlatformInfo> platformInfos;
120   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
121     PlatformInfo info;
122     info.target.Platform = static_cast<PlatformType>(cmd->platform);
123     info.minimum = decodeVersion(cmd->minos);
124     platformInfos.emplace_back(std::move(info));
125   }
126   for (auto *cmd : findCommands<version_min_command>(
127            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
128            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
129     PlatformInfo info;
130     switch (cmd->cmd) {
131     case LC_VERSION_MIN_MACOSX:
132       info.target.Platform = PLATFORM_MACOS;
133       break;
134     case LC_VERSION_MIN_IPHONEOS:
135       info.target.Platform = PLATFORM_IOS;
136       break;
137     case LC_VERSION_MIN_TVOS:
138       info.target.Platform = PLATFORM_TVOS;
139       break;
140     case LC_VERSION_MIN_WATCHOS:
141       info.target.Platform = PLATFORM_WATCHOS;
142       break;
143     }
144     info.minimum = decodeVersion(cmd->version);
145     platformInfos.emplace_back(std::move(info));
146   }
147 
148   return platformInfos;
149 }
150 
151 static bool checkCompatibility(const InputFile *input) {
152   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
153   if (platformInfos.empty())
154     return true;
155 
156   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
157     return removeSimulator(info.target.Platform) ==
158            removeSimulator(config->platform());
159   });
160   if (it == platformInfos.end()) {
161     std::string platformNames;
162     raw_string_ostream os(platformNames);
163     interleave(
164         platformInfos, os,
165         [&](const PlatformInfo &info) {
166           os << getPlatformName(info.target.Platform);
167         },
168         "/");
169     error(toString(input) + " has platform " + platformNames +
170           Twine(", which is different from target platform ") +
171           getPlatformName(config->platform()));
172     return false;
173   }
174 
175   if (it->minimum > config->platformInfo.minimum)
176     warn(toString(input) + " has version " + it->minimum.getAsString() +
177          ", which is newer than target minimum of " +
178          config->platformInfo.minimum.getAsString());
179 
180   return true;
181 }
182 
183 // This cache mostly exists to store system libraries (and .tbds) as they're
184 // loaded, rather than the input archives, which are already cached at a higher
185 // level, and other files like the filelist that are only read once.
186 // Theoretically this caching could be more efficient by hoisting it, but that
187 // would require altering many callers to track the state.
188 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
189 // Open a given file path and return it as a memory-mapped file.
190 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
191   CachedHashStringRef key(path);
192   auto entry = cachedReads.find(key);
193   if (entry != cachedReads.end())
194     return entry->second;
195 
196   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
197   if (std::error_code ec = mbOrErr.getError()) {
198     error("cannot open " + path + ": " + ec.message());
199     return None;
200   }
201 
202   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
203   MemoryBufferRef mbref = mb->getMemBufferRef();
204   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
205 
206   // If this is a regular non-fat file, return it.
207   const char *buf = mbref.getBufferStart();
208   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
209   if (mbref.getBufferSize() < sizeof(uint32_t) ||
210       read32be(&hdr->magic) != FAT_MAGIC) {
211     if (tar)
212       tar->append(relativeToRoot(path), mbref.getBuffer());
213     return cachedReads[key] = mbref;
214   }
215 
216   llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
217 
218   // Object files and archive files may be fat files, which contain multiple
219   // real files for different CPU ISAs. Here, we search for a file that matches
220   // with the current link target and returns it as a MemoryBufferRef.
221   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
222 
223   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
224     if (reinterpret_cast<const char *>(arch + i + 1) >
225         buf + mbref.getBufferSize()) {
226       error(path + ": fat_arch struct extends beyond end of file");
227       return None;
228     }
229 
230     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
231         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
232       continue;
233 
234     uint32_t offset = read32be(&arch[i].offset);
235     uint32_t size = read32be(&arch[i].size);
236     if (offset + size > mbref.getBufferSize())
237       error(path + ": slice extends beyond end of file");
238     if (tar)
239       tar->append(relativeToRoot(path), mbref.getBuffer());
240     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
241                                               path.copy(bAlloc));
242   }
243 
244   error("unable to find matching architecture in " + path);
245   return None;
246 }
247 
248 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
249     : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
250 
251 // Some sections comprise of fixed-size records, so instead of splitting them at
252 // symbol boundaries, we split them based on size. Records are distinct from
253 // literals in that they may contain references to other sections, instead of
254 // being leaf nodes in the InputSection graph.
255 //
256 // Note that "record" is a term I came up with. In contrast, "literal" is a term
257 // used by the Mach-O format.
258 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
259   if (name == section_names::compactUnwind) {
260       if (segname == segment_names::ld)
261         return target->wordSize == 8 ? 32 : 20;
262   }
263   if (config->icfLevel == ICFLevel::none)
264     return {};
265 
266   if (name == section_names::cfString && segname == segment_names::data)
267     return target->wordSize == 8 ? 32 : 16;
268   if (name == section_names::objcClassRefs && segname == segment_names::data)
269     return target->wordSize;
270   return {};
271 }
272 
273 static Error parseCallGraph(ArrayRef<uint8_t> data,
274                             std::vector<CallGraphEntry> &callGraph) {
275   TimeTraceScope timeScope("Parsing call graph section");
276   BinaryStreamReader reader(data, support::little);
277   while (!reader.empty()) {
278     uint32_t fromIndex, toIndex;
279     uint64_t count;
280     if (Error err = reader.readInteger(fromIndex))
281       return err;
282     if (Error err = reader.readInteger(toIndex))
283       return err;
284     if (Error err = reader.readInteger(count))
285       return err;
286     callGraph.emplace_back(fromIndex, toIndex, count);
287   }
288   return Error::success();
289 }
290 
291 // Parse the sequence of sections within a single LC_SEGMENT(_64).
292 // Split each section into subsections.
