1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "Target.h"
57 
58 #include "lld/Common/DWARF.h"
59 #include "lld/Common/ErrorHandler.h"
60 #include "lld/Common/Memory.h"
61 #include "lld/Common/Reproduce.h"
62 #include "llvm/ADT/iterator.h"
63 #include "llvm/BinaryFormat/MachO.h"
64 #include "llvm/LTO/LTO.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/Path.h"
68 #include "llvm/Support/TarWriter.h"
69 
70 using namespace llvm;
71 using namespace llvm::MachO;
72 using namespace llvm::support::endian;
73 using namespace llvm::sys;
74 using namespace lld;
75 using namespace lld::macho;
76 
77 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
78 std::string lld::toString(const InputFile *f) {
79   if (!f)
80     return "<internal>";
81   if (f->archiveName.empty())
82     return std::string(f->getName());
83   return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) +
84           ")")
85       .str();
86 }
87 
88 SetVector<InputFile *> macho::inputFiles;
89 std::unique_ptr<TarWriter> macho::tar;
90 int InputFile::idCount = 0;
91 
92 // Open a given file path and return it as a memory-mapped file.
93 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
94   // Open a file.
95   auto mbOrErr = MemoryBuffer::getFile(path);
96   if (auto ec = mbOrErr.getError()) {
97     error("cannot open " + path + ": " + ec.message());
98     return None;
99   }
100 
101   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
102   MemoryBufferRef mbref = mb->getMemBufferRef();
103   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
104 
105   // If this is a regular non-fat file, return it.
106   const char *buf = mbref.getBufferStart();
107   auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf);
108   if (read32be(&hdr->magic) != MachO::FAT_MAGIC) {
109     if (tar)
110       tar->append(relativeToRoot(path), mbref.getBuffer());
111     return mbref;
112   }
113 
114   // Object files and archive files may be fat files, which contains
115   // multiple real files for different CPU ISAs. Here, we search for a
116   // file that matches with the current link target and returns it as
117   // a MemoryBufferRef.
118   auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr));
119 
120   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
121     if (reinterpret_cast<const char *>(arch + i + 1) >
122         buf + mbref.getBufferSize()) {
123       error(path + ": fat_arch struct extends beyond end of file");
124       return None;
125     }
126 
127     if (read32be(&arch[i].cputype) != target->cpuType ||
128         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
129       continue;
130 
131     uint32_t offset = read32be(&arch[i].offset);
132     uint32_t size = read32be(&arch[i].size);
133     if (offset + size > mbref.getBufferSize())
134       error(path + ": slice extends beyond end of file");
135     if (tar)
136       tar->append(relativeToRoot(path), mbref.getBuffer());
137     return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
138   }
139 
140   error("unable to find matching architecture in " + path);
141   return None;
142 }
143 
144 const load_command *macho::findCommand(const mach_header_64 *hdr,
145                                        uint32_t type) {
146   const uint8_t *p =
147       reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
148 
149   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
150     auto *cmd = reinterpret_cast<const load_command *>(p);
151     if (cmd->cmd == type)
152       return cmd;
153     p += cmd->cmdsize;
154   }
155   return nullptr;
156 }
157 
158 void ObjFile::parseSections(ArrayRef<section_64> sections) {
159   subsections.reserve(sections.size());
160   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
161 
162   for (const section_64 &sec : sections) {
163     InputSection *isec = make<InputSection>();
164     isec->file = this;
165     isec->name =
166         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
167     isec->segname =
168         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
169     isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset,
170                   static_cast<size_t>(sec.size)};
171     if (sec.align >= 32)
172       error("alignment " + std::to_string(sec.align) + " of section " +
173             isec->name + " is too large");
174     else
175       isec->align = 1 << sec.align;
176     isec->flags = sec.flags;
177 
178     if (!(isDebugSection(isec->flags) &&
179           isec->segname == segment_names::dwarf)) {
180       subsections.push_back({{0, isec}});
181     } else {
182       // Instead of emitting DWARF sections, we emit STABS symbols to the
183       // object files that contain them. We filter them out early to avoid
184       // parsing their relocations unnecessarily. But we must still push an
185       // empty map to ensure the indices line up for the remaining sections.
186       subsections.push_back({});
187       debugSections.push_back(isec);
188     }
189   }
190 }
191 
192 // Find the subsection corresponding to the greatest section offset that is <=
193 // that of the given offset.
