1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 std::string lld::toString(const Section &sec) { 99 return (toString(sec.file) + ":(" + sec.name + ")").str(); 100 } 101 102 SetVector<InputFile *> macho::inputFiles; 103 std::unique_ptr<TarWriter> macho::tar; 104 int InputFile::idCount = 0; 105 106 static VersionTuple decodeVersion(uint32_t version) { 107 unsigned major = version >> 16; 108 unsigned minor = (version >> 8) & 0xffu; 109 unsigned subMinor = version & 0xffu; 110 return VersionTuple(major, minor, subMinor); 111 } 112 113 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 114 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 115 return {}; 116 117 const char *hdr = input->mb.getBufferStart(); 118 119 std::vector<PlatformInfo> platformInfos; 120 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 121 PlatformInfo info; 122 info.target.Platform = static_cast<PlatformType>(cmd->platform); 123 info.minimum = decodeVersion(cmd->minos); 124 platformInfos.emplace_back(std::move(info)); 125 } 126 for (auto *cmd : findCommands<version_min_command>( 127 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 128 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 129 PlatformInfo info; 130 switch (cmd->cmd) { 131 case LC_VERSION_MIN_MACOSX: 132 info.target.Platform = PLATFORM_MACOS; 133 break; 134 case LC_VERSION_MIN_IPHONEOS: 135 info.target.Platform = PLATFORM_IOS; 136 break; 137 case LC_VERSION_MIN_TVOS: 138 info.target.Platform = PLATFORM_TVOS; 139 break; 140 case LC_VERSION_MIN_WATCHOS: 141 info.target.Platform = PLATFORM_WATCHOS; 142 break; 143 } 144 info.minimum = decodeVersion(cmd->version); 145 platformInfos.emplace_back(std::move(info)); 146 } 147 148 return platformInfos; 149 } 150 151 static bool checkCompatibility(const InputFile *input) { 152 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 153 if (platformInfos.empty()) 154 return true; 155 156 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 157 return removeSimulator(info.target.Platform) == 158 removeSimulator(config->platform()); 159 }); 160 if (it == platformInfos.end()) { 161 std::string platformNames; 162 raw_string_ostream os(platformNames); 163 interleave( 164 platformInfos, os, 165 [&](const PlatformInfo &info) { 166 os << getPlatformName(info.target.Platform); 167 }, 168 "/"); 169 error(toString(input) + " has platform " + platformNames + 170 Twine(", which is different from target platform ") + 171 getPlatformName(config->platform())); 172 return false; 173 } 174 175 if (it->minimum > config->platformInfo.minimum) 176 warn(toString(input) + " has version " + it->minimum.getAsString() + 177 ", which is newer than target minimum of " + 178 config->platformInfo.minimum.getAsString()); 179 180 return true; 181 } 182 183 // This cache mostly exists to store system libraries (and .tbds) as they're 184 // loaded, rather than the input archives, which are already cached at a higher 185 // level, and other files like the filelist that are only read once. 186 // Theoretically this caching could be more efficient by hoisting it, but that 187 // would require altering many callers to track the state. 188 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 189 // Open a given file path and return it as a memory-mapped file. 190 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 191 CachedHashStringRef key(path); 192 auto entry = cachedReads.find(key); 193 if (entry != cachedReads.end()) 194 return entry->second; 195 196 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 197 if (std::error_code ec = mbOrErr.getError()) { 198 error("cannot open " + path + ": " + ec.message()); 199 return None; 200 } 201 202 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 203 MemoryBufferRef mbref = mb->getMemBufferRef(); 204 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 205 206 // If this is a regular non-fat file, return it. 207 const char *buf = mbref.getBufferStart(); 208 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 209 if (mbref.getBufferSize() < sizeof(uint32_t) || 210 read32be(&hdr->magic) != FAT_MAGIC) { 211 if (tar) 212 tar->append(relativeToRoot(path), mbref.getBuffer()); 213 return cachedReads[key] = mbref; 214 } 215 216 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 217 218 // Object files and archive files may be fat files, which contain multiple 219 // real files for different CPU ISAs. Here, we search for a file that matches 220 // with the current link target and returns it as a MemoryBufferRef. 221 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 222 223 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 224 if (reinterpret_cast<const char *>(arch + i + 1) > 225 buf + mbref.getBufferSize()) { 226 error(path + ": fat_arch struct extends beyond end of file"); 227 return None; 228 } 229 230 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 231 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 232 continue; 233 234 uint32_t offset = read32be(&arch[i].offset); 235 uint32_t size = read32be(&arch[i].size); 236 if (offset + size > mbref.getBufferSize()) 237 error(path + ": slice extends beyond end of file"); 238 if (tar) 239 tar->append(relativeToRoot(path), mbref.getBuffer()); 240 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 241 path.copy(bAlloc)); 242 } 243 244 error("unable to find matching architecture in " + path); 245 return None; 246 } 247 248 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 249 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 250 251 // Some sections comprise of fixed-size records, so instead of splitting them at 252 // symbol boundaries, we split them based on size. Records are distinct from 253 // literals in that they may contain references to other sections, instead of 254 // being leaf nodes in the InputSection graph. 255 // 256 // Note that "record" is a term I came up with. In contrast, "literal" is a term 257 // used by the Mach-O format. 258 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 259 if (name == section_names::compactUnwind) { 260 if (segname == segment_names::ld) 261 return target->wordSize == 8 ? 32 : 20; 262 } 263 if (config->icfLevel == ICFLevel::none) 264 return {}; 265 266 if (name == section_names::cfString && segname == segment_names::data) 267 return target->wordSize == 8 ? 32 : 16; 268 if (name == section_names::objcClassRefs && segname == segment_names::data) 269 return target->wordSize; 270 return {}; 271 } 272 273 static Error parseCallGraph(ArrayRef<uint8_t> data, 274 std::vector<CallGraphEntry> &callGraph) { 275 TimeTraceScope timeScope("Parsing call graph section"); 276 BinaryStreamReader reader(data, support::little); 277 while (!reader.empty()) { 278 uint32_t fromIndex, toIndex; 279 uint64_t count; 280 if (Error err = reader.readInteger(fromIndex)) 281 return err; 282 if (Error err = reader.readInteger(toIndex)) 283 return err; 284 if (Error err = reader.readInteger(count)) 285 return err; 286 callGraph.emplace_back(fromIndex, toIndex, count); 287 } 288 return Error::success(); 289 } 290 291 // Parse the sequence of sections within a single LC_SEGMENT(_64). 292 // Split each section into subsections. 