293 template <class SectionHeader>
294 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
295   sections.reserve(sectionHeaders.size());
296   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
297 
298   for (const SectionHeader &sec : sectionHeaders) {
299     StringRef name =
300         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
301     StringRef segname =
302         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
303     sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
304     if (sec.align >= 32) {
305       error("alignment " + std::to_string(sec.align) + " of section " + name +
306             " is too large");
307       continue;
308     }
309     Section &section = *sections.back();
310     uint32_t align = 1 << sec.align;
311     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
312                                                     : buf + sec.offset,
313                               static_cast<size_t>(sec.size)};
314 
315     auto splitRecords = [&](int recordSize) -> void {
316       if (data.empty())
317         return;
318       Subsections &subsections = section.subsections;
319       subsections.reserve(data.size() / recordSize);
320       for (uint64_t off = 0; off < data.size(); off += recordSize) {
321         auto *isec = make<ConcatInputSection>(
322             section, data.slice(off, recordSize), align);
323         subsections.push_back({off, isec});
324       }
325     };
326 
327     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
328         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
329       if (sec.nreloc && config->dedupLiterals)
330         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
331               sec.sectname +
332               ", so LLD cannot deduplicate literals. Try re-running without "
333               "--deduplicate-literals.");
334 
335       InputSection *isec;
336       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
337         isec = make<CStringInputSection>(section, data, align);
338         // FIXME: parallelize this?
339         cast<CStringInputSection>(isec)->splitIntoPieces();
340       } else {
341         isec = make<WordLiteralInputSection>(section, data, align);
342       }
343       section.subsections.push_back({0, isec});
344     } else if (auto recordSize = getRecordSize(segname, name)) {
345       splitRecords(*recordSize);
346       if (name == section_names::compactUnwind)
347         compactUnwindSection = &section;
348     } else if (segname == segment_names::llvm) {
349       if (config->callGraphProfileSort && name == section_names::cgProfile)
350         checkError(parseCallGraph(data, callGraph));
351       // ld64 does not appear to emit contents from sections within the __LLVM
352       // segment. Symbols within those sections point to bitcode metadata
353       // instead of actual symbols. Global symbols within those sections could
354       // have the same name without causing duplicate symbol errors. To avoid
355       // spurious duplicate symbol errors, we do not parse these sections.
356       // TODO: Evaluate whether the bitcode metadata is needed.
357     } else {
358       auto *isec = make<ConcatInputSection>(section, data, align);
359       if (isDebugSection(isec->getFlags()) &&
360           isec->getSegName() == segment_names::dwarf) {
361         // Instead of emitting DWARF sections, we emit STABS symbols to the
362         // object files that contain them. We filter them out early to avoid
363         // parsing their relocations unnecessarily.
364         debugSections.push_back(isec);
365       } else {
366         section.subsections.push_back({0, isec});
367       }
368     }
369   }
370 }
371 
372 // Find the subsection corresponding to the greatest section offset that is <=
373 // that of the given offset.
374 //
375 // offset: an offset relative to the start of the original InputSection (before
376 // any subsection splitting has occurred). It will be updated to represent the
377 // same location as an offset relative to the start of the containing
378 // subsection.
379 template <class T>
380 static InputSection *findContainingSubsection(const Section &section,
381                                               T *offset) {
382   static_assert(std::is_same<uint64_t, T>::value ||
383                     std::is_same<uint32_t, T>::value,
384                 "unexpected type for offset");
385   auto it = std::prev(llvm::upper_bound(
386       section.subsections, *offset,
387       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
388   *offset -= it->offset;
389   return it->isec;
390 }
391 
392 // Find a symbol at offset `off` within `isec`.
393 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
394                                    uint64_t off) {
395   auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
396     return d->value < off;
397   });
398   // The offset should point at the exact address of a symbol (with no addend.)
399   if (it == isec->symbols.end() || (*it)->value != off) {
400     assert(isec->wasCoalesced);
401     return nullptr;
402   }
403   return *it;
404 }
405 
406 template <class SectionHeader>
407 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
408                                    relocation_info rel) {
409   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
410   bool valid = true;
411   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
412     valid = false;
413     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
414             std::to_string(rel.r_address) + " of " + sec.segname + "," +
415             sec.sectname + " in " + toString(file))
416         .str();
417   };
418 
419   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
420     error(message("must be extern"));
421   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
422     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
423                   "be PC-relative"));
424   if (isThreadLocalVariables(sec.flags) &&
425       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
426     error(message("not allowed in thread-local section, must be UNSIGNED"));
427   if (rel.r_length < 2 || rel.r_length > 3 ||
428       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
429     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
430     error(message("has width " + std::to_string(1 << rel.r_length) +
431                   " bytes, but must be " +
432                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
433                   " bytes"));
434   }
435   return valid;
436 }
437 
438 template <class SectionHeader>
439 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
440                                const SectionHeader &sec,
441                                Section &section) {
442   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
443   ArrayRef<relocation_info> relInfos(
444       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
445 
446   Subsections &subsections = section.subsections;
447   auto subsecIt = subsections.rbegin();
448   for (size_t i = 0; i < relInfos.size(); i++) {
449     // Paired relocations serve as Mach-O's method for attaching a
450     // supplemental datum to a primary relocation record. ELF does not
451     // need them because the *_RELOC_RELA records contain the extra
452     // addend field, vs. *_RELOC_REL which omit the addend.
453     //
454     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
455     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
456     // datum for each is a symbolic address. The result is the offset
457     // between two addresses.
458     //
459     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
460     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
461     // base symbolic address.
462     //
463     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
464     // addend into the instruction stream. On X86, a relocatable address
465     // field always occupies an entire contiguous sequence of byte(s),
466     // so there is no need to merge opcode bits with address
467     // bits. Therefore, it's easy and convenient to store addends in the
468     // instruction-stream bytes that would otherwise contain zeroes. By
469     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
470     // address bits so that bitwise arithmetic is necessary to extract
471     // and insert them. Storing addends in the instruction stream is
472     // possible, but inconvenient and more costly at link time.
473 
474     relocation_info relInfo = relInfos[i];
475     bool isSubtrahend =
476         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
477     if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) {
478       // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r
479       // adds local "EH_Frame1" and "func.eh". Ignore them because they have
480       // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009.
481       ++i;
482       continue;
483     }
484     int64_t pairedAddend = 0;
485     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
486       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
487       relInfo = relInfos[++i];
488     }
489     assert(i < relInfos.size());
490     if (!validateRelocationInfo(this, sec, relInfo))
491       continue;
492     if (relInfo.r_address & R_SCATTERED)
493       fatal("TODO: Scattered relocations not supported");
494 
495     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
496     assert(!(embeddedAddend && pairedAddend));
497     int64_t totalAddend = pairedAddend + embeddedAddend;
498     Reloc r;
499     r.type = relInfo.r_type;
500     r.pcrel = relInfo.r_pcrel;
501     r.length = relInfo.r_length;
502     r.offset = relInfo.r_address;
503     if (relInfo.r_extern) {
504       r.referent = symbols[relInfo.r_symbolnum];
505       r.addend = isSubtrahend ? 0 : totalAddend;
506     } else {
507       assert(!isSubtrahend);
508       const SectionHeader &referentSecHead =
509           sectionHeaders[relInfo.r_symbolnum - 1];
510       uint64_t referentOffset;
511       if (relInfo.r_pcrel) {
512         // The implicit addend for pcrel section relocations is the pcrel offset
513         // in terms of the addresses in the input file. Here we adjust it so
514         // that it describes the offset from the start of the referent section.
