1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/Architecture.h" 70 #include "llvm/TextAPI/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 92 } 93 94 SetVector<InputFile *> macho::inputFiles; 95 std::unique_ptr<TarWriter> macho::tar; 96 int InputFile::idCount = 0; 97 98 static VersionTuple decodeVersion(uint32_t version) { 99 unsigned major = version >> 16; 100 unsigned minor = (version >> 8) & 0xffu; 101 unsigned subMinor = version & 0xffu; 102 return VersionTuple(major, minor, subMinor); 103 } 104 105 static Optional<PlatformInfo> getPlatformInfo(const InputFile *input) { 106 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 107 return None; 108 109 const char *hdr = input->mb.getBufferStart(); 110 111 PlatformInfo platformInfo; 112 if (const auto *cmd = 113 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 platformInfo.target.Platform = static_cast<PlatformKind>(cmd->platform); 115 platformInfo.minimum = decodeVersion(cmd->minos); 116 return platformInfo; 117 } 118 if (const auto *cmd = findCommand<version_min_command>( 119 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 120 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 121 switch (cmd->cmd) { 122 case LC_VERSION_MIN_MACOSX: 123 platformInfo.target.Platform = PlatformKind::macOS; 124 break; 125 case LC_VERSION_MIN_IPHONEOS: 126 platformInfo.target.Platform = PlatformKind::iOS; 127 break; 128 case LC_VERSION_MIN_TVOS: 129 platformInfo.target.Platform = PlatformKind::tvOS; 130 break; 131 case LC_VERSION_MIN_WATCHOS: 132 platformInfo.target.Platform = PlatformKind::watchOS; 133 break; 134 } 135 platformInfo.minimum = decodeVersion(cmd->version); 136 return platformInfo; 137 } 138 139 return None; 140 } 141 142 static bool checkCompatibility(const InputFile *input) { 143 Optional<PlatformInfo> platformInfo = getPlatformInfo(input); 144 if (!platformInfo) 145 return true; 146 // TODO: Correctly detect simulator platforms or relax this check. 147 if (config->platform() != platformInfo->target.Platform) { 148 error(toString(input) + " has platform " + 149 getPlatformName(platformInfo->target.Platform) + 150 Twine(", which is different from target platform ") + 151 getPlatformName(config->platform())); 152 return false; 153 } 154 if (platformInfo->minimum <= config->platformInfo.minimum) 155 return true; 156 error(toString(input) + " has version " + 157 platformInfo->minimum.getAsString() + 158 ", which is newer than target minimum of " + 159 config->platformInfo.minimum.getAsString()); 160 return false; 161 } 162 163 // Open a given file path and return it as a memory-mapped file. 164 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 165 // Open a file. 166 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 167 if (std::error_code ec = mbOrErr.getError()) { 168 error("cannot open " + path + ": " + ec.message()); 169 return None; 170 } 171 172 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 173 MemoryBufferRef mbref = mb->getMemBufferRef(); 174 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 175 176 // If this is a regular non-fat file, return it. 177 const char *buf = mbref.getBufferStart(); 178 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 179 if (mbref.getBufferSize() < sizeof(uint32_t) || 180 read32be(&hdr->magic) != FAT_MAGIC) { 181 if (tar) 182 tar->append(relativeToRoot(path), mbref.getBuffer()); 183 return mbref; 184 } 185 186 // Object files and archive files may be fat files, which contains 187 // multiple real files for different CPU ISAs. Here, we search for a 188 // file that matches with the current link target and returns it as 189 // a MemoryBufferRef. 190 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 191 192 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 193 if (reinterpret_cast<const char *>(arch + i + 1) > 194 buf + mbref.getBufferSize()) { 195 error(path + ": fat_arch struct extends beyond end of file"); 196 return None; 197 } 198 199 if (read32be(&arch[i].cputype) != target->cpuType || 200 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 201 continue; 202 203 uint32_t offset = read32be(&arch[i].offset); 204 uint32_t size = read32be(&arch[i].size); 205 if (offset + size > mbref.getBufferSize()) 206 error(path + ": slice extends beyond end of file"); 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 210 } 211 212 error("unable to find matching architecture in " + path); 213 return None; 214 } 215 216 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 217 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 218 219 template <class Section> 220 void ObjFile::parseSections(ArrayRef<Section> sections) { 221 subsections.reserve(sections.size()); 222 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 223 224 for (const Section &sec : sections) { 225 InputSection *isec = make<InputSection>(); 226 isec->file = this; 227 isec->name = 228 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 229 isec->segname = 230 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 231 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 232 static_cast<size_t>(sec.size)}; 233 if (sec.align >= 32) 234 error("alignment " + std::to_string(sec.align) + " of section " + 235 isec->name + " is too large"); 236 else 237 isec->align = 1 << sec.align; 238 isec->flags = sec.flags; 239 240 if (!(isDebugSection(isec->flags) && 241 isec->segname == segment_names::dwarf)) { 242 subsections.push_back({{0, isec}}); 243 } else { 244 // Instead of emitting DWARF sections, we emit STABS symbols to the 245 // object files that contain them. We filter them out early to avoid 246 // parsing their relocations unnecessarily. But we must still push an 247 // empty map to ensure the indices line up for the remaining sections. 