293 template <class SectionHeader> 294 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 295 sections.reserve(sectionHeaders.size()); 296 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 297 298 for (const SectionHeader &sec : sectionHeaders) { 299 StringRef name = 300 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 301 StringRef segname = 302 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 303 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 304 if (sec.align >= 32) { 305 error("alignment " + std::to_string(sec.align) + " of section " + name + 306 " is too large"); 307 continue; 308 } 309 Section §ion = *sections.back(); 310 uint32_t align = 1 << sec.align; 311 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 312 : buf + sec.offset, 313 static_cast<size_t>(sec.size)}; 314 315 auto splitRecords = [&](int recordSize) -> void { 316 if (data.empty()) 317 return; 318 Subsections &subsections = section.subsections; 319 subsections.reserve(data.size() / recordSize); 320 for (uint64_t off = 0; off < data.size(); off += recordSize) { 321 auto *isec = make<ConcatInputSection>( 322 section, data.slice(off, recordSize), align); 323 subsections.push_back({off, isec}); 324 } 325 }; 326 327 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 328 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 329 if (sec.nreloc && config->dedupLiterals) 330 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 331 sec.sectname + 332 ", so LLD cannot deduplicate literals. Try re-running without " 333 "--deduplicate-literals."); 334 335 InputSection *isec; 336 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 337 isec = make<CStringInputSection>(section, data, align); 338 // FIXME: parallelize this? 339 cast<CStringInputSection>(isec)->splitIntoPieces(); 340 } else { 341 isec = make<WordLiteralInputSection>(section, data, align); 342 } 343 section.subsections.push_back({0, isec}); 344 } else if (auto recordSize = getRecordSize(segname, name)) { 345 splitRecords(*recordSize); 346 if (name == section_names::compactUnwind) 347 compactUnwindSection = §ion; 348 } else if (segname == segment_names::llvm) { 349 if (config->callGraphProfileSort && name == section_names::cgProfile) 350 checkError(parseCallGraph(data, callGraph)); 351 // ld64 does not appear to emit contents from sections within the __LLVM 352 // segment. Symbols within those sections point to bitcode metadata 353 // instead of actual symbols. Global symbols within those sections could 354 // have the same name without causing duplicate symbol errors. To avoid 355 // spurious duplicate symbol errors, we do not parse these sections. 356 // TODO: Evaluate whether the bitcode metadata is needed. 357 } else { 358 auto *isec = make<ConcatInputSection>(section, data, align); 359 if (isDebugSection(isec->getFlags()) && 360 isec->getSegName() == segment_names::dwarf) { 361 // Instead of emitting DWARF sections, we emit STABS symbols to the 362 // object files that contain them. We filter them out early to avoid 363 // parsing their relocations unnecessarily. 364 debugSections.push_back(isec); 365 } else { 366 section.subsections.push_back({0, isec}); 367 } 368 } 369 } 370 } 371 372 // Find the subsection corresponding to the greatest section offset that is <= 373 // that of the given offset. 374 // 375 // offset: an offset relative to the start of the original InputSection (before 376 // any subsection splitting has occurred). It will be updated to represent the 377 // same location as an offset relative to the start of the containing 378 // subsection. 379 template <class T> 380 static InputSection *findContainingSubsection(const Section §ion, 381 T *offset) { 382 static_assert(std::is_same<uint64_t, T>::value || 383 std::is_same<uint32_t, T>::value, 384 "unexpected type for offset"); 385 auto it = std::prev(llvm::upper_bound( 386 section.subsections, *offset, 387 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 388 *offset -= it->offset; 389 return it->isec; 390 } 391 392 // Find a symbol at offset `off` within `isec`. 393 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 394 uint64_t off) { 395 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 396 return d->value < off; 397 }); 398 // The offset should point at the exact address of a symbol (with no addend.) 399 if (it == isec->symbols.end() || (*it)->value != off) { 400 assert(isec->wasCoalesced); 401 return nullptr; 402 } 403 return *it; 404 } 405 406 template <class SectionHeader> 407 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 408 relocation_info rel) { 409 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 410 bool valid = true; 411 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 412 valid = false; 413 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 414 std::to_string(rel.r_address) + " of " + sec.segname + "," + 415 sec.sectname + " in " + toString(file)) 416 .str(); 417 }; 418 419 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 420 error(message("must be extern")); 421 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 422 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 423 "be PC-relative")); 424 if (isThreadLocalVariables(sec.flags) && 425 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 426 error(message("not allowed in thread-local section, must be UNSIGNED")); 427 if (rel.r_length < 2 || rel.r_length > 3 || 428 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 429 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 430 error(message("has width " + std::to_string(1 << rel.r_length) + 431 " bytes, but must be " + 432 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 433 " bytes")); 434 } 435 return valid; 436 } 437 438 template <class SectionHeader> 439 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 440 const SectionHeader &sec, 441 Section §ion) { 442 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 443 ArrayRef<relocation_info> relInfos( 444 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 445 446 Subsections &subsections = section.subsections; 447 auto subsecIt = subsections.rbegin(); 448 for (size_t i = 0; i < relInfos.size(); i++) { 449 // Paired relocations serve as Mach-O's method for attaching a 450 // supplemental datum to a primary relocation record. ELF does not 451 // need them because the *_RELOC_RELA records contain the extra 452 // addend field, vs. *_RELOC_REL which omit the addend. 453 // 454 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 455 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 456 // datum for each is a symbolic address. The result is the offset 457 // between two addresses. 458 // 459 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 460 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 461 // base symbolic address. 