515         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
516         // have pcrel section relocations. We may want to factor this out into
517         // the arch-specific .cpp file.
518         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
519         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
520                          referentSecHead.addr;
521       } else {
522         // The addend for a non-pcrel relocation is its absolute address.
523         referentOffset = totalAddend - referentSecHead.addr;
524       }
525       r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
526                                             &referentOffset);
527       r.addend = referentOffset;
528     }
529 
530     // Find the subsection that this relocation belongs to.
531     // Though not required by the Mach-O format, clang and gcc seem to emit
532     // relocations in order, so let's take advantage of it. However, ld64 emits
533     // unsorted relocations (in `-r` mode), so we have a fallback for that
534     // uncommon case.
535     InputSection *subsec;
536     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
537       ++subsecIt;
538     if (subsecIt == subsections.rend() ||
539         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
540       subsec = findContainingSubsection(section, &r.offset);
541       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
542       // for the other relocations.
543       subsecIt = subsections.rend();
544     } else {
545       subsec = subsecIt->isec;
546       r.offset -= subsecIt->offset;
547     }
548     subsec->relocs.push_back(r);
549 
550     if (isSubtrahend) {
551       relocation_info minuendInfo = relInfos[++i];
552       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
553       // attached to the same address.
554       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
555              relInfo.r_address == minuendInfo.r_address);
556       Reloc p;
557       p.type = minuendInfo.r_type;
558       if (minuendInfo.r_extern) {
559         p.referent = symbols[minuendInfo.r_symbolnum];
560         p.addend = totalAddend;
561       } else {
562         uint64_t referentOffset =
563             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
564         p.referent = findContainingSubsection(
565             *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
566         p.addend = referentOffset;
567       }
568       subsec->relocs.push_back(p);
569     }
570   }
571 }
572 
573 template <class NList>
574 static macho::Symbol *createDefined(const NList &sym, StringRef name,
575                                     InputSection *isec, uint64_t value,
576                                     uint64_t size) {
577   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
578   // N_EXT: Global symbols. These go in the symbol table during the link,
579   //        and also in the export table of the output so that the dynamic
580   //        linker sees them.
581   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
582   //                 symbol table during the link so that duplicates are
583   //                 either reported (for non-weak symbols) or merged
584   //                 (for weak symbols), but they do not go in the export
585   //                 table of the output.
586   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
587   //         object files) may produce them. LLD does not yet support -r.
588   //         These are translation-unit scoped, identical to the `0` case.
589   // 0: Translation-unit scoped. These are not in the symbol table during
590   //    link, and not in the export table of the output either.
591   bool isWeakDefCanBeHidden =
592       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
593 
594   if (sym.n_type & N_EXT) {
595     bool isPrivateExtern = sym.n_type & N_PEXT;
596     // lld's behavior for merging symbols is slightly different from ld64:
597     // ld64 picks the winning symbol based on several criteria (see
598     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
599     // just merges metadata and keeps the contents of the first symbol
600     // with that name (see SymbolTable::addDefined). For:
601     // * inline function F in a TU built with -fvisibility-inlines-hidden
602     // * and inline function F in another TU built without that flag
603     // ld64 will pick the one from the file built without
604     // -fvisibility-inlines-hidden.
605     // lld will instead pick the one listed first on the link command line and
606     // give it visibility as if the function was built without
607     // -fvisibility-inlines-hidden.
608     // If both functions have the same contents, this will have the same
609     // behavior. If not, it won't, but the input had an ODR violation in
610     // that case.
611     //
612     // Similarly, merging a symbol
613     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
614     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
615     // should produce one
616     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
617     // with ld64's semantics, because it means the non-private-extern
618     // definition will continue to take priority if more private extern
619     // definitions are encountered. With lld's semantics there's no observable
620     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
621     // that's privateExtern -- neither makes it into the dynamic symbol table,
622     // unless the autohide symbol is explicitly exported.
623     // But if a symbol is both privateExtern and autohide then it can't
624     // be exported.
625     // So we nullify the autohide flag when privateExtern is present
626     // and promote the symbol to privateExtern when it is not already.
627     if (isWeakDefCanBeHidden && isPrivateExtern)
628       isWeakDefCanBeHidden = false;
629     else if (isWeakDefCanBeHidden)
630       isPrivateExtern = true;
631     return symtab->addDefined(
632         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
633         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
634         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
635         isWeakDefCanBeHidden);
636   }
637   assert(!isWeakDefCanBeHidden &&
638          "weak_def_can_be_hidden on already-hidden symbol?");
639   return make<Defined>(
640       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
641       /*isExternal=*/false, /*isPrivateExtern=*/false,
642       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
643       sym.n_desc & N_NO_DEAD_STRIP);
644 }
645 
646 // Absolute symbols are defined symbols that do not have an associated
647 // InputSection. They cannot be weak.
648 template <class NList>
649 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
650                                      StringRef name) {
651   if (sym.n_type & N_EXT) {
652     return symtab->addDefined(
653         name, file, nullptr, sym.n_value, /*size=*/0,
654         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
655         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
656         /*isWeakDefCanBeHidden=*/false);
657   }
658   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
659                        /*isWeakDef=*/false,
660                        /*isExternal=*/false, /*isPrivateExtern=*/false,
661                        sym.n_desc & N_ARM_THUMB_DEF,
662                        /*isReferencedDynamically=*/false,
663                        sym.n_desc & N_NO_DEAD_STRIP);
664 }
665 
666 template <class NList>
667 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
668                                               StringRef name) {
669   uint8_t type = sym.n_type & N_TYPE;
670   switch (type) {
671   case N_UNDF:
672     return sym.n_value == 0
673                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
674                : symtab->addCommon(name, this, sym.n_value,
675                                    1 << GET_COMM_ALIGN(sym.n_desc),
676                                    sym.n_type & N_PEXT);
677   case N_ABS:
678     return createAbsolute(sym, this, name);
679   case N_PBUD:
680   case N_INDR:
681     error("TODO: support symbols of type " + std::to_string(type));
682     return nullptr;
683   case N_SECT:
684     llvm_unreachable(
685         "N_SECT symbols should not be passed to parseNonSectionSymbol");
686   default:
687     llvm_unreachable("invalid symbol type");
688   }
689 }
690 
691 template <class NList> static bool isUndef(const NList &sym) {
692   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
693 }
694 
695 template <class LP>
696 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
697                            ArrayRef<typename LP::nlist> nList,
698                            const char *strtab, bool subsectionsViaSymbols) {
699   using NList = typename LP::nlist;
700 
701   // Groups indices of the symbols by the sections that contain them.
