1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // This cache mostly exists to store system libraries (and .tbds) as they're 177 // loaded, rather than the input archives, which are already cached at a higher 178 // level, and other files like the filelist that are only read once. 179 // Theoretically this caching could be more efficient by hoisting it, but that 180 // would require altering many callers to track the state. 181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 182 // Open a given file path and return it as a memory-mapped file. 183 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 184 CachedHashStringRef key(path); 185 auto entry = cachedReads.find(key); 186 if (entry != cachedReads.end()) 187 return entry->second; 188 189 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 190 if (std::error_code ec = mbOrErr.getError()) { 191 error("cannot open " + path + ": " + ec.message()); 192 return None; 193 } 194 195 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 196 MemoryBufferRef mbref = mb->getMemBufferRef(); 197 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 198 199 // If this is a regular non-fat file, return it. 200 const char *buf = mbref.getBufferStart(); 201 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 202 if (mbref.getBufferSize() < sizeof(uint32_t) || 203 read32be(&hdr->magic) != FAT_MAGIC) { 204 if (tar) 205 tar->append(relativeToRoot(path), mbref.getBuffer()); 206 return cachedReads[key] = mbref; 207 } 208 209 // Object files and archive files may be fat files, which contain multiple 210 // real files for different CPU ISAs. Here, we search for a file that matches 211 // with the current link target and returns it as a MemoryBufferRef. 212 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 213 214 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 215 if (reinterpret_cast<const char *>(arch + i + 1) > 216 buf + mbref.getBufferSize()) { 217 error(path + ": fat_arch struct extends beyond end of file"); 218 return None; 219 } 220 221 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 222 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 223 continue; 224 225 uint32_t offset = read32be(&arch[i].offset); 226 uint32_t size = read32be(&arch[i].size); 227 if (offset + size > mbref.getBufferSize()) 228 error(path + ": slice extends beyond end of file"); 229 if (tar) 230 tar->append(relativeToRoot(path), mbref.getBuffer()); 231 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 232 path.copy(bAlloc)); 233 } 234 235 error("unable to find matching architecture in " + path); 236 return None; 237 } 238 239 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 240 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 241 242 // Some sections comprise of fixed-size records, so instead of splitting them at 243 // symbol boundaries, we split them based on size. Records are distinct from 244 // literals in that they may contain references to other sections, instead of 245 // being leaf nodes in the InputSection graph. 246 // 247 // Note that "record" is a term I came up with. In contrast, "literal" is a term 248 // used by the Mach-O format. 249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 250 if (name == section_names::cfString) { 251 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 252 return target->wordSize == 8 ? 32 : 16; 253 } else if (name == section_names::compactUnwind) { 254 if (segname == segment_names::ld) 255 return target->wordSize == 8 ? 32 : 20; 256 } 257 return {}; 258 } 259 260 template <class Section> 261 void ObjFile::parseSections(ArrayRef<Section> sections) { 262 subsections.reserve(sections.size()); 263 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 264 265 for (const Section &sec : sections) { 266 StringRef name = 267 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 268 StringRef segname = 269 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 270 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 271 : buf + sec.offset, 272 static_cast<size_t>(sec.size)}; 273 if (sec.align >= 32) { 274 error("alignment " + std::to_string(sec.align) + " of section " + name + 275 " is too large"); 276 subsections.push_back({}); 277 continue; 278 } 279 uint32_t align = 1 << sec.align; 280 uint32_t flags = sec.flags; 281 282 auto splitRecords = [&](int recordSize) -> void { 283 subsections.push_back({}); 284 if (data.empty()) 285 return; 286 287 SubsectionMap &subsecMap = subsections.back(); 288 subsecMap.reserve(data.size() / recordSize); 289 auto *isec = make<ConcatInputSection>( 290 segname, name, this, data.slice(0, recordSize), align, flags); 291 subsecMap.push_back({0, isec}); 292 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 293 // Copying requires less memory than constructing a fresh InputSection. 294 auto *copy = make<ConcatInputSection>(*isec); 295 copy->data = data.slice(off, recordSize); 296 subsecMap.push_back({off, copy}); 297 } 298 }; 299 300 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 301 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 302 if (sec.nreloc && config->dedupLiterals) 303 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 304 sec.sectname + 305 ", so LLD cannot deduplicate literals. Try re-running without " 306 "--deduplicate-literals."); 307 308 InputSection *isec; 309 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 310 isec = 311 make<CStringInputSection>(segname, name, this, data, align, flags); 312 // FIXME: parallelize this? 313 cast<CStringInputSection>(isec)->splitIntoPieces(); 314 } else { 315 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 316 flags); 317 } 318 subsections.push_back({{0, isec}}); 319 } else if (auto recordSize = getRecordSize(segname, name)) { 320 splitRecords(*recordSize); 321 } else if (segname == segment_names::llvm) { 322 // ld64 does not appear to emit contents from sections within the __LLVM 323 // segment. Symbols within those sections point to bitcode metadata 324 // instead of actual symbols. Global symbols within those sections could 325 // have the same name without causing duplicate symbol errors. Push an 326 // empty map to ensure indices line up for the remaining sections. 327 // TODO: Evaluate whether the bitcode metadata is needed. 