462 // 463 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 464 // addend into the instruction stream. On X86, a relocatable address 465 // field always occupies an entire contiguous sequence of byte(s), 466 // so there is no need to merge opcode bits with address 467 // bits. Therefore, it's easy and convenient to store addends in the 468 // instruction-stream bytes that would otherwise contain zeroes. By 469 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 470 // address bits so that bitwise arithmetic is necessary to extract 471 // and insert them. Storing addends in the instruction stream is 472 // possible, but inconvenient and more costly at link time. 473 474 relocation_info relInfo = relInfos[i]; 475 bool isSubtrahend = 476 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 477 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 478 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 479 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 480 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 481 ++i; 482 continue; 483 } 484 int64_t pairedAddend = 0; 485 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 486 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 487 relInfo = relInfos[++i]; 488 } 489 assert(i < relInfos.size()); 490 if (!validateRelocationInfo(this, sec, relInfo)) 491 continue; 492 if (relInfo.r_address & R_SCATTERED) 493 fatal("TODO: Scattered relocations not supported"); 494 495 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 496 assert(!(embeddedAddend && pairedAddend)); 497 int64_t totalAddend = pairedAddend + embeddedAddend; 498 Reloc r; 499 r.type = relInfo.r_type; 500 r.pcrel = relInfo.r_pcrel; 501 r.length = relInfo.r_length; 502 r.offset = relInfo.r_address; 503 if (relInfo.r_extern) { 504 r.referent = symbols[relInfo.r_symbolnum]; 505 r.addend = isSubtrahend ? 0 : totalAddend; 506 } else { 507 assert(!isSubtrahend); 508 const SectionHeader &referentSecHead = 509 sectionHeaders[relInfo.r_symbolnum - 1]; 510 uint64_t referentOffset; 511 if (relInfo.r_pcrel) { 512 // The implicit addend for pcrel section relocations is the pcrel offset 513 // in terms of the addresses in the input file. Here we adjust it so 514 // that it describes the offset from the start of the referent section. 515 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 516 // have pcrel section relocations. We may want to factor this out into 517 // the arch-specific .cpp file. 518 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 519 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 520 referentSecHead.addr; 521 } else { 522 // The addend for a non-pcrel relocation is its absolute address. 523 referentOffset = totalAddend - referentSecHead.addr; 524 } 525 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 526 &referentOffset); 527 r.addend = referentOffset; 528 } 529 530 // Find the subsection that this relocation belongs to. 531 // Though not required by the Mach-O format, clang and gcc seem to emit 532 // relocations in order, so let's take advantage of it. However, ld64 emits 533 // unsorted relocations (in `-r` mode), so we have a fallback for that 534 // uncommon case. 535 InputSection *subsec; 536 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 537 ++subsecIt; 538 if (subsecIt == subsections.rend() || 539 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 540 subsec = findContainingSubsection(section, &r.offset); 541 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 542 // for the other relocations. 543 subsecIt = subsections.rend(); 544 } else { 545 subsec = subsecIt->isec; 546 r.offset -= subsecIt->offset; 547 } 548 subsec->relocs.push_back(r); 549 550 if (isSubtrahend) { 551 relocation_info minuendInfo = relInfos[++i]; 552 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 553 // attached to the same address. 554 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 555 relInfo.r_address == minuendInfo.r_address); 556 Reloc p; 557 p.type = minuendInfo.r_type; 558 if (minuendInfo.r_extern) { 559 p.referent = symbols[minuendInfo.r_symbolnum]; 560 p.addend = totalAddend; 561 } else { 562 uint64_t referentOffset = 563 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 564 p.referent = findContainingSubsection( 565 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 566 p.addend = referentOffset; 567 } 568 subsec->relocs.push_back(p); 569 } 570 } 571 } 572 573 template <class NList> 574 static macho::Symbol *createDefined(const NList &sym, StringRef name, 575 InputSection *isec, uint64_t value, 576 uint64_t size) { 577 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 578 // N_EXT: Global symbols. These go in the symbol table during the link, 579 // and also in the export table of the output so that the dynamic 580 // linker sees them. 581 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 582 // symbol table during the link so that duplicates are 583 // either reported (for non-weak symbols) or merged 584 // (for weak symbols), but they do not go in the export 585 // table of the output. 586 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 587 // object files) may produce them. LLD does not yet support -r. 588 // These are translation-unit scoped, identical to the `0` case. 589 // 0: Translation-unit scoped. These are not in the symbol table during 590 // link, and not in the export table of the output either. 591 bool isWeakDefCanBeHidden = 592 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 593 594 if (sym.n_type & N_EXT) { 595 bool isPrivateExtern = sym.n_type & N_PEXT; 596 // lld's behavior for merging symbols is slightly different from ld64: 597 // ld64 picks the winning symbol based on several criteria (see 598 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 599 // just merges metadata and keeps the contents of the first symbol 600 // with that name (see SymbolTable::addDefined). For: 601 // * inline function F in a TU built with -fvisibility-inlines-hidden 602 // * and inline function F in another TU built without that flag 603 // ld64 will pick the one from the file built without 604 // -fvisibility-inlines-hidden. 605 // lld will instead pick the one listed first on the link command line and 606 // give it visibility as if the function was built without 607 // -fvisibility-inlines-hidden. 608 // If both functions have the same contents, this will have the same 609 // behavior. If not, it won't, but the input had an ODR violation in 610 // that case. 611 // 612 // Similarly, merging a symbol 613 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 614 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 615 // should produce one 616 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 617 // with ld64's semantics, because it means the non-private-extern 618 // definition will continue to take priority if more private extern 619 // definitions are encountered. With lld's semantics there's no observable 620 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 621 // that's privateExtern -- neither makes it into the dynamic symbol table, 622 // unless the autohide symbol is explicitly exported. 623 // But if a symbol is both privateExtern and autohide then it can't 624 // be exported. 625 // So we nullify the autohide flag when privateExtern is present 626 // and promote the symbol to privateExtern when it is not already. 