702   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
703   symbols.resize(nList.size());
704   SmallVector<unsigned, 32> undefineds;
705   for (uint32_t i = 0; i < nList.size(); ++i) {
706     const NList &sym = nList[i];
707 
708     // Ignore debug symbols for now.
709     // FIXME: may need special handling.
710     if (sym.n_type & N_STAB)
711       continue;
712 
713     StringRef name = strtab + sym.n_strx;
714     if ((sym.n_type & N_TYPE) == N_SECT) {
715       Subsections &subsections = sections[sym.n_sect - 1]->subsections;
716       // parseSections() may have chosen not to parse this section.
717       if (subsections.empty())
718         continue;
719       symbolsBySection[sym.n_sect - 1].push_back(i);
720     } else if (isUndef(sym)) {
721       undefineds.push_back(i);
722     } else {
723       symbols[i] = parseNonSectionSymbol(sym, name);
724     }
725   }
726 
727   for (size_t i = 0; i < sections.size(); ++i) {
728     Subsections &subsections = sections[i]->subsections;
729     if (subsections.empty())
730       continue;
731     if (sections[i]->name == section_names::ehFrame) {
732       // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r
733       // adds local "EH_Frame1" and "func.eh". Ignore them because they have
734       // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009.
735       continue;
736     }
737     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
738     uint64_t sectionAddr = sectionHeaders[i].addr;
739     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
740 
741     // Record-based sections have already been split into subsections during
742     // parseSections(), so we simply need to match Symbols to the corresponding
743     // subsection here.
744     if (getRecordSize(sections[i]->segname, sections[i]->name)) {
745       for (size_t j = 0; j < symbolIndices.size(); ++j) {
746         uint32_t symIndex = symbolIndices[j];
747         const NList &sym = nList[symIndex];
748         StringRef name = strtab + sym.n_strx;
749         uint64_t symbolOffset = sym.n_value - sectionAddr;
750         InputSection *isec =
751             findContainingSubsection(*sections[i], &symbolOffset);
752         if (symbolOffset != 0) {
753           error(toString(*sections[i]) + ":  symbol " + name +
754                 " at misaligned offset");
755           continue;
756         }
757         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
758       }
759       continue;
760     }
761 
762     // Calculate symbol sizes and create subsections by splitting the sections
763     // along symbol boundaries.
764     // We populate subsections by repeatedly splitting the last (highest
765     // address) subsection.
766     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
767       return nList[lhs].n_value < nList[rhs].n_value;
768     });
769     for (size_t j = 0; j < symbolIndices.size(); ++j) {
770       uint32_t symIndex = symbolIndices[j];
771       const NList &sym = nList[symIndex];
772       StringRef name = strtab + sym.n_strx;
773       Subsection &subsec = subsections.back();
774       InputSection *isec = subsec.isec;
775 
776       uint64_t subsecAddr = sectionAddr + subsec.offset;
777       size_t symbolOffset = sym.n_value - subsecAddr;
778       uint64_t symbolSize =
779           j + 1 < symbolIndices.size()
780               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
781               : isec->data.size() - symbolOffset;
782       // There are 4 cases where we do not need to create a new subsection:
783       //   1. If the input file does not use subsections-via-symbols.
784       //   2. Multiple symbols at the same address only induce one subsection.
785       //      (The symbolOffset == 0 check covers both this case as well as
786       //      the first loop iteration.)
787       //   3. Alternative entry points do not induce new subsections.
788       //   4. If we have a literal section (e.g. __cstring and __literal4).
789       if (!subsectionsViaSymbols || symbolOffset == 0 ||
790           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
791         symbols[symIndex] =
792             createDefined(sym, name, isec, symbolOffset, symbolSize);
793         continue;
794       }
795       auto *concatIsec = cast<ConcatInputSection>(isec);
796 
797       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
798       nextIsec->wasCoalesced = false;
799       if (isZeroFill(isec->getFlags())) {
800         // Zero-fill sections have NULL data.data() non-zero data.size()
801         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
802         isec->data = {nullptr, symbolOffset};
803       } else {
804         nextIsec->data = isec->data.slice(symbolOffset);
805         isec->data = isec->data.slice(0, symbolOffset);
806       }
807 
808       // By construction, the symbol will be at offset zero in the new
809       // subsection.
810       symbols[symIndex] =
811           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
812       // TODO: ld64 appears to preserve the original alignment as well as each
813       // subsection's offset from the last aligned address. We should consider
814       // emulating that behavior.
815       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
816       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
817     }
818   }
819 
820   // Undefined symbols can trigger recursive fetch from Archives due to
821   // LazySymbols. Process defined symbols first so that the relative order
822   // between a defined symbol and an undefined symbol does not change the
823   // symbol resolution behavior. In addition, a set of interconnected symbols
824   // will all be resolved to the same file, instead of being resolved to
825   // different files.