328 subsections.push_back({}); 329 } else { 330 auto *isec = 331 make<ConcatInputSection>(segname, name, this, data, align, flags); 332 if (isDebugSection(isec->getFlags()) && 333 isec->getSegName() == segment_names::dwarf) { 334 // Instead of emitting DWARF sections, we emit STABS symbols to the 335 // object files that contain them. We filter them out early to avoid 336 // parsing their relocations unnecessarily. But we must still push an 337 // empty map to ensure the indices line up for the remaining sections. 338 subsections.push_back({}); 339 debugSections.push_back(isec); 340 } else { 341 subsections.push_back({{0, isec}}); 342 } 343 } 344 } 345 } 346 347 // Find the subsection corresponding to the greatest section offset that is <= 348 // that of the given offset. 349 // 350 // offset: an offset relative to the start of the original InputSection (before 351 // any subsection splitting has occurred). It will be updated to represent the 352 // same location as an offset relative to the start of the containing 353 // subsection. 354 static InputSection *findContainingSubsection(SubsectionMap &map, 355 uint64_t *offset) { 356 auto it = std::prev(llvm::upper_bound( 357 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 358 return value < subsecEntry.offset; 359 })); 360 *offset -= it->offset; 361 return it->isec; 362 } 363 364 template <class Section> 365 static bool validateRelocationInfo(InputFile *file, const Section &sec, 366 relocation_info rel) { 367 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 368 bool valid = true; 369 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 370 valid = false; 371 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 372 std::to_string(rel.r_address) + " of " + sec.segname + "," + 373 sec.sectname + " in " + toString(file)) 374 .str(); 375 }; 376 377 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 378 error(message("must be extern")); 379 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 380 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 381 "be PC-relative")); 382 if (isThreadLocalVariables(sec.flags) && 383 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 384 error(message("not allowed in thread-local section, must be UNSIGNED")); 385 if (rel.r_length < 2 || rel.r_length > 3 || 386 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 387 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 388 error(message("has width " + std::to_string(1 << rel.r_length) + 389 " bytes, but must be " + 390 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 391 " bytes")); 392 } 393 return valid; 394 } 395 396 template <class Section> 397 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 398 const Section &sec, SubsectionMap &subsecMap) { 399 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 400 ArrayRef<relocation_info> relInfos( 401 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 402 403 auto subsecIt = subsecMap.rbegin(); 404 for (size_t i = 0; i < relInfos.size(); i++) { 405 // Paired relocations serve as Mach-O's method for attaching a 406 // supplemental datum to a primary relocation record. ELF does not 407 // need them because the *_RELOC_RELA records contain the extra 408 // addend field, vs. *_RELOC_REL which omit the addend. 409 // 410 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 411 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 412 // datum for each is a symbolic address. The result is the offset 413 // between two addresses. 414 // 415 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 416 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 417 // base symbolic address. 418 // 419 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 420 // addend into the instruction stream. On X86, a relocatable address 421 // field always occupies an entire contiguous sequence of byte(s), 422 // so there is no need to merge opcode bits with address 423 // bits. Therefore, it's easy and convenient to store addends in the 424 // instruction-stream bytes that would otherwise contain zeroes. By 425 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 426 // address bits so that bitwise arithmetic is necessary to extract 427 // and insert them. Storing addends in the instruction stream is 428 // possible, but inconvenient and more costly at link time. 429 430 int64_t pairedAddend = 0; 431 relocation_info relInfo = relInfos[i]; 432 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 433 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 434 relInfo = relInfos[++i]; 435 } 436 assert(i < relInfos.size()); 437 if (!validateRelocationInfo(this, sec, relInfo)) 438 continue; 439 if (relInfo.r_address & R_SCATTERED) 440 fatal("TODO: Scattered relocations not supported"); 441 442 bool isSubtrahend = 443 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 444 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 445 assert(!(embeddedAddend && pairedAddend)); 446 int64_t totalAddend = pairedAddend + embeddedAddend; 447 Reloc r; 448 r.type = relInfo.r_type; 449 r.pcrel = relInfo.r_pcrel; 450 r.length = relInfo.r_length; 451 r.offset = relInfo.r_address; 452 if (relInfo.r_extern) { 453 r.referent = symbols[relInfo.r_symbolnum]; 454 r.addend = isSubtrahend ? 0 : totalAddend; 455 } else { 456 assert(!isSubtrahend); 457 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 458 uint64_t referentOffset; 459 if (relInfo.r_pcrel) { 460 // The implicit addend for pcrel section relocations is the pcrel offset 461 // in terms of the addresses in the input file. Here we adjust it so 462 // that it describes the offset from the start of the referent section. 463 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 464 // have pcrel section relocations. We may want to factor this out into 465 // the arch-specific .cpp file. 466 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 467 referentOffset = 468 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 469 } else { 470 // The addend for a non-pcrel relocation is its absolute address. 