627 if (isWeakDefCanBeHidden && isPrivateExtern) 628 isWeakDefCanBeHidden = false; 629 else if (isWeakDefCanBeHidden) 630 isPrivateExtern = true; 631 return symtab->addDefined( 632 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 633 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 634 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 635 isWeakDefCanBeHidden); 636 } 637 assert(!isWeakDefCanBeHidden && 638 "weak_def_can_be_hidden on already-hidden symbol?"); 639 return make<Defined>( 640 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 641 /*isExternal=*/false, /*isPrivateExtern=*/false, 642 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 643 sym.n_desc & N_NO_DEAD_STRIP); 644 } 645 646 // Absolute symbols are defined symbols that do not have an associated 647 // InputSection. They cannot be weak. 648 template <class NList> 649 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 650 StringRef name) { 651 if (sym.n_type & N_EXT) { 652 return symtab->addDefined( 653 name, file, nullptr, sym.n_value, /*size=*/0, 654 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 655 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 656 /*isWeakDefCanBeHidden=*/false); 657 } 658 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 659 /*isWeakDef=*/false, 660 /*isExternal=*/false, /*isPrivateExtern=*/false, 661 sym.n_desc & N_ARM_THUMB_DEF, 662 /*isReferencedDynamically=*/false, 663 sym.n_desc & N_NO_DEAD_STRIP); 664 } 665 666 template <class NList> 667 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 668 StringRef name) { 669 uint8_t type = sym.n_type & N_TYPE; 670 switch (type) { 671 case N_UNDF: 672 return sym.n_value == 0 673 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 674 : symtab->addCommon(name, this, sym.n_value, 675 1 << GET_COMM_ALIGN(sym.n_desc), 676 sym.n_type & N_PEXT); 677 case N_ABS: 678 return createAbsolute(sym, this, name); 679 case N_PBUD: 680 case N_INDR: 681 error("TODO: support symbols of type " + std::to_string(type)); 682 return nullptr; 683 case N_SECT: 684 llvm_unreachable( 685 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 686 default: 687 llvm_unreachable("invalid symbol type"); 688 } 689 } 690 691 template <class NList> static bool isUndef(const NList &sym) { 692 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 693 } 694 695 template <class LP> 696 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 697 ArrayRef<typename LP::nlist> nList, 698 const char *strtab, bool subsectionsViaSymbols) { 699 using NList = typename LP::nlist; 700 701 // Groups indices of the symbols by the sections that contain them. 702 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 703 symbols.resize(nList.size()); 704 SmallVector<unsigned, 32> undefineds; 705 for (uint32_t i = 0; i < nList.size(); ++i) { 706 const NList &sym = nList[i]; 707 708 // Ignore debug symbols for now. 709 // FIXME: may need special handling. 710 if (sym.n_type & N_STAB) 711 continue; 712 713 StringRef name = strtab + sym.n_strx; 714 if ((sym.n_type & N_TYPE) == N_SECT) { 715 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 716 // parseSections() may have chosen not to parse this section. 717 if (subsections.empty()) 718 continue; 719 symbolsBySection[sym.n_sect - 1].push_back(i); 720 } else if (isUndef(sym)) { 721 undefineds.push_back(i); 722 } else { 723 symbols[i] = parseNonSectionSymbol(sym, name); 724 } 725 } 726 727 for (size_t i = 0; i < sections.size(); ++i) { 728 Subsections &subsections = sections[i]->subsections; 729 if (subsections.empty()) 730 continue; 731 if (sections[i]->name == section_names::ehFrame) { 732 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 733 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 734 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 735 continue; 736 } 737 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 738 uint64_t sectionAddr = sectionHeaders[i].addr; 739 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 740 741 // Record-based sections have already been split into subsections during 742 // parseSections(), so we simply need to match Symbols to the corresponding 743 // subsection here. 744 if (getRecordSize(sections[i]->segname, sections[i]->name)) { 745 for (size_t j = 0; j < symbolIndices.size(); ++j) { 746 uint32_t symIndex = symbolIndices[j]; 747 const NList &sym = nList[symIndex]; 748 StringRef name = strtab + sym.n_strx; 749 uint64_t symbolOffset = sym.n_value - sectionAddr; 750 InputSection *isec = 751 findContainingSubsection(*sections[i], &symbolOffset); 752 if (symbolOffset != 0) { 753 error(toString(*sections[i]) + ": symbol " + name + 754 " at misaligned offset"); 755 continue; 756 } 757 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 758 } 759 continue; 760 } 761 762 // Calculate symbol sizes and create subsections by splitting the sections 763 // along symbol boundaries. 764 // We populate subsections by repeatedly splitting the last (highest 765 // address) subsection. 766 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 767 return nList[lhs].n_value < nList[rhs].n_value; 768 }); 769 for (size_t j = 0; j < symbolIndices.size(); ++j) { 770 uint32_t symIndex = symbolIndices[j]; 771 const NList &sym = nList[symIndex]; 772 StringRef name = strtab + sym.n_strx; 773 Subsection &subsec = subsections.back(); 774 InputSection *isec = subsec.isec; 775 776 uint64_t subsecAddr = sectionAddr + subsec.offset; 777 size_t symbolOffset = sym.n_value - subsecAddr; 778 uint64_t symbolSize = 779 j + 1 < symbolIndices.size() 780 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 781 : isec->data.size() - symbolOffset; 782 // There are 4 cases where we do not need to create a new subsection: 783 // 1. If the input file does not use subsections-via-symbols. 784 // 2. Multiple symbols at the same address only induce one subsection. 785 // (The symbolOffset == 0 check covers both this case as well as 786 // the first loop iteration.) 787 // 3. Alternative entry points do not induce new subsections. 788 // 4. If we have a literal section (e.g. __cstring and __literal4). 789 if (!subsectionsViaSymbols || symbolOffset == 0 || 790 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 791 symbols[symIndex] = 792 createDefined(sym, name, isec, symbolOffset, symbolSize); 793 continue; 794 } 795 auto *concatIsec = cast<ConcatInputSection>(isec); 796 797 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 798 nextIsec->wasCoalesced = false; 799 if (isZeroFill(isec->getFlags())) { 800 // Zero-fill sections have NULL data.data() non-zero data.size() 801 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 802 isec->data = {nullptr, symbolOffset}; 803 } else { 804 nextIsec->data = isec->data.slice(symbolOffset); 805 isec->data = isec->data.slice(0, symbolOffset); 806 } 807 808 // By construction, the symbol will be at offset zero in the new 809 // subsection. 810 symbols[symIndex] = 811 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 812 // TODO: ld64 appears to preserve the original alignment as well as each 813 // subsection's offset from the last aligned address. We should consider 814 // emulating that behavior. 815 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 816 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 817 } 818 } 819 820 // Undefined symbols can trigger recursive fetch from Archives due to 821 // LazySymbols. Process defined symbols first so that the relative order 822 // between a defined symbol and an undefined symbol does not change the 823 // symbol resolution behavior. In addition, a set of interconnected symbols 824 // will all be resolved to the same file, instead of being resolved to 825 // different files. 