826   for (unsigned i : undefineds) {
827     const NList &sym = nList[i];
828     StringRef name = strtab + sym.n_strx;
829     symbols[i] = parseNonSectionSymbol(sym, name);
830   }
831 }
832 
833 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
834                        StringRef sectName)
835     : InputFile(OpaqueKind, mb) {
836   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
837   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
838   sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
839                                    sectName.take_front(16),
840                                    /*flags=*/0, /*addr=*/0));
841   Section &section = *sections.back();
842   ConcatInputSection *isec = make<ConcatInputSection>(section, data);
843   isec->live = true;
844   section.subsections.push_back({0, isec});
845 }
846 
847 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
848                  bool lazy)
849     : InputFile(ObjKind, mb, lazy), modTime(modTime) {
850   this->archiveName = std::string(archiveName);
851   if (lazy) {
852     if (target->wordSize == 8)
853       parseLazy<LP64>();
854     else
855       parseLazy<ILP32>();
856   } else {
857     if (target->wordSize == 8)
858       parse<LP64>();
859     else
860       parse<ILP32>();
861   }
862 }
863 
864 template <class LP> void ObjFile::parse() {
865   using Header = typename LP::mach_header;
866   using SegmentCommand = typename LP::segment_command;
867   using SectionHeader = typename LP::section;
868   using NList = typename LP::nlist;
869 
870   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
871   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
872 
873   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
874   if (arch != config->arch()) {
875     auto msg = config->errorForArchMismatch
876                    ? static_cast<void (*)(const Twine &)>(error)
877                    : warn;
878     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
879         " which is incompatible with target architecture " +
880         getArchitectureName(config->arch()));
881     return;
882   }
883 
884   if (!checkCompatibility(this))
885     return;
886 
887   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
888     StringRef data{reinterpret_cast<const char *>(cmd + 1),
889                    cmd->cmdsize - sizeof(linker_option_command)};
890     parseLCLinkerOption(this, cmd->count, data);
891   }
892 
893   ArrayRef<SectionHeader> sectionHeaders;
894   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
895     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
896     sectionHeaders = ArrayRef<SectionHeader>{
897         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
898     parseSections(sectionHeaders);
899   }
900 
901   // TODO: Error on missing LC_SYMTAB?
902   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
903     auto *c = reinterpret_cast<const symtab_command *>(cmd);
904     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
905                           c->nsyms);
906     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
907     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
908     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
909   }
910 
911   // The relocations may refer to the symbols, so we parse them after we have
912   // parsed all the symbols.
913   for (size_t i = 0, n = sections.size(); i < n; ++i)
914     if (!sections[i]->subsections.empty())
915       parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
916 
917   parseDebugInfo();
918   if (compactUnwindSection)
919     registerCompactUnwind();
920 }
921 
922 template <class LP> void ObjFile::parseLazy() {
923   using Header = typename LP::mach_header;
924   using NList = typename LP::nlist;
925 
926   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
927   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
928   const load_command *cmd = findCommand(hdr, LC_SYMTAB);
929   if (!cmd)
930     return;
931   auto *c = reinterpret_cast<const symtab_command *>(cmd);
932   ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
933                         c->nsyms);
934   const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
935   symbols.resize(nList.size());
936   for (auto it : llvm::enumerate(nList)) {
937     const NList &sym = it.value();
938     if ((sym.n_type & N_EXT) && !isUndef(sym)) {
939       // TODO: Bound checking
940       StringRef name = strtab + sym.n_strx;
941       symbols[it.index()] = symtab->addLazyObject(name, *this);
942       if (!lazy)
943         break;
944     }
945   }
946 }
947 
948 void ObjFile::parseDebugInfo() {
949   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
950   if (!dObj)
951     return;
952 
953   auto *ctx = make<DWARFContext>(
954       std::move(dObj), "",
955       [&](Error err) {
956         warn(toString(this) + ": " + toString(std::move(err)));
957       },
958       [&](Error warning) {
959         warn(toString(this) + ": " + toString(std::move(warning)));
960       });
961 
962   // TODO: Since object files can contain a lot of DWARF info, we should verify
963   // that we are parsing just the info we need
964   const DWARFContext::compile_unit_range &units = ctx->compile_units();
965   // FIXME: There can be more than one compile unit per object file. See
966   // PR48637.
967   auto it = units.begin();
968   compileUnit = it->get();
969 }
970 
971 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
972   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
973   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
974   if (!cmd)
975     return {};
976   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
977   return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
978           c->datasize / sizeof(data_in_code_entry)};
979 }
980 
981 // Create pointers from symbols to their associated compact unwind entries.
982 void ObjFile::registerCompactUnwind() {
983   for (const Subsection &subsection : compactUnwindSection->subsections) {
984     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
985     // Hack!! Since each CUE contains a different function address, if ICF
986     // operated naively and compared the entire contents of each CUE, entries
987     // with identical unwind info but belonging to different functions would
988     // never be considered equivalent. To work around this problem, we slice
989     // away the function address here. (Note that we do not adjust the offsets
990     // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
991     // to correctly handle these truncated input sections.
992     isec->data = isec->data.slice(target->wordSize);
993 
994     ConcatInputSection *referentIsec;
995     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
996       Reloc &r = *it;
997       // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
998       if (r.offset != 0) {
999         ++it;
1000         continue;
1001       }
1002       uint64_t add = r.addend;
1003       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1004         // Check whether the symbol defined in this file is the prevailing one.
1005         // Skip if it is e.g. a weak def that didn't prevail.
1006         if (sym->getFile() != this) {
1007           ++it;
1008           continue;
1009         }
1010         add += sym->value;
1011         referentIsec = cast<ConcatInputSection>(sym->isec);
1012       } else {
1013         referentIsec =
1014             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1015       }
1016       if (referentIsec->getSegName() != segment_names::text)
1017         error(isec->getLocation(r.offset) + " references section " +
1018               referentIsec->getName() + " which is not in segment __TEXT");
1019       // The functionAddress relocations are typically section relocations.
1020       // However, unwind info operates on a per-symbol basis, so we search for
1021       // the function symbol here.
1022       Defined *d = findSymbolAtOffset(referentIsec, add);
1023       if (!d) {
1024         ++it;
1025         continue;
1026       }
1027       d->unwindEntry = isec;
1028       // Since we've sliced away the functionAddress, we should remove the
1029       // corresponding relocation too. Given that clang emits relocations in
1030       // reverse order of address, this relocation should be at the end of the
1031       // vector for most of our input object files, so this is typically an O(1)
1032       // operation.
1033       it = isec->relocs.erase(it);
1034     }
1035   }
1036 }
1037 
1038 // The path can point to either a dylib or a .tbd file.
1039 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1040   Optional<MemoryBufferRef> mbref = readFile(path);
1041   if (!mbref) {
1042     error("could not read dylib file at " + path);
1043     return nullptr;
1044   }
1045   return loadDylib(*mbref, umbrella);
1046 }
1047 
1048 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1049 // the first document storing child pointers to the rest of them. When we are
1050 // processing a given TBD file, we store that top-level document in
1051 // currentTopLevelTapi. When processing re-exports, we search its children for
1052 // potentially matching documents in the same TBD file. Note that the children
1053 // themselves don't point to further documents, i.e. this is a two-level tree.