248 subsections.push_back({}); 249 debugSections.push_back(isec); 250 } 251 } 252 } 253 254 // Find the subsection corresponding to the greatest section offset that is <= 255 // that of the given offset. 256 // 257 // offset: an offset relative to the start of the original InputSection (before 258 // any subsection splitting has occurred). It will be updated to represent the 259 // same location as an offset relative to the start of the containing 260 // subsection. 261 static InputSection *findContainingSubsection(SubsectionMap &map, 262 uint64_t *offset) { 263 auto it = std::prev(llvm::upper_bound( 264 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 265 return value < subsecEntry.offset; 266 })); 267 *offset -= it->offset; 268 return it->isec; 269 } 270 271 template <class Section> 272 static bool validateRelocationInfo(InputFile *file, const Section &sec, 273 relocation_info rel) { 274 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 275 bool valid = true; 276 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 277 valid = false; 278 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 279 std::to_string(rel.r_address) + " of " + sec.segname + "," + 280 sec.sectname + " in " + toString(file)) 281 .str(); 282 }; 283 284 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 285 error(message("must be extern")); 286 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 287 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 288 "be PC-relative")); 289 if (isThreadLocalVariables(sec.flags) && 290 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 291 error(message("not allowed in thread-local section, must be UNSIGNED")); 292 if (rel.r_length < 2 || rel.r_length > 3 || 293 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 294 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 295 error(message("has width " + std::to_string(1 << rel.r_length) + 296 " bytes, but must be " + 297 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 298 " bytes")); 299 } 300 return valid; 301 } 302 303 template <class Section> 304 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 305 const Section &sec, SubsectionMap &subsecMap) { 306 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 307 ArrayRef<relocation_info> relInfos( 308 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 309 310 for (size_t i = 0; i < relInfos.size(); i++) { 311 // Paired relocations serve as Mach-O's method for attaching a 312 // supplemental datum to a primary relocation record. ELF does not 313 // need them because the *_RELOC_RELA records contain the extra 314 // addend field, vs. *_RELOC_REL which omit the addend. 315 // 316 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 317 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 318 // datum for each is a symbolic address. The result is the offset 319 // between two addresses. 320 // 321 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 322 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 323 // base symbolic address. 324 // 325 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 326 // addend into the instruction stream. On X86, a relocatable address 327 // field always occupies an entire contiguous sequence of byte(s), 328 // so there is no need to merge opcode bits with address 329 // bits. Therefore, it's easy and convenient to store addends in the 330 // instruction-stream bytes that would otherwise contain zeroes. By 331 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 332 // address bits so that bitwise arithmetic is necessary to extract 333 // and insert them. Storing addends in the instruction stream is 334 // possible, but inconvenient and more costly at link time. 335 336 int64_t pairedAddend = 0; 337 relocation_info relInfo = relInfos[i]; 338 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 339 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 340 relInfo = relInfos[++i]; 341 } 342 assert(i < relInfos.size()); 343 if (!validateRelocationInfo(this, sec, relInfo)) 344 continue; 345 if (relInfo.r_address & R_SCATTERED) 346 fatal("TODO: Scattered relocations not supported"); 347 348 bool isSubtrahend = 349 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 350 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 351 assert(!(embeddedAddend && pairedAddend)); 352 int64_t totalAddend = pairedAddend + embeddedAddend; 353 Reloc r; 354 r.type = relInfo.r_type; 355 r.pcrel = relInfo.r_pcrel; 356 r.length = relInfo.r_length; 357 r.offset = relInfo.r_address; 358 if (relInfo.r_extern) { 359 r.referent = symbols[relInfo.r_symbolnum]; 360 r.addend = isSubtrahend ? 0 : totalAddend; 361 } else { 362 assert(!isSubtrahend); 363 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 364 uint64_t referentOffset; 365 if (relInfo.r_pcrel) { 366 // The implicit addend for pcrel section relocations is the pcrel offset 367 // in terms of the addresses in the input file. Here we adjust it so 368 // that it describes the offset from the start of the referent section. 369 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 370 // have pcrel section relocations. We may want to factor this out into 371 // the arch-specific .cpp file. 372 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 373 referentOffset = 374 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 375 } else { 376 // The addend for a non-pcrel relocation is its absolute address. 377 referentOffset = totalAddend - referentSec.addr; 378 } 379 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 380 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 381 r.addend = referentOffset; 382 } 383 384 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 385 subsec->relocs.push_back(r); 386 387 if (isSubtrahend) { 388 relocation_info minuendInfo = relInfos[++i]; 389 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 390 // attached to the same address. 