826 for (unsigned i : undefineds) { 827 const NList &sym = nList[i]; 828 StringRef name = strtab + sym.n_strx; 829 symbols[i] = parseNonSectionSymbol(sym, name); 830 } 831 } 832 833 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 834 StringRef sectName) 835 : InputFile(OpaqueKind, mb) { 836 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 837 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 838 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 839 sectName.take_front(16), 840 /*flags=*/0, /*addr=*/0)); 841 Section §ion = *sections.back(); 842 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 843 isec->live = true; 844 section.subsections.push_back({0, isec}); 845 } 846 847 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 848 bool lazy) 849 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 850 this->archiveName = std::string(archiveName); 851 if (lazy) { 852 if (target->wordSize == 8) 853 parseLazy<LP64>(); 854 else 855 parseLazy<ILP32>(); 856 } else { 857 if (target->wordSize == 8) 858 parse<LP64>(); 859 else 860 parse<ILP32>(); 861 } 862 } 863 864 template <class LP> void ObjFile::parse() { 865 using Header = typename LP::mach_header; 866 using SegmentCommand = typename LP::segment_command; 867 using SectionHeader = typename LP::section; 868 using NList = typename LP::nlist; 869 870 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 871 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 872 873 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 874 if (arch != config->arch()) { 875 auto msg = config->errorForArchMismatch 876 ? static_cast<void (*)(const Twine &)>(error) 877 : warn; 878 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 879 " which is incompatible with target architecture " + 880 getArchitectureName(config->arch())); 881 return; 882 } 883 884 if (!checkCompatibility(this)) 885 return; 886 887 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 888 StringRef data{reinterpret_cast<const char *>(cmd + 1), 889 cmd->cmdsize - sizeof(linker_option_command)}; 890 parseLCLinkerOption(this, cmd->count, data); 891 } 892 893 ArrayRef<SectionHeader> sectionHeaders; 894 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 895 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 896 sectionHeaders = ArrayRef<SectionHeader>{ 897 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 898 parseSections(sectionHeaders); 899 } 900 901 // TODO: Error on missing LC_SYMTAB? 902 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 903 auto *c = reinterpret_cast<const symtab_command *>(cmd); 904 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 905 c->nsyms); 906 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 907 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 908 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 909 } 910 911 // The relocations may refer to the symbols, so we parse them after we have 912 // parsed all the symbols. 913 for (size_t i = 0, n = sections.size(); i < n; ++i) 914 if (!sections[i]->subsections.empty()) 915 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 916 917 parseDebugInfo(); 918 if (compactUnwindSection) 919 registerCompactUnwind(); 920 } 921 922 template <class LP> void ObjFile::parseLazy() { 923 using Header = typename LP::mach_header; 924 using NList = typename LP::nlist; 925 926 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 927 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 928 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 929 if (!cmd) 930 return; 931 auto *c = reinterpret_cast<const symtab_command *>(cmd); 932 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 933 c->nsyms); 934 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 935 symbols.resize(nList.size()); 936 for (auto it : llvm::enumerate(nList)) { 937 const NList &sym = it.value(); 938 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 939 // TODO: Bound checking 940 StringRef name = strtab + sym.n_strx; 941 symbols[it.index()] = symtab->addLazyObject(name, *this); 942 if (!lazy) 943 break; 944 } 945 } 946 } 947 948 void ObjFile::parseDebugInfo() { 949 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 950 if (!dObj) 951 return; 952 953 auto *ctx = make<DWARFContext>( 954 std::move(dObj), "", 955 [&](Error err) { 956 warn(toString(this) + ": " + toString(std::move(err))); 957 }, 958 [&](Error warning) { 959 warn(toString(this) + ": " + toString(std::move(warning))); 960 }); 961 962 // TODO: Since object files can contain a lot of DWARF info, we should verify 963 // that we are parsing just the info we need 964 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 965 // FIXME: There can be more than one compile unit per object file. See 966 // PR48637. 967 auto it = units.begin(); 968 compileUnit = it->get(); 969 } 970 971 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 972 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 973 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 974 if (!cmd) 975 return {}; 976 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 977 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 978 c->datasize / sizeof(data_in_code_entry)}; 979 } 980 981 // Create pointers from symbols to their associated compact unwind entries. 982 void ObjFile::registerCompactUnwind() { 983 for (const Subsection &subsection : compactUnwindSection->subsections) { 984 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 985 // Hack!! Since each CUE contains a different function address, if ICF 986 // operated naively and compared the entire contents of each CUE, entries 987 // with identical unwind info but belonging to different functions would 988 // never be considered equivalent. To work around this problem, we slice 989 // away the function address here. (Note that we do not adjust the offsets 990 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 991 // to correctly handle these truncated input sections. 992 isec->data = isec->data.slice(target->wordSize); 993 994 ConcatInputSection *referentIsec; 995 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 996 Reloc &r = *it; 997 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 998 if (r.offset != 0) { 999 ++it; 1000 continue; 1001 } 1002 uint64_t add = r.addend; 1003 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1004 // Check whether the symbol defined in this file is the prevailing one. 1005 // Skip if it is e.g. a weak def that didn't prevail. 1006 if (sym->getFile() != this) { 1007 ++it; 1008 continue; 1009 } 1010 add += sym->value; 1011 referentIsec = cast<ConcatInputSection>(sym->isec); 1012 } else { 1013 referentIsec = 1014 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1015 } 1016 if (referentIsec->getSegName() != segment_names::text) 1017 error(isec->getLocation(r.offset) + " references section " + 1018 referentIsec->getName() + " which is not in segment __TEXT"); 1019 // The functionAddress relocations are typically section relocations. 1020 // However, unwind info operates on a per-symbol basis, so we search for 1021 // the function symbol here. 1022 Defined *d = findSymbolAtOffset(referentIsec, add); 1023 if (!d) { 1024 ++it; 1025 continue; 1026 } 1027 d->unwindEntry = isec; 1028 // Since we've sliced away the functionAddress, we should remove the 1029 // corresponding relocation too. Given that clang emits relocations in 1030 // reverse order of address, this relocation should be at the end of the 1031 // vector for most of our input object files, so this is typically an O(1) 1032 // operation. 