194 //
195 // offset: an offset relative to the start of the original InputSection (before
196 // any subsection splitting has occurred). It will be updated to represent the
197 // same location as an offset relative to the start of the containing
198 // subsection.
199 static InputSection *findContainingSubsection(SubsectionMap &map,
200                                               uint32_t *offset) {
201   auto it = std::prev(map.upper_bound(*offset));
202   *offset -= it->first;
203   return it->second;
204 }
205 
206 void ObjFile::parseRelocations(const section_64 &sec,
207                                SubsectionMap &subsecMap) {
208   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
209   ArrayRef<any_relocation_info> anyRelInfos(
210       reinterpret_cast<const any_relocation_info *>(buf + sec.reloff),
211       sec.nreloc);
212 
213   for (const any_relocation_info &anyRelInfo : anyRelInfos) {
214     if (anyRelInfo.r_word0 & R_SCATTERED)
215       fatal("TODO: Scattered relocations not supported");
216 
217     auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo);
218 
219     Reloc r;
220     r.type = relInfo.r_type;
221     r.pcrel = relInfo.r_pcrel;
222     r.length = relInfo.r_length;
223     uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo);
224 
225     if (relInfo.r_extern) {
226       r.referent = symbols[relInfo.r_symbolnum];
227       r.addend = rawAddend;
228     } else {
229       if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size())
230         fatal("invalid section index in relocation for offset " +
231               std::to_string(r.offset) + " in section " + sec.sectname +
232               " of " + getName());
233 
234       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
235       const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
236       uint32_t referentOffset;
237       if (relInfo.r_pcrel) {
238         // The implicit addend for pcrel section relocations is the pcrel offset
239         // in terms of the addresses in the input file. Here we adjust it so
240         // that it describes the offset from the start of the referent section.
241         // TODO: The offset of 4 is probably not right for ARM64, nor for
242         //       relocations with r_length != 2.
243         referentOffset =
244             sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr;
245       } else {
246         // The addend for a non-pcrel relocation is its absolute address.
247         referentOffset = rawAddend - referentSec.addr;
248       }
249       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
250       r.addend = referentOffset;
251     }
252 
253     r.offset = relInfo.r_address;
254     InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
255     subsec->relocs.push_back(r);
256   }
257 }
258 
259 static macho::Symbol *createDefined(const structs::nlist_64 &sym,
260                                     StringRef name, InputSection *isec,
261                                     uint32_t value) {
262   if (sym.n_type & N_EXT)
263     // Global defined symbol
264     return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF);
265   // Local defined symbol
266   return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF,
267                        /*isExternal=*/false);
268 }
269 
270 // Absolute symbols are defined symbols that do not have an associated
271 // InputSection. They cannot be weak.
272 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym,
273                                      StringRef name) {
274   if (sym.n_type & N_EXT)
275     return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false);
276   return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false,
277                        /*isExternal=*/false);
278 }
279 
280 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym,
281                                               StringRef name) {
282   uint8_t type = sym.n_type & N_TYPE;
283   switch (type) {
284   case N_UNDF:
285     return sym.n_value == 0
286                ? symtab->addUndefined(name)
287                : symtab->addCommon(name, this, sym.n_value,
288                                    1 << GET_COMM_ALIGN(sym.n_desc));
289   case N_ABS:
290     return createAbsolute(sym, name);
291   case N_PBUD:
292   case N_INDR:
293     error("TODO: support symbols of type " + std::to_string(type));
294     return nullptr;
295   case N_SECT:
296     llvm_unreachable(
297         "N_SECT symbols should not be passed to parseNonSectionSymbol");
298   default:
299     llvm_unreachable("invalid symbol type");
300   }
301 }
302 
303 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList,
304                            const char *strtab, bool subsectionsViaSymbols) {
305   // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols
306   // out-of-sequence.
307   symbols.resize(nList.size());
308   std::vector<size_t> altEntrySymIdxs;
309 
310   for (size_t i = 0, n = nList.size(); i < n; ++i) {
311     const structs::nlist_64 &sym = nList[i];
312     StringRef name = strtab + sym.n_strx;
313 
314     if ((sym.n_type & N_TYPE) != N_SECT) {
315       symbols[i] = parseNonSectionSymbol(sym, name);
316       continue;
317     }
318 
319     const section_64 &sec = sectionHeaders[sym.n_sect - 1];
320     SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
321     assert(!subsecMap.empty());
322     uint64_t offset = sym.n_value - sec.addr;
323 
324     // If the input file does not use subsections-via-symbols, all symbols can
325     // use the same subsection. Otherwise, we must split the sections along
326     // symbol boundaries.