471 referentOffset = totalAddend - referentSec.addr; 472 } 473 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 474 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 475 r.addend = referentOffset; 476 } 477 478 // Find the subsection that this relocation belongs to. 479 // Though not required by the Mach-O format, clang and gcc seem to emit 480 // relocations in order, so let's take advantage of it. However, ld64 emits 481 // unsorted relocations (in `-r` mode), so we have a fallback for that 482 // uncommon case. 483 InputSection *subsec; 484 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 485 ++subsecIt; 486 if (subsecIt == subsecMap.rend() || 487 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 488 subsec = findContainingSubsection(subsecMap, &r.offset); 489 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 490 // for the other relocations. 491 subsecIt = subsecMap.rend(); 492 } else { 493 subsec = subsecIt->isec; 494 r.offset -= subsecIt->offset; 495 } 496 subsec->relocs.push_back(r); 497 498 if (isSubtrahend) { 499 relocation_info minuendInfo = relInfos[++i]; 500 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 501 // attached to the same address. 502 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 503 relInfo.r_address == minuendInfo.r_address); 504 Reloc p; 505 p.type = minuendInfo.r_type; 506 if (minuendInfo.r_extern) { 507 p.referent = symbols[minuendInfo.r_symbolnum]; 508 p.addend = totalAddend; 509 } else { 510 uint64_t referentOffset = 511 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 512 SubsectionMap &referentSubsecMap = 513 subsections[minuendInfo.r_symbolnum - 1]; 514 p.referent = 515 findContainingSubsection(referentSubsecMap, &referentOffset); 516 p.addend = referentOffset; 517 } 518 subsec->relocs.push_back(p); 519 } 520 } 521 } 522 523 template <class NList> 524 static macho::Symbol *createDefined(const NList &sym, StringRef name, 525 InputSection *isec, uint64_t value, 526 uint64_t size) { 527 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 528 // N_EXT: Global symbols. These go in the symbol table during the link, 529 // and also in the export table of the output so that the dynamic 530 // linker sees them. 531 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 532 // symbol table during the link so that duplicates are 533 // either reported (for non-weak symbols) or merged 534 // (for weak symbols), but they do not go in the export 535 // table of the output. 536 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 537 // object files) may produce them. LLD does not yet support -r. 538 // These are translation-unit scoped, identical to the `0` case. 539 // 0: Translation-unit scoped. These are not in the symbol table during 540 // link, and not in the export table of the output either. 541 bool isWeakDefCanBeHidden = 542 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 543 544 if (sym.n_type & N_EXT) { 545 bool isPrivateExtern = sym.n_type & N_PEXT; 546 // lld's behavior for merging symbols is slightly different from ld64: 547 // ld64 picks the winning symbol based on several criteria (see 548 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 549 // just merges metadata and keeps the contents of the first symbol 550 // with that name (see SymbolTable::addDefined). For: 551 // * inline function F in a TU built with -fvisibility-inlines-hidden 552 // * and inline function F in another TU built without that flag 553 // ld64 will pick the one from the file built without 554 // -fvisibility-inlines-hidden. 555 // lld will instead pick the one listed first on the link command line and 556 // give it visibility as if the function was built without 557 // -fvisibility-inlines-hidden. 558 // If both functions have the same contents, this will have the same 559 // behavior. If not, it won't, but the input had an ODR violation in 560 // that case. 561 // 562 // Similarly, merging a symbol 563 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 564 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 565 // should produce one 566 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 567 // with ld64's semantics, because it means the non-private-extern 568 // definition will continue to take priority if more private extern 569 // definitions are encountered. With lld's semantics there's no observable 570 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 571 // that's privateExtern -- neither makes it into the dynamic symbol table, 572 // unless the autohide symbol is explicitly exported. 573 // But if a symbol is both privateExtern and autohide then it can't 574 // be exported. 575 // So we nullify the autohide flag when privateExtern is present 576 // and promote the symbol to privateExtern when it is not already. 577 if (isWeakDefCanBeHidden && isPrivateExtern) 578 isWeakDefCanBeHidden = false; 579 else if (isWeakDefCanBeHidden) 580 isPrivateExtern = true; 581 return symtab->addDefined( 582 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 583 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 584 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 585 isWeakDefCanBeHidden); 586 } 587 assert(!isWeakDefCanBeHidden && 588 "weak_def_can_be_hidden on already-hidden symbol?"); 589 return make<Defined>( 590 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 591 /*isExternal=*/false, /*isPrivateExtern=*/false, 592 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 593 sym.n_desc & N_NO_DEAD_STRIP); 594 } 595 596 // Absolute symbols are defined symbols that do not have an associated 597 // InputSection. They cannot be weak. 598 template <class NList> 599 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 600 StringRef name) { 601 if (sym.n_type & N_EXT) { 602 return symtab->addDefined( 603 name, file, nullptr, sym.n_value, /*size=*/0, 604 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 605 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 606 /*isWeakDefCanBeHidden=*/false); 607 } 608 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 609 /*isWeakDef=*/false, 610 /*isExternal=*/false, /*isPrivateExtern=*/false, 611 sym.n_desc & N_ARM_THUMB_DEF, 612 /*isReferencedDynamically=*/false, 613 sym.n_desc & N_NO_DEAD_STRIP); 614 } 615 616 template <class NList> 617 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 618 StringRef name) { 619 uint8_t type = sym.n_type & N_TYPE; 620 switch (type) { 621 case N_UNDF: 622 return sym.n_value == 0 623 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 624 : symtab->addCommon(name, this, sym.n_value, 625 1 << GET_COMM_ALIGN(sym.n_desc), 