1033 it = isec->relocs.erase(it); 1034 } 1035 } 1036 } 1037 1038 // The path can point to either a dylib or a .tbd file. 1039 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1040 Optional<MemoryBufferRef> mbref = readFile(path); 1041 if (!mbref) { 1042 error("could not read dylib file at " + path); 1043 return nullptr; 1044 } 1045 return loadDylib(*mbref, umbrella); 1046 } 1047 1048 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1049 // the first document storing child pointers to the rest of them. When we are 1050 // processing a given TBD file, we store that top-level document in 1051 // currentTopLevelTapi. When processing re-exports, we search its children for 1052 // potentially matching documents in the same TBD file. Note that the children 1053 // themselves don't point to further documents, i.e. this is a two-level tree. 1054 // 1055 // Re-exports can either refer to on-disk files, or to documents within .tbd 1056 // files. 1057 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1058 const InterfaceFile *currentTopLevelTapi) { 1059 // Search order: 1060 // 1. Install name basename in -F / -L directories. 1061 { 1062 StringRef stem = path::stem(path); 1063 SmallString<128> frameworkName; 1064 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1065 bool isFramework = path.endswith(frameworkName); 1066 if (isFramework) { 1067 for (StringRef dir : config->frameworkSearchPaths) { 1068 SmallString<128> candidate = dir; 1069 path::append(candidate, frameworkName); 1070 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1071 return loadDylib(*dylibPath, umbrella); 1072 } 1073 } else if (Optional<StringRef> dylibPath = findPathCombination( 1074 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1075 return loadDylib(*dylibPath, umbrella); 1076 } 1077 1078 // 2. As absolute path. 1079 if (path::is_absolute(path, path::Style::posix)) 1080 for (StringRef root : config->systemLibraryRoots) 1081 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1082 return loadDylib(*dylibPath, umbrella); 1083 1084 // 3. As relative path. 1085 1086 // TODO: Handle -dylib_file 1087 1088 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1089 SmallString<128> newPath; 1090 if (config->outputType == MH_EXECUTE && 1091 path.consume_front("@executable_path/")) { 1092 // ld64 allows overriding this with the undocumented flag -executable_path. 1093 // lld doesn't currently implement that flag. 1094 // FIXME: Consider using finalOutput instead of outputFile. 1095 path::append(newPath, path::parent_path(config->outputFile), path); 1096 path = newPath; 1097 } else if (path.consume_front("@loader_path/")) { 1098 fs::real_path(umbrella->getName(), newPath); 1099 path::remove_filename(newPath); 1100 path::append(newPath, path); 1101 path = newPath; 1102 } else if (path.startswith("@rpath/")) { 1103 for (StringRef rpath : umbrella->rpaths) { 1104 newPath.clear(); 1105 if (rpath.consume_front("@loader_path/")) { 1106 fs::real_path(umbrella->getName(), newPath); 1107 path::remove_filename(newPath); 1108 } 1109 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1110 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1111 return loadDylib(*dylibPath, umbrella); 1112 } 1113 } 1114 1115 // FIXME: Should this be further up? 1116 if (currentTopLevelTapi) { 1117 for (InterfaceFile &child : 1118 make_pointee_range(currentTopLevelTapi->documents())) { 1119 assert(child.documents().empty()); 1120 if (path == child.getInstallName()) { 1121 auto file = make<DylibFile>(child, umbrella); 1122 file->parseReexports(child); 1123 return file; 1124 } 1125 } 1126 } 1127 1128 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1129 return loadDylib(*dylibPath, umbrella); 1130 1131 return nullptr; 1132 } 1133 1134 // If a re-exported dylib is public (lives in /usr/lib or 1135 // /System/Library/Frameworks), then it is considered implicitly linked: we 1136 // should bind to its symbols directly instead of via the re-exporting umbrella 1137 // library. 1138 static bool isImplicitlyLinked(StringRef path) { 1139 if (!config->implicitDylibs) 1140 return false; 1141 1142 if (path::parent_path(path) == "/usr/lib") 1143 return true; 1144 1145 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1146 if (path.consume_front("/System/Library/Frameworks/")) { 1147 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1148 return path::filename(path) == frameworkName; 1149 } 1150 1151 return false; 1152 } 1153 1154 static void loadReexport(StringRef path, DylibFile *umbrella, 1155 const InterfaceFile *currentTopLevelTapi) { 1156 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1157 if (!reexport) 1158 error("unable to locate re-export with install name " + path); 1159 } 1160 1161 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1162 bool isBundleLoader) 1163 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1164 isBundleLoader(isBundleLoader) { 1165 assert(!isBundleLoader || !umbrella); 1166 if (umbrella == nullptr) 1167 umbrella = this; 1168 this->umbrella = umbrella; 1169 1170 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1171 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1172 1173 // Initialize installName. 1174 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1175 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1176 currentVersion = read32le(&c->dylib.current_version); 1177 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1178 installName = 1179 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1180 } else if (!isBundleLoader) { 1181 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1182 // so it's OK. 1183 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1184 return; 1185 } 1186 1187 if (config->printEachFile) 1188 message(toString(this)); 1189 inputFiles.insert(this); 1190 1191 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1192 1193 if (!checkCompatibility(this)) 1194 return; 1195 1196 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1197 1198 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1199 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1200 rpaths.push_back(rpath); 1201 } 1202 1203 // Initialize symbols. 1204 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1205 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1206 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1207 struct TrieEntry { 1208 StringRef name; 1209 uint64_t flags; 1210 }; 1211 1212 std::vector<TrieEntry> entries; 1213 // Find all the $ld$* symbols to process first. 1214 parseTrie(buf + c->export_off, c->export_size, 1215 [&](const Twine &name, uint64_t flags) { 1216 StringRef savedName = saver().save(name); 1217 if (handleLDSymbol(savedName)) 1218 return; 1219 entries.push_back({savedName, flags}); 1220 }); 1221 1222 // Process the "normal" symbols. 