327     if (!subsectionsViaSymbols) {
328       symbols[i] = createDefined(sym, name, subsecMap[0], offset);
329       continue;
330     }
331 
332     // nList entries aren't necessarily arranged in address order. Therefore,
333     // we can't create alt-entry symbols at this point because a later symbol
334     // may split its section, which may affect which subsection the alt-entry
335     // symbol is assigned to. So we need to handle them in a second pass below.
336     if (sym.n_desc & N_ALT_ENTRY) {
337       altEntrySymIdxs.push_back(i);
338       continue;
339     }
340 
341     // Find the subsection corresponding to the greatest section offset that is
342     // <= that of the current symbol. The subsection that we find either needs
343     // to be used directly or split in two.
344     uint32_t firstSize = offset;
345     InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize);
346 
347     if (firstSize == 0) {
348       // Alias of an existing symbol, or the first symbol in the section. These
349       // are handled by reusing the existing section.
350       symbols[i] = createDefined(sym, name, firstIsec, 0);
351       continue;
352     }
353 
354     // We saw a symbol definition at a new offset. Split the section into two
355     // subsections. The new symbol uses the second subsection.
356     auto *secondIsec = make<InputSection>(*firstIsec);
357     secondIsec->data = firstIsec->data.slice(firstSize);
358     firstIsec->data = firstIsec->data.slice(0, firstSize);
359     // TODO: ld64 appears to preserve the original alignment as well as each
360     // subsection's offset from the last aligned address. We should consider
361     // emulating that behavior.
362     secondIsec->align = MinAlign(firstIsec->align, offset);
363 
364     subsecMap[offset] = secondIsec;
365     // By construction, the symbol will be at offset zero in the new section.
366     symbols[i] = createDefined(sym, name, secondIsec, 0);
367   }
368 
369   for (size_t idx : altEntrySymIdxs) {
370     const structs::nlist_64 &sym = nList[idx];
371     StringRef name = strtab + sym.n_strx;
372     SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
373     uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr;
374     InputSection *subsec = findContainingSubsection(subsecMap, &off);
375     symbols[idx] = createDefined(sym, name, subsec, off);
376   }
377 }
378 
379 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
380                        StringRef sectName)
381     : InputFile(OpaqueKind, mb) {
382   InputSection *isec = make<InputSection>();
383   isec->file = this;
384   isec->name = sectName.take_front(16);
385   isec->segname = segName.take_front(16);
386   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
387   isec->data = {buf, mb.getBufferSize()};
388   subsections.push_back({{0, isec}});
389 }
390 
391 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
392     : InputFile(ObjKind, mb), modTime(modTime) {
393   this->archiveName = std::string(archiveName);
394 
395   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
396   auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
397 
398   if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) {
399     auto *c = reinterpret_cast<const linker_option_command *>(cmd);
400     StringRef data{reinterpret_cast<const char *>(c + 1),
401                    c->cmdsize - sizeof(linker_option_command)};
402     parseLCLinkerOption(this, c->count, data);
403   }
404 
405   if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
406     auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
407     sectionHeaders = ArrayRef<section_64>{
408         reinterpret_cast<const section_64 *>(c + 1), c->nsects};
409     parseSections(sectionHeaders);
410   }
411 
412   // TODO: Error on missing LC_SYMTAB?
413   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
414     auto *c = reinterpret_cast<const symtab_command *>(cmd);
415     ArrayRef<structs::nlist_64> nList(
416         reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms);
417     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
418     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
419     parseSymbols(nList, strtab, subsectionsViaSymbols);
420   }
421 
422   // The relocations may refer to the symbols, so we parse them after we have
423   // parsed all the symbols.