626 sym.n_type & N_PEXT); 627 case N_ABS: 628 return createAbsolute(sym, this, name); 629 case N_PBUD: 630 case N_INDR: 631 error("TODO: support symbols of type " + std::to_string(type)); 632 return nullptr; 633 case N_SECT: 634 llvm_unreachable( 635 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 636 default: 637 llvm_unreachable("invalid symbol type"); 638 } 639 } 640 641 template <class NList> static bool isUndef(const NList &sym) { 642 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 643 } 644 645 template <class LP> 646 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 647 ArrayRef<typename LP::nlist> nList, 648 const char *strtab, bool subsectionsViaSymbols) { 649 using NList = typename LP::nlist; 650 651 // Groups indices of the symbols by the sections that contain them. 652 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 653 symbols.resize(nList.size()); 654 SmallVector<unsigned, 32> undefineds; 655 for (uint32_t i = 0; i < nList.size(); ++i) { 656 const NList &sym = nList[i]; 657 658 // Ignore debug symbols for now. 659 // FIXME: may need special handling. 660 if (sym.n_type & N_STAB) 661 continue; 662 663 StringRef name = strtab + sym.n_strx; 664 if ((sym.n_type & N_TYPE) == N_SECT) { 665 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 666 // parseSections() may have chosen not to parse this section. 667 if (subsecMap.empty()) 668 continue; 669 symbolsBySection[sym.n_sect - 1].push_back(i); 670 } else if (isUndef(sym)) { 671 undefineds.push_back(i); 672 } else { 673 symbols[i] = parseNonSectionSymbol(sym, name); 674 } 675 } 676 677 for (size_t i = 0; i < subsections.size(); ++i) { 678 SubsectionMap &subsecMap = subsections[i]; 679 if (subsecMap.empty()) 680 continue; 681 682 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 683 uint64_t sectionAddr = sectionHeaders[i].addr; 684 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 685 686 InputSection *lastIsec = subsecMap.back().isec; 687 // Record-based sections have already been split into subsections during 688 // parseSections(), so we simply need to match Symbols to the corresponding 689 // subsection here. 690 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 691 for (size_t j = 0; j < symbolIndices.size(); ++j) { 692 uint32_t symIndex = symbolIndices[j]; 693 const NList &sym = nList[symIndex]; 694 StringRef name = strtab + sym.n_strx; 695 uint64_t symbolOffset = sym.n_value - sectionAddr; 696 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 697 if (symbolOffset != 0) { 698 error(toString(lastIsec) + ": symbol " + name + 699 " at misaligned offset"); 700 continue; 701 } 702 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 703 } 704 continue; 705 } 706 707 // Calculate symbol sizes and create subsections by splitting the sections 708 // along symbol boundaries. 709 // We populate subsecMap by repeatedly splitting the last (highest address) 710 // subsection. 711 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 712 return nList[lhs].n_value < nList[rhs].n_value; 713 }); 714 SubsectionEntry subsecEntry = subsecMap.back(); 715 for (size_t j = 0; j < symbolIndices.size(); ++j) { 716 uint32_t symIndex = symbolIndices[j]; 717 const NList &sym = nList[symIndex]; 718 StringRef name = strtab + sym.n_strx; 719 InputSection *isec = subsecEntry.isec; 720 721 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 722 size_t symbolOffset = sym.n_value - subsecAddr; 723 uint64_t symbolSize = 724 j + 1 < symbolIndices.size() 725 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 726 : isec->data.size() - symbolOffset; 727 // There are 4 cases where we do not need to create a new subsection: 728 // 1. If the input file does not use subsections-via-symbols. 729 // 2. Multiple symbols at the same address only induce one subsection. 730 // (The symbolOffset == 0 check covers both this case as well as 731 // the first loop iteration.) 732 // 3. Alternative entry points do not induce new subsections. 733 // 4. If we have a literal section (e.g. __cstring and __literal4). 734 if (!subsectionsViaSymbols || symbolOffset == 0 || 735 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 736 symbols[symIndex] = 737 createDefined(sym, name, isec, symbolOffset, symbolSize); 738 continue; 739 } 740 auto *concatIsec = cast<ConcatInputSection>(isec); 741 742 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 743 nextIsec->wasCoalesced = false; 744 if (isZeroFill(isec->getFlags())) { 745 // Zero-fill sections have NULL data.data() non-zero data.size() 746 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 747 isec->data = {nullptr, symbolOffset}; 748 } else { 749 nextIsec->data = isec->data.slice(symbolOffset); 750 isec->data = isec->data.slice(0, symbolOffset); 751 } 752 753 // By construction, the symbol will be at offset zero in the new 754 // subsection. 755 symbols[symIndex] = 756 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 757 // TODO: ld64 appears to preserve the original alignment as well as each 758 // subsection's offset from the last aligned address. We should consider 759 // emulating that behavior. 760 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 761 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 762 subsecEntry = subsecMap.back(); 763 } 764 } 765 766 // Undefined symbols can trigger recursive fetch from Archives due to 767 // LazySymbols. Process defined symbols first so that the relative order 768 // between a defined symbol and an undefined symbol does not change the 769 // symbol resolution behavior. In addition, a set of interconnected symbols 770 // will all be resolved to the same file, instead of being resolved to 771 // different files. 