1054 //
1055 // Re-exports can either refer to on-disk files, or to documents within .tbd
1056 // files.
1057 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1058                             const InterfaceFile *currentTopLevelTapi) {
1059   // Search order:
1060   // 1. Install name basename in -F / -L directories.
1061   {
1062     StringRef stem = path::stem(path);
1063     SmallString<128> frameworkName;
1064     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1065     bool isFramework = path.endswith(frameworkName);
1066     if (isFramework) {
1067       for (StringRef dir : config->frameworkSearchPaths) {
1068         SmallString<128> candidate = dir;
1069         path::append(candidate, frameworkName);
1070         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1071           return loadDylib(*dylibPath, umbrella);
1072       }
1073     } else if (Optional<StringRef> dylibPath = findPathCombination(
1074                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1075       return loadDylib(*dylibPath, umbrella);
1076   }
1077 
1078   // 2. As absolute path.
1079   if (path::is_absolute(path, path::Style::posix))
1080     for (StringRef root : config->systemLibraryRoots)
1081       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1082         return loadDylib(*dylibPath, umbrella);
1083 
1084   // 3. As relative path.
1085 
1086   // TODO: Handle -dylib_file
1087 
1088   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1089   SmallString<128> newPath;
1090   if (config->outputType == MH_EXECUTE &&
1091       path.consume_front("@executable_path/")) {
1092     // ld64 allows overriding this with the undocumented flag -executable_path.
1093     // lld doesn't currently implement that flag.
1094     // FIXME: Consider using finalOutput instead of outputFile.
1095     path::append(newPath, path::parent_path(config->outputFile), path);
1096     path = newPath;
1097   } else if (path.consume_front("@loader_path/")) {
1098     fs::real_path(umbrella->getName(), newPath);
1099     path::remove_filename(newPath);
1100     path::append(newPath, path);
1101     path = newPath;
1102   } else if (path.startswith("@rpath/")) {
1103     for (StringRef rpath : umbrella->rpaths) {
1104       newPath.clear();
1105       if (rpath.consume_front("@loader_path/")) {
1106         fs::real_path(umbrella->getName(), newPath);
1107         path::remove_filename(newPath);
1108       }
1109       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1110       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1111         return loadDylib(*dylibPath, umbrella);
1112     }
1113   }
1114 
1115   // FIXME: Should this be further up?
1116   if (currentTopLevelTapi) {
1117     for (InterfaceFile &child :
1118          make_pointee_range(currentTopLevelTapi->documents())) {
1119       assert(child.documents().empty());
1120       if (path == child.getInstallName()) {
1121         auto file = make<DylibFile>(child, umbrella);
1122         file->parseReexports(child);
1123         return file;
1124       }
1125     }
1126   }
1127 
1128   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1129     return loadDylib(*dylibPath, umbrella);
1130 
1131   return nullptr;
1132 }
1133 
1134 // If a re-exported dylib is public (lives in /usr/lib or
1135 // /System/Library/Frameworks), then it is considered implicitly linked: we
1136 // should bind to its symbols directly instead of via the re-exporting umbrella
1137 // library.
1138 static bool isImplicitlyLinked(StringRef path) {
1139   if (!config->implicitDylibs)
1140     return false;
1141 
1142   if (path::parent_path(path) == "/usr/lib")
1143     return true;
1144 
1145   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1146   if (path.consume_front("/System/Library/Frameworks/")) {
1147     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1148     return path::filename(path) == frameworkName;
1149   }
1150 
1151   return false;
1152 }
1153 
1154 static void loadReexport(StringRef path, DylibFile *umbrella,
1155                          const InterfaceFile *currentTopLevelTapi) {
1156   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1157   if (!reexport)
1158     error("unable to locate re-export with install name " + path);
1159 }
1160 
1161 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1162                      bool isBundleLoader)
1163     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1164       isBundleLoader(isBundleLoader) {
1165   assert(!isBundleLoader || !umbrella);
1166   if (umbrella == nullptr)
1167     umbrella = this;
1168   this->umbrella = umbrella;
1169 
1170   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1171   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1172 
1173   // Initialize installName.
1174   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1175     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1176     currentVersion = read32le(&c->dylib.current_version);
1177     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1178     installName =
1179         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1180   } else if (!isBundleLoader) {
1181     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1182     // so it's OK.
1183     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1184     return;
1185   }
1186 
1187   if (config->printEachFile)
1188     message(toString(this));
1189   inputFiles.insert(this);
1190 
1191   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1192 
1193   if (!checkCompatibility(this))
1194     return;
1195 
1196   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1197 
1198   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1199     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1200     rpaths.push_back(rpath);
1201   }
1202 
1203   // Initialize symbols.
1204   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1205   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1206     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1207     struct TrieEntry {
1208       StringRef name;
1209       uint64_t flags;
1210     };
1211 
1212     std::vector<TrieEntry> entries;
1213     // Find all the $ld$* symbols to process first.
1214     parseTrie(buf + c->export_off, c->export_size,
1215               [&](const Twine &name, uint64_t flags) {
1216                 StringRef savedName = saver().save(name);
1217                 if (handleLDSymbol(savedName))
1218                   return;
1219                 entries.push_back({savedName, flags});
1220               });
1221 
1222     // Process the "normal" symbols.
1223     for (TrieEntry &entry : entries) {
1224       if (exportingFile->hiddenSymbols.contains(
1225               CachedHashStringRef(entry.name)))
1226         continue;
1227 
1228       bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1229       bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1230 
1231       symbols.push_back(
1232           symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1233     }
1234 
1235   } else {
1236     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1237     return;
1238   }
1239 }
1240 
1241 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1242   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1243   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1244                      target->headerSize;
1245   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1246     auto *cmd = reinterpret_cast<const load_command *>(p);
1247     p += cmd->cmdsize;
1248 
1249     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1250         cmd->cmd == LC_REEXPORT_DYLIB) {
1251       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1252       StringRef reexportPath =
1253           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1254       loadReexport(reexportPath, exportingFile, nullptr);
1255     }
1256 
1257     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1258     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1259     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1260     if (config->namespaceKind == NamespaceKind::flat &&
1261         cmd->cmd == LC_LOAD_DYLIB) {
1262       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1263       StringRef dylibPath =
1264           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1265       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1266       if (!dylib)
1267         error(Twine("unable to locate library '") + dylibPath +
1268               "' loaded from '" + toString(this) + "' for -flat_namespace");
1269     }
1270   }
1271 }
1272 
1273 // Some versions of XCode ship with .tbd files that don't have the right
1274 // platform settings.