424   for (size_t i = 0, n = subsections.size(); i < n; ++i)
425     if (!subsections[i].empty())
426       parseRelocations(sectionHeaders[i], subsections[i]);
427 
428   parseDebugInfo();
429 }
430 
431 void ObjFile::parseDebugInfo() {
432   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
433   if (!dObj)
434     return;
435 
436   auto *ctx = make<DWARFContext>(
437       std::move(dObj), "",
438       [&](Error err) {
439         warn(toString(this) + ": " + toString(std::move(err)));
440       },
441       [&](Error warning) {
442         warn(toString(this) + ": " + toString(std::move(warning)));
443       });
444 
445   // TODO: Since object files can contain a lot of DWARF info, we should verify
446   // that we are parsing just the info we need
447   const DWARFContext::compile_unit_range &units = ctx->compile_units();
448   auto it = units.begin();
449   compileUnit = it->get();
450   assert(std::next(it) == units.end());
451 }
452 
453 // The path can point to either a dylib or a .tbd file.
454 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) {
455   Optional<MemoryBufferRef> mbref = readFile(path);
456   if (!mbref) {
457     error("could not read dylib file at " + path);
458     return {};
459   }
460   return loadDylib(*mbref, umbrella);
461 }
462 
463 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
464 // the first document storing child pointers to the rest of them. When we are
465 // processing a given TBD file, we store that top-level document here. When
466 // processing re-exports, we search its children for potentially matching
467 // documents in the same TBD file. Note that the children themselves don't
468 // point to further documents, i.e. this is a two-level tree.
469 //
470 // ld64 allows a TAPI re-export to reference documents nested within other TBD
471 // files, but that seems like a strange design, so this is an intentional
472 // deviation.
473 const InterfaceFile *currentTopLevelTapi = nullptr;
474 
475 // Re-exports can either refer to on-disk files, or to documents within .tbd
476 // files.
477 static Optional<DylibFile *> loadReexportHelper(StringRef path,
478                                                 DylibFile *umbrella) {
479   if (path::is_absolute(path, path::Style::posix))
480     for (StringRef root : config->systemLibraryRoots)
481       if (Optional<std::string> dylibPath =
482               resolveDylibPath((root + path).str()))
483         return loadDylib(*dylibPath, umbrella);
484 
485   // TODO: Expand @loader_path, @executable_path etc
486 
487   if (currentTopLevelTapi) {
488     for (InterfaceFile &child :
489          make_pointee_range(currentTopLevelTapi->documents())) {
490       if (path == child.getInstallName())
491         return make<DylibFile>(child, umbrella);
492       assert(child.documents().empty());
493     }
494   }
495 
496   if (Optional<std::string> dylibPath = resolveDylibPath(path))
497     return loadDylib(*dylibPath, umbrella);
498 
499   error("unable to locate re-export with install name " + path);
500   return {};
501 }
502 
503 // If a re-exported dylib is public (lives in /usr/lib or
504 // /System/Library/Frameworks), then it is considered implicitly linked: we
505 // should bind to its symbols directly instead of via the re-exporting umbrella
506 // library.
507 static bool isImplicitlyLinked(StringRef path) {
508   if (!config->implicitDylibs)
509     return false;
510 
511   if (path::parent_path(path) == "/usr/lib")
512     return true;
513 
514   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
515   if (path.consume_front("/System/Library/Frameworks/")) {
516     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
517     return path::filename(path) == frameworkName;
518   }
519 
520   return false;
521 }
522 
523 void loadReexport(StringRef path, DylibFile *umbrella) {
524   Optional<DylibFile *> reexport = loadReexportHelper(path, umbrella);
525   if (reexport && isImplicitlyLinked(path))
526     inputFiles.insert(*reexport);
527 }
528 
529 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella)
530     : InputFile(DylibKind, mb) {
531   if (umbrella == nullptr)
532     umbrella = this;
533 
534   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
535   auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
536 
537   // Initialize dylibName.
538   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
539     auto *c = reinterpret_cast<const dylib_command *>(cmd);
540     currentVersion = read32le(&c->dylib.current_version);
541     compatibilityVersion = read32le(&c->dylib.compatibility_version);
542     dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
543   } else {
544     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
545     return;
546   }
547 
548   // Initialize symbols.