772 for (unsigned i : undefineds) { 773 const NList &sym = nList[i]; 774 StringRef name = strtab + sym.n_strx; 775 symbols[i] = parseNonSectionSymbol(sym, name); 776 } 777 } 778 779 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 780 StringRef sectName) 781 : InputFile(OpaqueKind, mb) { 782 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 783 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 784 ConcatInputSection *isec = 785 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 786 /*file=*/this, data); 787 isec->live = true; 788 subsections.push_back({{0, isec}}); 789 } 790 791 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 792 : InputFile(ObjKind, mb), modTime(modTime) { 793 this->archiveName = std::string(archiveName); 794 if (target->wordSize == 8) 795 parse<LP64>(); 796 else 797 parse<ILP32>(); 798 } 799 800 template <class LP> void ObjFile::parse() { 801 using Header = typename LP::mach_header; 802 using SegmentCommand = typename LP::segment_command; 803 using Section = typename LP::section; 804 using NList = typename LP::nlist; 805 806 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 807 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 808 809 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 810 if (arch != config->arch()) { 811 auto msg = config->errorForArchMismatch 812 ? static_cast<void (*)(const Twine &)>(error) 813 : warn; 814 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 815 " which is incompatible with target architecture " + 816 getArchitectureName(config->arch())); 817 return; 818 } 819 820 if (!checkCompatibility(this)) 821 return; 822 823 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 824 StringRef data{reinterpret_cast<const char *>(cmd + 1), 825 cmd->cmdsize - sizeof(linker_option_command)}; 826 parseLCLinkerOption(this, cmd->count, data); 827 } 828 829 ArrayRef<Section> sectionHeaders; 830 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 831 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 832 sectionHeaders = 833 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 834 parseSections(sectionHeaders); 835 } 836 837 // TODO: Error on missing LC_SYMTAB? 838 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 839 auto *c = reinterpret_cast<const symtab_command *>(cmd); 840 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 841 c->nsyms); 842 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 843 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 844 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 845 } 846 847 // The relocations may refer to the symbols, so we parse them after we have 848 // parsed all the symbols. 849 for (size_t i = 0, n = subsections.size(); i < n; ++i) 850 if (!subsections[i].empty()) 851 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 852 853 parseDebugInfo(); 854 if (config->emitDataInCodeInfo) 855 parseDataInCode(); 856 registerCompactUnwind(); 857 } 858 859 void ObjFile::parseDebugInfo() { 860 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 861 if (!dObj) 862 return; 863 864 auto *ctx = make<DWARFContext>( 865 std::move(dObj), "", 866 [&](Error err) { 867 warn(toString(this) + ": " + toString(std::move(err))); 868 }, 869 [&](Error warning) { 870 warn(toString(this) + ": " + toString(std::move(warning))); 871 }); 872 873 // TODO: Since object files can contain a lot of DWARF info, we should verify 874 // that we are parsing just the info we need 875 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 876 // FIXME: There can be more than one compile unit per object file. See 877 // PR48637. 878 auto it = units.begin(); 879 compileUnit = it->get(); 880 } 881 882 void ObjFile::parseDataInCode() { 883 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 884 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 885 if (!cmd) 886 return; 887 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 888 dataInCodeEntries = { 889 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 890 c->datasize / sizeof(data_in_code_entry)}; 891 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 892 const data_in_code_entry &rhs) { 893 return lhs.offset < rhs.offset; 894 })); 895 } 896 897 // Create pointers from symbols to their associated compact unwind entries. 898 void ObjFile::registerCompactUnwind() { 899 // First, locate the __compact_unwind section. 900 SubsectionMap *cuSubsecMap = nullptr; 901 for (SubsectionMap &map : subsections) { 902 if (map.empty()) 903 continue; 904 if (map[0].isec->getSegName() != segment_names::ld) 905 continue; 906 cuSubsecMap = ↦ 907 break; 908 } 909 if (!cuSubsecMap) 910 return; 911 912 for (SubsectionEntry &entry : *cuSubsecMap) { 913 ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec); 914 // Hack!! Since each CUE contains a different function address, if ICF 915 // operated naively and compared the entire contents of each CUE, entries 916 // with identical unwind info but belonging to different functions would 917 // never be considered equivalent. To work around this problem, we slice 918 // away the function address here. (Note that we do not adjust the offsets 919 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 920 // to correctly handle these truncated input sections. 921 isec->data = isec->data.slice(target->wordSize); 922 923 ConcatInputSection *referentIsec; 924 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 925 Reloc &r = *it; 926 // We only wish to handle the relocation for CUE::functionAddress. 927 if (r.offset != 0) { 928 ++it; 929 continue; 930 } 931 uint64_t add = r.addend; 932 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 933 // Check whether the symbol defined in this file is the prevailing one. 934 // Skip if it is e.g. a weak def that didn't prevail. 935 if (sym->getFile() != this) { 936 ++it; 937 continue; 938 } 939 add += sym->value; 940 referentIsec = cast<ConcatInputSection>(sym->isec); 941 } else { 942 referentIsec = 943 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 944 } 945 if (referentIsec->getSegName() != segment_names::text) 946 error("compact unwind references address in " + toString(referentIsec) + 947 " which is not in segment __TEXT"); 948 // The functionAddress relocations are typically section relocations. 949 // However, unwind info operates on a per-symbol basis, so we search for 950 // the function symbol here. 951 auto symIt = llvm::lower_bound( 952 referentIsec->symbols, add, 953 [](Defined *d, uint64_t add) { return d->value < add; }); 954 // The relocation should point at the exact address of a symbol (with no 955 // addend). 956 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 957 assert(referentIsec->wasCoalesced); 958 ++it; 959 continue; 960 } 961 (*symIt)->compactUnwind = isec; 962 // Since we've sliced away the functionAddress, we should remove the 963 // corresponding relocation too. Given that clang emits relocations in 964 // reverse order of address, this relocation should be at the end of the 965 // vector for most of our input object files, so this is typically an O(1) 966 // operation. 