1275 constexpr std::array<StringRef, 4> skipPlatformChecks{
1276     "/usr/lib/system/libsystem_kernel.dylib",
1277     "/usr/lib/system/libsystem_platform.dylib",
1278     "/usr/lib/system/libsystem_pthread.dylib",
1279     "/usr/lib/system/libcompiler_rt.dylib"};
1280 
1281 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1282                      bool isBundleLoader)
1283     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1284       isBundleLoader(isBundleLoader) {
1285   // FIXME: Add test for the missing TBD code path.
1286 
1287   if (umbrella == nullptr)
1288     umbrella = this;
1289   this->umbrella = umbrella;
1290 
1291   installName = saver().save(interface.getInstallName());
1292   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1293   currentVersion = interface.getCurrentVersion().rawValue();
1294 
1295   if (config->printEachFile)
1296     message(toString(this));
1297   inputFiles.insert(this);
1298 
1299   if (!is_contained(skipPlatformChecks, installName) &&
1300       !is_contained(interface.targets(), config->platformInfo.target)) {
1301     error(toString(this) + " is incompatible with " +
1302           std::string(config->platformInfo.target));
1303     return;
1304   }
1305 
1306   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1307 
1308   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1309   auto addSymbol = [&](const Twine &name) -> void {
1310     StringRef savedName = saver().save(name);
1311     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1312       return;
1313 
1314     symbols.push_back(symtab->addDylib(savedName, exportingFile,
1315                                        /*isWeakDef=*/false,
1316                                        /*isTlv=*/false));
1317   };
1318 
1319   std::vector<const llvm::MachO::Symbol *> normalSymbols;
1320   normalSymbols.reserve(interface.symbolsCount());
1321   for (const auto *symbol : interface.symbols()) {
1322     if (!symbol->getArchitectures().has(config->arch()))
1323       continue;
1324     if (handleLDSymbol(symbol->getName()))
1325       continue;
1326 
1327     switch (symbol->getKind()) {
1328     case SymbolKind::GlobalSymbol:               // Fallthrough
1329     case SymbolKind::ObjectiveCClass:            // Fallthrough
1330     case SymbolKind::ObjectiveCClassEHType:      // Fallthrough
1331     case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1332       normalSymbols.push_back(symbol);
1333     }
1334   }
1335 
1336   // TODO(compnerd) filter out symbols based on the target platform
1337   // TODO: handle weak defs, thread locals
1338   for (const auto *symbol : normalSymbols) {
1339     switch (symbol->getKind()) {
1340     case SymbolKind::GlobalSymbol:
1341       addSymbol(symbol->getName());
1342       break;
1343     case SymbolKind::ObjectiveCClass:
1344       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1345       // want to emulate that.
1346       addSymbol(objc::klass + symbol->getName());
1347       addSymbol(objc::metaclass + symbol->getName());
1348       break;
1349     case SymbolKind::ObjectiveCClassEHType:
1350       addSymbol(objc::ehtype + symbol->getName());
1351       break;
1352     case SymbolKind::ObjectiveCInstanceVariable:
1353       addSymbol(objc::ivar + symbol->getName());
1354       break;
1355     }
1356   }
1357 }
1358 
1359 void DylibFile::parseReexports(const InterfaceFile &interface) {
1360   const InterfaceFile *topLevel =
1361       interface.getParent() == nullptr ? &interface : interface.getParent();
1362   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1363     InterfaceFile::const_target_range targets = intfRef.targets();
1364     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1365         is_contained(targets, config->platformInfo.target))
1366       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1367   }
1368 }
1369 
1370 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1371 // name, compatibility version or hide/add symbols) for specific target
1372 // versions.
1373 bool DylibFile::handleLDSymbol(StringRef originalName) {
1374   if (!originalName.startswith("$ld$"))
1375     return false;
1376 
1377   StringRef action;
1378   StringRef name;
1379   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1380   if (action == "previous")
1381     handleLDPreviousSymbol(name, originalName);
1382   else if (action == "install_name")
1383     handleLDInstallNameSymbol(name, originalName);
1384   else if (action == "hide")
1385     handleLDHideSymbol(name, originalName);
1386   return true;
1387 }
1388 
1389 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1390   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1391   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1392   StringRef installName;
1393   StringRef compatVersion;
1394   StringRef platformStr;
1395   StringRef startVersion;
1396   StringRef endVersion;
1397   StringRef symbolName;
1398   StringRef rest;
1399 
1400   std::tie(installName, name) = name.split('$');
1401   std::tie(compatVersion, name) = name.split('$');
1402   std::tie(platformStr, name) = name.split('$');
1403   std::tie(startVersion, name) = name.split('$');
1404   std::tie(endVersion, name) = name.split('$');
1405   std::tie(symbolName, rest) = name.split('$');
1406   // TODO: ld64 contains some logic for non-empty symbolName as well.
1407   if (!symbolName.empty())
1408     return;
1409   unsigned platform;
1410   if (platformStr.getAsInteger(10, platform) ||
1411       platform != static_cast<unsigned>(config->platform()))
1412     return;
1413 
1414   VersionTuple start;
1415   if (start.tryParse(startVersion)) {
1416     warn("failed to parse start version, symbol '" + originalName +
1417          "' ignored");
1418     return;
1419   }
1420   VersionTuple end;
1421   if (end.tryParse(endVersion)) {
1422     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1423     return;
1424   }
1425   if (config->platformInfo.minimum < start ||
1426       config->platformInfo.minimum >= end)
1427     return;
1428 
1429   this->installName = saver().save(installName);
1430 
1431   if (!compatVersion.empty()) {
1432     VersionTuple cVersion;
1433     if (cVersion.tryParse(compatVersion)) {
1434       warn("failed to parse compatibility version, symbol '" + originalName +
1435            "' ignored");
1436       return;
1437     }
1438     compatibilityVersion = encodeVersion(cVersion);
1439   }
1440 }
1441 
1442 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1443                                           StringRef originalName) {
1444   // originalName: $ld$ install_name $ os<version> $ install_name
1445   StringRef condition, installName;
1446   std::tie(condition, installName) = name.split('$');
1447   VersionTuple version;
1448   if (!condition.consume_front("os") || version.tryParse(condition))
1449     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1450   else if (version == config->platformInfo.minimum)
1451     this->installName = saver().save(installName);
1452 }
1453 
1454 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
1455   StringRef symbolName;
1456   bool shouldHide = true;
1457   if (name.startswith("os")) {
1458     // If it's hidden based on versions.