1223 for (TrieEntry &entry : entries) { 1224 if (exportingFile->hiddenSymbols.contains( 1225 CachedHashStringRef(entry.name))) 1226 continue; 1227 1228 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1229 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1230 1231 symbols.push_back( 1232 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1233 } 1234 1235 } else { 1236 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1237 return; 1238 } 1239 } 1240 1241 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1242 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1243 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1244 target->headerSize; 1245 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1246 auto *cmd = reinterpret_cast<const load_command *>(p); 1247 p += cmd->cmdsize; 1248 1249 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1250 cmd->cmd == LC_REEXPORT_DYLIB) { 1251 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1252 StringRef reexportPath = 1253 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1254 loadReexport(reexportPath, exportingFile, nullptr); 1255 } 1256 1257 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1258 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1259 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1260 if (config->namespaceKind == NamespaceKind::flat && 1261 cmd->cmd == LC_LOAD_DYLIB) { 1262 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1263 StringRef dylibPath = 1264 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1265 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1266 if (!dylib) 1267 error(Twine("unable to locate library '") + dylibPath + 1268 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1269 } 1270 } 1271 } 1272 1273 // Some versions of XCode ship with .tbd files that don't have the right 1274 // platform settings. 1275 constexpr std::array<StringRef, 4> skipPlatformChecks{ 1276 "/usr/lib/system/libsystem_kernel.dylib", 1277 "/usr/lib/system/libsystem_platform.dylib", 1278 "/usr/lib/system/libsystem_pthread.dylib", 1279 "/usr/lib/system/libcompiler_rt.dylib"}; 1280 1281 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1282 bool isBundleLoader) 1283 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1284 isBundleLoader(isBundleLoader) { 1285 // FIXME: Add test for the missing TBD code path. 1286 1287 if (umbrella == nullptr) 1288 umbrella = this; 1289 this->umbrella = umbrella; 1290 1291 installName = saver().save(interface.getInstallName()); 1292 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1293 currentVersion = interface.getCurrentVersion().rawValue(); 1294 1295 if (config->printEachFile) 1296 message(toString(this)); 1297 inputFiles.insert(this); 1298 1299 if (!is_contained(skipPlatformChecks, installName) && 1300 !is_contained(interface.targets(), config->platformInfo.target)) { 1301 error(toString(this) + " is incompatible with " + 1302 std::string(config->platformInfo.target)); 1303 return; 1304 } 1305 1306 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1307 1308 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1309 auto addSymbol = [&](const Twine &name) -> void { 1310 StringRef savedName = saver().save(name); 1311 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1312 return; 1313 1314 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1315 /*isWeakDef=*/false, 1316 /*isTlv=*/false)); 1317 }; 1318 1319 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1320 normalSymbols.reserve(interface.symbolsCount()); 1321 for (const auto *symbol : interface.symbols()) { 1322 if (!symbol->getArchitectures().has(config->arch())) 1323 continue; 1324 if (handleLDSymbol(symbol->getName())) 1325 continue; 1326 1327 switch (symbol->getKind()) { 1328 case SymbolKind::GlobalSymbol: // Fallthrough 1329 case SymbolKind::ObjectiveCClass: // Fallthrough 1330 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1331 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1332 normalSymbols.push_back(symbol); 1333 } 1334 } 1335 1336 // TODO(compnerd) filter out symbols based on the target platform 1337 // TODO: handle weak defs, thread locals 1338 for (const auto *symbol : normalSymbols) { 1339 switch (symbol->getKind()) { 1340 case SymbolKind::GlobalSymbol: 1341 addSymbol(symbol->getName()); 1342 break; 1343 case SymbolKind::ObjectiveCClass: 1344 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1345 // want to emulate that. 1346 addSymbol(objc::klass + symbol->getName()); 1347 addSymbol(objc::metaclass + symbol->getName()); 1348 break; 1349 case SymbolKind::ObjectiveCClassEHType: 1350 addSymbol(objc::ehtype + symbol->getName()); 1351 break; 1352 case SymbolKind::ObjectiveCInstanceVariable: 1353 addSymbol(objc::ivar + symbol->getName()); 1354 break; 1355 } 1356 } 1357 } 1358 1359 void DylibFile::parseReexports(const InterfaceFile &interface) { 1360 const InterfaceFile *topLevel = 1361 interface.getParent() == nullptr ? &interface : interface.getParent(); 1362 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1363 InterfaceFile::const_target_range targets = intfRef.targets(); 1364 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1365 is_contained(targets, config->platformInfo.target)) 1366 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1367 } 1368 } 1369 1370 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1371 // name, compatibility version or hide/add symbols) for specific target 1372 // versions. 1373 bool DylibFile::handleLDSymbol(StringRef originalName) { 1374 if (!originalName.startswith("$ld$")) 1375 return false; 1376 1377 StringRef action; 1378 StringRef name; 1379 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1380 if (action == "previous") 1381 handleLDPreviousSymbol(name, originalName); 1382 else if (action == "install_name") 1383 handleLDInstallNameSymbol(name, originalName); 1384 else if (action == "hide") 1385 handleLDHideSymbol(name, originalName); 1386 return true; 1387 } 1388 1389 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1390 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1391 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1392 StringRef installName; 1393 StringRef compatVersion; 1394 StringRef platformStr; 1395 StringRef startVersion; 1396 StringRef endVersion; 1397 StringRef symbolName; 1398 StringRef rest; 1399 1400 std::tie(installName, name) = name.split('$'); 1401 std::tie(compatVersion, name) = name.split('$'); 1402 std::tie(platformStr, name) = name.split('$'); 1403 std::tie(startVersion, name) = name.split('$'); 1404 std::tie(endVersion, name) = name.split('$'); 1405 std::tie(symbolName, rest) = name.split('$'); 1406 // TODO: ld64 contains some logic for non-empty symbolName as well. 1407 if (!symbolName.empty()) 1408 return; 1409 unsigned platform; 1410 if (platformStr.getAsInteger(10, platform) || 1411 platform != static_cast<unsigned>(config->platform())) 1412 return; 1413 1414 VersionTuple start; 1415 if (start.tryParse(startVersion)) { 1416 warn("failed to parse start version, symbol '" + originalName + 1417 "' ignored"); 1418 return; 1419 } 1420 VersionTuple end; 1421 if (end.tryParse(endVersion)) { 1422 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1423 return; 1424 } 1425 if (config->platformInfo.minimum < start || 1426 config->platformInfo.minimum >= end) 1427 return; 1428 1429 this->installName = saver().save(installName); 1430 1431 if (!compatVersion.empty()) { 1432 VersionTuple cVersion; 1433 if (cVersion.tryParse(compatVersion)) { 1434 warn("failed to parse compatibility version, symbol '" + originalName + 1435 "' ignored"); 1436 return; 1437 } 1438 compatibilityVersion = encodeVersion(cVersion); 1439 } 1440 } 1441 1442 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1443 StringRef originalName) { 1444 // originalName: $ld$ install_name $ os<version> $ install_name 1445 StringRef condition, installName; 1446 std::tie(condition, installName) = name.split('$'); 1447 VersionTuple version; 1448 if (!condition.consume_front("os") || version.tryParse(condition)) 1449 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1450 else if (version == config->platformInfo.minimum) 1451 this->installName = saver().save(installName); 1452 } 1453 1454 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1455 StringRef symbolName; 1456 bool shouldHide = true; 1457 if (name.startswith("os")) { 1458 // If it's hidden based on versions. 