967 it = isec->relocs.erase(it); 968 } 969 } 970 } 971 972 // The path can point to either a dylib or a .tbd file. 973 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 974 Optional<MemoryBufferRef> mbref = readFile(path); 975 if (!mbref) { 976 error("could not read dylib file at " + path); 977 return nullptr; 978 } 979 return loadDylib(*mbref, umbrella); 980 } 981 982 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 983 // the first document storing child pointers to the rest of them. When we are 984 // processing a given TBD file, we store that top-level document in 985 // currentTopLevelTapi. When processing re-exports, we search its children for 986 // potentially matching documents in the same TBD file. Note that the children 987 // themselves don't point to further documents, i.e. this is a two-level tree. 988 // 989 // Re-exports can either refer to on-disk files, or to documents within .tbd 990 // files. 991 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 992 const InterfaceFile *currentTopLevelTapi) { 993 // Search order: 994 // 1. Install name basename in -F / -L directories. 995 { 996 StringRef stem = path::stem(path); 997 SmallString<128> frameworkName; 998 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 999 bool isFramework = path.endswith(frameworkName); 1000 if (isFramework) { 1001 for (StringRef dir : config->frameworkSearchPaths) { 1002 SmallString<128> candidate = dir; 1003 path::append(candidate, frameworkName); 1004 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1005 return loadDylib(*dylibPath, umbrella); 1006 } 1007 } else if (Optional<StringRef> dylibPath = findPathCombination( 1008 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1009 return loadDylib(*dylibPath, umbrella); 1010 } 1011 1012 // 2. As absolute path. 1013 if (path::is_absolute(path, path::Style::posix)) 1014 for (StringRef root : config->systemLibraryRoots) 1015 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1016 return loadDylib(*dylibPath, umbrella); 1017 1018 // 3. As relative path. 1019 1020 // TODO: Handle -dylib_file 1021 1022 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1023 SmallString<128> newPath; 1024 if (config->outputType == MH_EXECUTE && 1025 path.consume_front("@executable_path/")) { 1026 // ld64 allows overriding this with the undocumented flag -executable_path. 1027 // lld doesn't currently implement that flag. 1028 // FIXME: Consider using finalOutput instead of outputFile. 1029 path::append(newPath, path::parent_path(config->outputFile), path); 1030 path = newPath; 1031 } else if (path.consume_front("@loader_path/")) { 1032 fs::real_path(umbrella->getName(), newPath); 1033 path::remove_filename(newPath); 1034 path::append(newPath, path); 1035 path = newPath; 1036 } else if (path.startswith("@rpath/")) { 1037 for (StringRef rpath : umbrella->rpaths) { 1038 newPath.clear(); 1039 if (rpath.consume_front("@loader_path/")) { 1040 fs::real_path(umbrella->getName(), newPath); 1041 path::remove_filename(newPath); 1042 } 1043 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1044 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1045 return loadDylib(*dylibPath, umbrella); 1046 } 1047 } 1048 1049 // FIXME: Should this be further up? 1050 if (currentTopLevelTapi) { 1051 for (InterfaceFile &child : 1052 make_pointee_range(currentTopLevelTapi->documents())) { 1053 assert(child.documents().empty()); 1054 if (path == child.getInstallName()) { 1055 auto file = make<DylibFile>(child, umbrella); 1056 file->parseReexports(child); 1057 return file; 1058 } 1059 } 1060 } 1061 1062 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1063 return loadDylib(*dylibPath, umbrella); 1064 1065 return nullptr; 1066 } 1067 1068 // If a re-exported dylib is public (lives in /usr/lib or 1069 // /System/Library/Frameworks), then it is considered implicitly linked: we 1070 // should bind to its symbols directly instead of via the re-exporting umbrella 1071 // library. 1072 static bool isImplicitlyLinked(StringRef path) { 1073 if (!config->implicitDylibs) 1074 return false; 1075 1076 if (path::parent_path(path) == "/usr/lib") 1077 return true; 1078 1079 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1080 if (path.consume_front("/System/Library/Frameworks/")) { 1081 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1082 return path::filename(path) == frameworkName; 1083 } 1084 1085 return false; 1086 } 1087 1088 static void loadReexport(StringRef path, DylibFile *umbrella, 1089 const InterfaceFile *currentTopLevelTapi) { 1090 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1091 if (!reexport) 1092 error("unable to locate re-export with install name " + path); 1093 } 1094 1095 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1096 bool isBundleLoader) 1097 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1098 isBundleLoader(isBundleLoader) { 1099 assert(!isBundleLoader || !umbrella); 1100 if (umbrella == nullptr) 1101 umbrella = this; 1102 this->umbrella = umbrella; 1103 1104 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1105 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1106 1107 // Initialize installName. 1108 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1109 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1110 currentVersion = read32le(&c->dylib.current_version); 1111 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1112 installName = 1113 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1114 } else if (!isBundleLoader) { 1115 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1116 // so it's OK. 1117 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1118 return; 1119 } 1120 1121 if (config->printEachFile) 1122 message(toString(this)); 1123 inputFiles.insert(this); 1124 1125 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1126 1127 if (!checkCompatibility(this)) 1128 return; 1129 1130 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1131 1132 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1133 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1134 rpaths.push_back(rpath); 1135 } 1136 1137 // Initialize symbols. 