549   DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella;
550   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
551     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
552     parseTrie(buf + c->export_off, c->export_size,
553               [&](const Twine &name, uint64_t flags) {
554                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
555                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
556                 symbols.push_back(symtab->addDylib(
557                     saver.save(name), exportingFile, isWeakDef, isTlv));
558               });
559   } else {
560     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
561     return;
562   }
563 
564   if (hdr->flags & MH_NO_REEXPORTED_DYLIBS)
565     return;
566 
567   const uint8_t *p =
568       reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
569   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
570     auto *cmd = reinterpret_cast<const load_command *>(p);
571     p += cmd->cmdsize;
572     if (cmd->cmd != LC_REEXPORT_DYLIB)
573       continue;
574 
575     auto *c = reinterpret_cast<const dylib_command *>(cmd);
576     StringRef reexportPath =
577         reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
578     loadReexport(reexportPath, umbrella);
579   }
580 }
581 
582 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella)
583     : InputFile(DylibKind, interface) {
584   if (umbrella == nullptr)
585     umbrella = this;
586 
587   dylibName = saver.save(interface.getInstallName());
588   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
589   currentVersion = interface.getCurrentVersion().rawValue();
590   DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella;
591   auto addSymbol = [&](const Twine &name) -> void {
592     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
593                                        /*isWeakDef=*/false,
594                                        /*isTlv=*/false));
595   };
596   // TODO(compnerd) filter out symbols based on the target platform
597   // TODO: handle weak defs, thread locals
598   for (const auto symbol : interface.symbols()) {
599     if (!symbol->getArchitectures().has(config->arch))
600       continue;
601 
602     switch (symbol->getKind()) {
603     case SymbolKind::GlobalSymbol:
604       addSymbol(symbol->getName());
605       break;
606     case SymbolKind::ObjectiveCClass:
607       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
608       // want to emulate that.
609       addSymbol(objc::klass + symbol->getName());
610       addSymbol(objc::metaclass + symbol->getName());
611       break;
612     case SymbolKind::ObjectiveCClassEHType:
613       addSymbol(objc::ehtype + symbol->getName());
614       break;
615     case SymbolKind::ObjectiveCInstanceVariable:
616       addSymbol(objc::ivar + symbol->getName());
617       break;
618     }
619   }
620 
621   bool isTopLevelTapi = false;
622   if (currentTopLevelTapi == nullptr) {
623     currentTopLevelTapi = &interface;
624     isTopLevelTapi = true;
625   }
626 
627   for (InterfaceFileRef intfRef : interface.reexportedLibraries())
628     loadReexport(intfRef.getInstallName(), umbrella);
629 
630   if (isTopLevelTapi)
631     currentTopLevelTapi = nullptr;
632 }
633 
634 ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f)
635     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
636   for (const object::Archive::Symbol &sym : file->symbols())
637     symtab->addLazy(sym.getName(), this, sym);
638 }
639 
640 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
641   object::Archive::Child c =
642       CHECK(sym.getMember(), toString(this) +
643                                  ": could not get the member for symbol " +
644                                  toMachOString(sym));
645 
646   if (!seen.insert(c.getChildOffset()).second)
647     return;
648 
649   MemoryBufferRef mb =
650       CHECK(c.getMemoryBufferRef(),
651             toString(this) +
652                 ": could not get the buffer for the member defining symbol " +
653                 toMachOString(sym));
654 
655   if (tar && c.getParent()->isThin())
656     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
657 
658   uint32_t modTime = toTimeT(
659       CHECK(c.getLastModified(), toString(this) +
660                                      ": could not get the modification time "
661                                      "for the member defining symbol " +
662                                      toMachOString(sym)));
663 
664   // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile>
665   // and become invalid after that call. Copy it to the stack so we can refer
666   // to it later.
667   const object::Archive::Symbol sym_copy = sym;
668 
669   InputFile *file;
670   switch (identify_magic(mb.getBuffer())) {
671   case file_magic::macho_object:
672     file = make<ObjFile>(mb, modTime, getName());
673     break;
674   case file_magic::bitcode:
675     file = make<BitcodeFile>(mb);
676     break;
677   default:
678     StringRef bufname =
679         CHECK(c.getName(), toString(this) + ": could not get buffer name");
680     error(toString(this) + ": archive member " + bufname +
681           " has unhandled file type");
682     return;
683   }
684   inputFiles.insert(file);
685 
686   // ld64 doesn't demangle sym here even with -demangle. Match that, so
687   // intentionally no call to toMachOString() here.
688   printArchiveMemberLoad(sym_copy.getName(), file);
689 }
690 
691 BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
692     : InputFile(BitcodeKind, mbref) {
693   obj = check(lto::InputFile::create(mbref));
694 }
695