1459 name = name.drop_front(2); 1460 StringRef minVersion; 1461 std::tie(minVersion, symbolName) = name.split('$'); 1462 VersionTuple versionTup; 1463 if (versionTup.tryParse(minVersion)) { 1464 warn("Failed to parse hidden version, symbol `" + originalName + 1465 "` ignored."); 1466 return; 1467 } 1468 shouldHide = versionTup == config->platformInfo.minimum; 1469 } else { 1470 symbolName = name; 1471 } 1472 1473 if (shouldHide) 1474 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1475 } 1476 1477 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1478 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1479 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1480 } 1481 1482 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1483 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1484 1485 void ArchiveFile::addLazySymbols() { 1486 for (const object::Archive::Symbol &sym : file->symbols()) 1487 symtab->addLazyArchive(sym.getName(), this, sym); 1488 } 1489 1490 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1491 uint32_t modTime, 1492 StringRef archiveName, 1493 uint64_t offsetInArchive) { 1494 if (config->zeroModTime) 1495 modTime = 0; 1496 1497 switch (identify_magic(mb.getBuffer())) { 1498 case file_magic::macho_object: 1499 return make<ObjFile>(mb, modTime, archiveName); 1500 case file_magic::bitcode: 1501 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1502 default: 1503 return createStringError(inconvertibleErrorCode(), 1504 mb.getBufferIdentifier() + 1505 " has unhandled file type"); 1506 } 1507 } 1508 1509 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1510 if (!seen.insert(c.getChildOffset()).second) 1511 return Error::success(); 1512 1513 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1514 if (!mb) 1515 return mb.takeError(); 1516 1517 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1518 if (tar && c.getParent()->isThin()) 1519 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1520 1521 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1522 if (!modTime) 1523 return modTime.takeError(); 1524 1525 Expected<InputFile *> file = 1526 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1527 1528 if (!file) 1529 return file.takeError(); 1530 1531 inputFiles.insert(*file); 1532 printArchiveMemberLoad(reason, *file); 1533 return Error::success(); 1534 } 1535 1536 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1537 object::Archive::Child c = 1538 CHECK(sym.getMember(), toString(this) + 1539 ": could not get the member defining symbol " + 1540 toMachOString(sym)); 1541 1542 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1543 // and become invalid after that call. Copy it to the stack so we can refer 1544 // to it later. 1545 const object::Archive::Symbol symCopy = sym; 1546 1547 // ld64 doesn't demangle sym here even with -demangle. 1548 // Match that: intentionally don't call toMachOString(). 1549 if (Error e = fetch(c, symCopy.getName())) 1550 error(toString(this) + ": could not get the member defining symbol " + 1551 toMachOString(symCopy) + ": " + toString(std::move(e))); 1552 } 1553 1554 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1555 BitcodeFile &file) { 1556 StringRef name = saver().save(objSym.getName()); 1557 1558 if (objSym.isUndefined()) 1559 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1560 1561 // TODO: Write a test demonstrating why computing isPrivateExtern before 1562 // LTO compilation is important. 1563 bool isPrivateExtern = false; 1564 switch (objSym.getVisibility()) { 1565 case GlobalValue::HiddenVisibility: 1566 isPrivateExtern = true; 1567 break; 1568 case GlobalValue::ProtectedVisibility: 1569 error(name + " has protected visibility, which is not supported by Mach-O"); 1570 break; 1571 case GlobalValue::DefaultVisibility: 1572 break; 1573 } 1574 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 1575 1576 if (objSym.isCommon()) 1577 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1578 objSym.getCommonAlignment(), isPrivateExtern); 1579 1580 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1581 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1582 /*isThumb=*/false, 1583 /*isReferencedDynamically=*/false, 1584 /*noDeadStrip=*/false, 1585 /*isWeakDefCanBeHidden=*/false); 1586 } 1587 1588 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1589 uint64_t offsetInArchive, bool lazy) 1590 : InputFile(BitcodeKind, mb, lazy) { 1591 this->archiveName = std::string(archiveName); 1592 std::string path = mb.getBufferIdentifier().str(); 1593 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1594 // name. If two members with the same name are provided, this causes a 1595 // collision and ThinLTO can't proceed. 1596 // So, we append the archive name to disambiguate two members with the same 1597 // name from multiple different archives, and offset within the archive to 1598 // disambiguate two members of the same name from a single archive. 1599 MemoryBufferRef mbref(mb.getBuffer(), 1600 saver().save(archiveName.empty() 1601 ? path 1602 : archiveName + 1603 sys::path::filename(path) + 1604 utostr(offsetInArchive))); 1605 1606 obj = check(lto::InputFile::create(mbref)); 1607 if (lazy) 1608 parseLazy(); 1609 else 1610 parse(); 1611 } 1612 1613 void BitcodeFile::parse() { 1614 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1615 // "winning" symbol will then be marked as Prevailing at LTO compilation 1616 // time. 1617 symbols.clear(); 1618 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1619 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1620 } 1621 1622 void BitcodeFile::parseLazy() { 1623 symbols.resize(obj->symbols().size()); 1624 for (auto it : llvm::enumerate(obj->symbols())) { 1625 const lto::InputFile::Symbol &objSym = it.value(); 1626 if (!objSym.isUndefined()) { 1627 symbols[it.index()] = 1628 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1629 if (!lazy) 1630 break; 1631 } 1632 } 1633 } 1634 1635 void macho::extract(InputFile &file, StringRef reason) { 1636 assert(file.lazy); 1637 file.lazy = false; 1638 printArchiveMemberLoad(reason, &file); 1639 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1640 bitcode->parse(); 1641 } else { 1642 auto &f = cast<ObjFile>(file); 1643 if (target->wordSize == 8) 1644 f.parse<LP64>(); 1645 else 1646 f.parse<ILP32>(); 1647 } 1648 } 1649 1650 template void ObjFile::parse<LP64>(); 1651