1138 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1139 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1140 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1141 parseTrie(buf + c->export_off, c->export_size, 1142 [&](const Twine &name, uint64_t flags) { 1143 StringRef savedName = saver.save(name); 1144 if (handleLDSymbol(savedName)) 1145 return; 1146 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1147 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1148 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1149 isWeakDef, isTlv)); 1150 }); 1151 } else { 1152 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1153 return; 1154 } 1155 } 1156 1157 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1158 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1159 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1160 target->headerSize; 1161 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1162 auto *cmd = reinterpret_cast<const load_command *>(p); 1163 p += cmd->cmdsize; 1164 1165 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1166 cmd->cmd == LC_REEXPORT_DYLIB) { 1167 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1168 StringRef reexportPath = 1169 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1170 loadReexport(reexportPath, exportingFile, nullptr); 1171 } 1172 1173 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1174 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1175 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1176 if (config->namespaceKind == NamespaceKind::flat && 1177 cmd->cmd == LC_LOAD_DYLIB) { 1178 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1179 StringRef dylibPath = 1180 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1181 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1182 if (!dylib) 1183 error(Twine("unable to locate library '") + dylibPath + 1184 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1185 } 1186 } 1187 } 1188 1189 // Some versions of XCode ship with .tbd files that don't have the right 1190 // platform settings. 1191 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1192 "/usr/lib/system/libsystem_kernel.dylib", 1193 "/usr/lib/system/libsystem_platform.dylib", 1194 "/usr/lib/system/libsystem_pthread.dylib"}; 1195 1196 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1197 bool isBundleLoader) 1198 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1199 isBundleLoader(isBundleLoader) { 1200 // FIXME: Add test for the missing TBD code path. 1201 1202 if (umbrella == nullptr) 1203 umbrella = this; 1204 this->umbrella = umbrella; 1205 1206 installName = saver.save(interface.getInstallName()); 1207 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1208 currentVersion = interface.getCurrentVersion().rawValue(); 1209 1210 if (config->printEachFile) 1211 message(toString(this)); 1212 inputFiles.insert(this); 1213 1214 if (!is_contained(skipPlatformChecks, installName) && 1215 !is_contained(interface.targets(), config->platformInfo.target)) { 1216 error(toString(this) + " is incompatible with " + 1217 std::string(config->platformInfo.target)); 1218 return; 1219 } 1220 1221 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1222 1223 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1224 auto addSymbol = [&](const Twine &name) -> void { 1225 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1226 /*isWeakDef=*/false, 1227 /*isTlv=*/false)); 1228 }; 1229 // TODO(compnerd) filter out symbols based on the target platform 1230 // TODO: handle weak defs, thread locals 1231 for (const auto *symbol : interface.symbols()) { 1232 if (!symbol->getArchitectures().has(config->arch())) 1233 continue; 1234 1235 if (handleLDSymbol(symbol->getName())) 1236 continue; 1237 1238 switch (symbol->getKind()) { 1239 case SymbolKind::GlobalSymbol: 1240 addSymbol(symbol->getName()); 1241 break; 1242 case SymbolKind::ObjectiveCClass: 1243 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1244 // want to emulate that. 1245 addSymbol(objc::klass + symbol->getName()); 1246 addSymbol(objc::metaclass + symbol->getName()); 1247 break; 1248 case SymbolKind::ObjectiveCClassEHType: 1249 addSymbol(objc::ehtype + symbol->getName()); 1250 break; 1251 case SymbolKind::ObjectiveCInstanceVariable: 1252 addSymbol(objc::ivar + symbol->getName()); 1253 break; 1254 } 1255 } 1256 } 1257 1258 void DylibFile::parseReexports(const InterfaceFile &interface) { 1259 const InterfaceFile *topLevel = 1260 interface.getParent() == nullptr ? &interface : interface.getParent(); 1261 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1262 InterfaceFile::const_target_range targets = intfRef.targets(); 1263 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1264 is_contained(targets, config->platformInfo.target)) 1265 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1266 } 1267 } 1268 1269 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1270 // name, compatibility version or hide/add symbols) for specific target 1271 // versions. 1272 bool DylibFile::handleLDSymbol(StringRef originalName) { 1273 if (!originalName.startswith("$ld$")) 1274 return false; 1275 1276 StringRef action; 1277 StringRef name; 1278 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1279 if (action == "previous") 1280 handleLDPreviousSymbol(name, originalName); 1281 else if (action == "install_name") 1282 handleLDInstallNameSymbol(name, originalName); 1283 return true; 1284 } 1285 1286 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1287 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1288 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1289 StringRef installName; 1290 StringRef compatVersion; 1291 StringRef platformStr; 1292 StringRef startVersion; 1293 StringRef endVersion; 1294 StringRef symbolName; 1295 StringRef rest; 1296 1297 std::tie(installName, name) = name.split('$'); 1298 std::tie(compatVersion, name) = name.split('$'); 1299 std::tie(platformStr, name) = name.split('$'); 1300 std::tie(startVersion, name) = name.split('$'); 1301 std::tie(endVersion, name) = name.split('$'); 1302 std::tie(symbolName, rest) = name.split('$'); 1303 // TODO: ld64 contains some logic for non-empty symbolName as well. 1304 if (!symbolName.empty()) 1305 return; 1306 unsigned platform; 1307 if (platformStr.getAsInteger(10, platform) || 