1459     name = name.drop_front(2);
1460     StringRef minVersion;
1461     std::tie(minVersion, symbolName) = name.split('$');
1462     VersionTuple versionTup;
1463     if (versionTup.tryParse(minVersion)) {
1464       warn("Failed to parse hidden version, symbol `" + originalName +
1465            "` ignored.");
1466       return;
1467     }
1468     shouldHide = versionTup == config->platformInfo.minimum;
1469   } else {
1470     symbolName = name;
1471   }
1472 
1473   if (shouldHide)
1474     exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
1475 }
1476 
1477 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1478   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1479     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1480 }
1481 
1482 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1483     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1484 
1485 void ArchiveFile::addLazySymbols() {
1486   for (const object::Archive::Symbol &sym : file->symbols())
1487     symtab->addLazyArchive(sym.getName(), this, sym);
1488 }
1489 
1490 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1491                                                uint32_t modTime,
1492                                                StringRef archiveName,
1493                                                uint64_t offsetInArchive) {
1494   if (config->zeroModTime)
1495     modTime = 0;
1496 
1497   switch (identify_magic(mb.getBuffer())) {
1498   case file_magic::macho_object:
1499     return make<ObjFile>(mb, modTime, archiveName);
1500   case file_magic::bitcode:
1501     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1502   default:
1503     return createStringError(inconvertibleErrorCode(),
1504                              mb.getBufferIdentifier() +
1505                                  " has unhandled file type");
1506   }
1507 }
1508 
1509 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1510   if (!seen.insert(c.getChildOffset()).second)
1511     return Error::success();
1512 
1513   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1514   if (!mb)
1515     return mb.takeError();
1516 
1517   // Thin archives refer to .o files, so --reproduce needs the .o files too.
1518   if (tar && c.getParent()->isThin())
1519     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1520 
1521   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1522   if (!modTime)
1523     return modTime.takeError();
1524 
1525   Expected<InputFile *> file =
1526       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1527 
1528   if (!file)
1529     return file.takeError();
1530 
1531   inputFiles.insert(*file);
1532   printArchiveMemberLoad(reason, *file);
1533   return Error::success();
1534 }
1535 
1536 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1537   object::Archive::Child c =
1538       CHECK(sym.getMember(), toString(this) +
1539                                  ": could not get the member defining symbol " +
1540                                  toMachOString(sym));
1541 
1542   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1543   // and become invalid after that call. Copy it to the stack so we can refer
1544   // to it later.
1545   const object::Archive::Symbol symCopy = sym;
1546 
1547   // ld64 doesn't demangle sym here even with -demangle.
1548   // Match that: intentionally don't call toMachOString().
1549   if (Error e = fetch(c, symCopy.getName()))
1550     error(toString(this) + ": could not get the member defining symbol " +
1551           toMachOString(symCopy) + ": " + toString(std::move(e)));
1552 }
1553 
1554 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1555                                           BitcodeFile &file) {
1556   StringRef name = saver().save(objSym.getName());
1557 
1558   if (objSym.isUndefined())
1559     return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
1560 
1561   // TODO: Write a test demonstrating why computing isPrivateExtern before
1562   // LTO compilation is important.
1563   bool isPrivateExtern = false;
1564   switch (objSym.getVisibility()) {
1565   case GlobalValue::HiddenVisibility:
1566     isPrivateExtern = true;
1567     break;
1568   case GlobalValue::ProtectedVisibility:
1569     error(name + " has protected visibility, which is not supported by Mach-O");
1570     break;
1571   case GlobalValue::DefaultVisibility:
1572     break;
1573   }
1574   isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable();
1575 
1576   if (objSym.isCommon())
1577     return symtab->addCommon(name, &file, objSym.getCommonSize(),
1578                              objSym.getCommonAlignment(), isPrivateExtern);
1579 
1580   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1581                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1582                             /*isThumb=*/false,
1583                             /*isReferencedDynamically=*/false,
1584                             /*noDeadStrip=*/false,
1585                             /*isWeakDefCanBeHidden=*/false);
1586 }
1587 
1588 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1589                          uint64_t offsetInArchive, bool lazy)
1590     : InputFile(BitcodeKind, mb, lazy) {
1591   this->archiveName = std::string(archiveName);
1592   std::string path = mb.getBufferIdentifier().str();
1593   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1594   // name. If two members with the same name are provided, this causes a
1595   // collision and ThinLTO can't proceed.
1596   // So, we append the archive name to disambiguate two members with the same
1597   // name from multiple different archives, and offset within the archive to
1598   // disambiguate two members of the same name from a single archive.
1599   MemoryBufferRef mbref(mb.getBuffer(),
1600                         saver().save(archiveName.empty()
1601                                          ? path
1602                                          : archiveName +
1603                                                sys::path::filename(path) +
1604                                                utostr(offsetInArchive)));
1605 
1606   obj = check(lto::InputFile::create(mbref));
1607   if (lazy)
1608     parseLazy();
1609   else
1610     parse();
1611 }
1612 
1613 void BitcodeFile::parse() {
1614   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1615   // "winning" symbol will then be marked as Prevailing at LTO compilation
1616   // time.
1617   symbols.clear();
1618   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1619     symbols.push_back(createBitcodeSymbol(objSym, *this));
1620 }
1621 
1622 void BitcodeFile::parseLazy() {
1623   symbols.resize(obj->symbols().size());
1624   for (auto it : llvm::enumerate(obj->symbols())) {
1625     const lto::InputFile::Symbol &objSym = it.value();
1626     if (!objSym.isUndefined()) {
1627       symbols[it.index()] =
1628           symtab->addLazyObject(saver().save(objSym.getName()), *this);
1629       if (!lazy)
1630         break;
1631     }
1632   }
1633 }
1634 
1635 void macho::extract(InputFile &file, StringRef reason) {
1636   assert(file.lazy);
1637   file.lazy = false;
1638   printArchiveMemberLoad(reason, &file);
1639   if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
1640     bitcode->parse();
1641   } else {
1642     auto &f = cast<ObjFile>(file);
1643     if (target->wordSize == 8)
1644       f.parse<LP64>();
1645     else
1646       f.parse<ILP32>();
1647   }
1648 }
1649 
1650 template void ObjFile::parse<LP64>();
1651