1308 platform != static_cast<unsigned>(config->platform())) 1309 return; 1310 1311 VersionTuple start; 1312 if (start.tryParse(startVersion)) { 1313 warn("failed to parse start version, symbol '" + originalName + 1314 "' ignored"); 1315 return; 1316 } 1317 VersionTuple end; 1318 if (end.tryParse(endVersion)) { 1319 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1320 return; 1321 } 1322 if (config->platformInfo.minimum < start || 1323 config->platformInfo.minimum >= end) 1324 return; 1325 1326 this->installName = saver.save(installName); 1327 1328 if (!compatVersion.empty()) { 1329 VersionTuple cVersion; 1330 if (cVersion.tryParse(compatVersion)) { 1331 warn("failed to parse compatibility version, symbol '" + originalName + 1332 "' ignored"); 1333 return; 1334 } 1335 compatibilityVersion = encodeVersion(cVersion); 1336 } 1337 } 1338 1339 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1340 StringRef originalName) { 1341 // originalName: $ld$ install_name $ os<version> $ install_name 1342 StringRef condition, installName; 1343 std::tie(condition, installName) = name.split('$'); 1344 VersionTuple version; 1345 if (!condition.consume_front("os") || version.tryParse(condition)) 1346 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1347 else if (version == config->platformInfo.minimum) 1348 this->installName = saver.save(installName); 1349 } 1350 1351 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1352 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1353 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1354 } 1355 1356 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1357 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1358 1359 void ArchiveFile::addLazySymbols() { 1360 for (const object::Archive::Symbol &sym : file->symbols()) 1361 symtab->addLazy(sym.getName(), this, sym); 1362 } 1363 1364 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1365 uint32_t modTime, 1366 StringRef archiveName, 1367 uint64_t offsetInArchive) { 1368 if (config->zeroModTime) 1369 modTime = 0; 1370 1371 switch (identify_magic(mb.getBuffer())) { 1372 case file_magic::macho_object: 1373 return make<ObjFile>(mb, modTime, archiveName); 1374 case file_magic::bitcode: 1375 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1376 default: 1377 return createStringError(inconvertibleErrorCode(), 1378 mb.getBufferIdentifier() + 1379 " has unhandled file type"); 1380 } 1381 } 1382 1383 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1384 if (!seen.insert(c.getChildOffset()).second) 1385 return Error::success(); 1386 1387 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1388 if (!mb) 1389 return mb.takeError(); 1390 1391 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1392 if (tar && c.getParent()->isThin()) 1393 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1394 1395 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1396 if (!modTime) 1397 return modTime.takeError(); 1398 1399 Expected<InputFile *> file = 1400 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1401 1402 if (!file) 1403 return file.takeError(); 1404 1405 inputFiles.insert(*file); 1406 printArchiveMemberLoad(reason, *file); 1407 return Error::success(); 1408 } 1409 1410 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1411 object::Archive::Child c = 1412 CHECK(sym.getMember(), toString(this) + 1413 ": could not get the member defining symbol " + 1414 toMachOString(sym)); 1415 1416 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1417 // and become invalid after that call. Copy it to the stack so we can refer 1418 // to it later. 1419 const object::Archive::Symbol symCopy = sym; 1420 1421 // ld64 doesn't demangle sym here even with -demangle. 1422 // Match that: intentionally don't call toMachOString(). 1423 if (Error e = fetch(c, symCopy.getName())) 1424 error(toString(this) + ": could not get the member defining symbol " + 1425 toMachOString(symCopy) + ": " + toString(std::move(e))); 1426 } 1427 1428 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1429 BitcodeFile &file) { 1430 StringRef name = saver.save(objSym.getName()); 1431 1432 // TODO: support weak references 1433 if (objSym.isUndefined()) 1434 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1435 1436 // TODO: Write a test demonstrating why computing isPrivateExtern before 1437 // LTO compilation is important. 1438 bool isPrivateExtern = false; 1439 switch (objSym.getVisibility()) { 1440 case GlobalValue::HiddenVisibility: 1441 isPrivateExtern = true; 1442 break; 1443 case GlobalValue::ProtectedVisibility: 1444 error(name + " has protected visibility, which is not supported by Mach-O"); 1445 break; 1446 case GlobalValue::DefaultVisibility: 1447 break; 1448 } 1449 1450 if (objSym.isCommon()) 1451 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1452 objSym.getCommonAlignment(), isPrivateExtern); 1453 1454 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1455 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1456 /*isThumb=*/false, 1457 /*isReferencedDynamically=*/false, 1458 /*noDeadStrip=*/false, 1459 /*isWeakDefCanBeHidden=*/false); 1460 } 1461 1462 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1463 uint64_t offsetInArchive) 1464 : InputFile(BitcodeKind, mb) { 1465 std::string path = mb.getBufferIdentifier().str(); 1466 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1467 // name. If two members with the same name are provided, this causes a 1468 // collision and ThinLTO can't proceed. 1469 // So, we append the archive name to disambiguate two members with the same 1470 // name from multiple different archives, and offset within the archive to 1471 // disambiguate two members of the same name from a single archive. 1472 MemoryBufferRef mbref( 1473 mb.getBuffer(), 1474 saver.save(archiveName.empty() ? path 1475 : archiveName + sys::path::filename(path) + 1476 utostr(offsetInArchive))); 1477 1478 obj = check(lto::InputFile::create(mbref)); 1479 1480 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1481 // "winning" symbol will then be marked as Prevailing at LTO compilation 1482 // time. 1483 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1484 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1485 } 1486 1487 template void ObjFile::parse<LP64>(); 1488