391 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 392 relInfo.r_address == minuendInfo.r_address); 393 Reloc p; 394 p.type = minuendInfo.r_type; 395 if (minuendInfo.r_extern) { 396 p.referent = symbols[minuendInfo.r_symbolnum]; 397 p.addend = totalAddend; 398 } else { 399 uint64_t referentOffset = 400 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 401 SubsectionMap &referentSubsecMap = 402 subsections[minuendInfo.r_symbolnum - 1]; 403 p.referent = 404 findContainingSubsection(referentSubsecMap, &referentOffset); 405 p.addend = referentOffset; 406 } 407 subsec->relocs.push_back(p); 408 } 409 } 410 } 411 412 template <class NList> 413 static macho::Symbol *createDefined(const NList &sym, StringRef name, 414 InputSection *isec, uint64_t value, 415 uint64_t size) { 416 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 417 // N_EXT: Global symbols. These go in the symbol table during the link, 418 // and also in the export table of the output so that the dynamic 419 // linker sees them. 420 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 421 // symbol table during the link so that duplicates are 422 // either reported (for non-weak symbols) or merged 423 // (for weak symbols), but they do not go in the export 424 // table of the output. 425 // N_PEXT: Does not occur in input files in practice, 426 // a private extern must be external. 427 // 0: Translation-unit scoped. These are not in the symbol table during 428 // link, and not in the export table of the output either. 429 430 bool isWeakDefCanBeHidden = 431 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 432 433 if (sym.n_type & (N_EXT | N_PEXT)) { 434 assert((sym.n_type & N_EXT) && "invalid input"); 435 bool isPrivateExtern = sym.n_type & N_PEXT; 436 437 // lld's behavior for merging symbols is slightly different from ld64: 438 // ld64 picks the winning symbol based on several criteria (see 439 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 440 // just merges metadata and keeps the contents of the first symbol 441 // with that name (see SymbolTable::addDefined). For: 442 // * inline function F in a TU built with -fvisibility-inlines-hidden 443 // * and inline function F in another TU built without that flag 444 // ld64 will pick the one from the file built without 445 // -fvisibility-inlines-hidden. 446 // lld will instead pick the one listed first on the link command line and 447 // give it visibility as if the function was built without 448 // -fvisibility-inlines-hidden. 449 // If both functions have the same contents, this will have the same 450 // behavior. If not, it won't, but the input had an ODR violation in 451 // that case. 452 // 453 // Similarly, merging a symbol 454 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 455 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 456 // should produce one 457 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 458 // with ld64's semantics, because it means the non-private-extern 459 // definition will continue to take priority if more private extern 460 // definitions are encountered. With lld's semantics there's no observable 461 // difference between a symbol that's isWeakDefCanBeHidden or one that's 462 // privateExtern -- neither makes it into the dynamic symbol table. So just 463 // promote isWeakDefCanBeHidden to isPrivateExtern here. 464 if (isWeakDefCanBeHidden) 465 isPrivateExtern = true; 466 467 return symtab->addDefined(name, isec->file, isec, value, size, 468 sym.n_desc & N_WEAK_DEF, isPrivateExtern, 469 sym.n_desc & N_ARM_THUMB_DEF); 470 } 471 472 assert(!isWeakDefCanBeHidden && 473 "weak_def_can_be_hidden on already-hidden symbol?"); 474 return make<Defined>(name, isec->file, isec, value, size, 475 sym.n_desc & N_WEAK_DEF, 476 /*isExternal=*/false, /*isPrivateExtern=*/false, 477 sym.n_desc & N_ARM_THUMB_DEF); 478 } 479 480 // Absolute symbols are defined symbols that do not have an associated 481 // InputSection. They cannot be weak. 482 template <class NList> 483 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 484 StringRef name) { 485 if (sym.n_type & (N_EXT | N_PEXT)) { 486 assert((sym.n_type & N_EXT) && "invalid input"); 487 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 488 /*isWeakDef=*/false, sym.n_type & N_PEXT, 489 sym.n_desc & N_ARM_THUMB_DEF); 490 } 491 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 492 /*isWeakDef=*/false, 493 /*isExternal=*/false, /*isPrivateExtern=*/false, 494 sym.n_desc & N_ARM_THUMB_DEF); 495 } 496 497 template <class NList> 498 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 499 StringRef name) { 500 uint8_t type = sym.n_type & N_TYPE; 501 switch (type) { 502 case N_UNDF: 503 return sym.n_value == 0 504 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 505 : symtab->addCommon(name, this, sym.n_value, 506 1 << GET_COMM_ALIGN(sym.n_desc), 507 sym.n_type & N_PEXT); 508 case N_ABS: 509 return createAbsolute(sym, this, name); 510 case N_PBUD: 511 case N_INDR: 512 error("TODO: support symbols of type " + std::to_string(type)); 513 return nullptr; 514 case N_SECT: 515 llvm_unreachable( 516 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 517 default: 518 llvm_unreachable("invalid symbol type"); 519 } 520 } 521 522 template <class LP> 523 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 524 ArrayRef<typename LP::nlist> nList, 525 const char *strtab, bool subsectionsViaSymbols) { 526 using NList = typename LP::nlist; 527 528 // Groups indices of the symbols by the sections that contain them. 529 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 530 symbols.resize(nList.size()); 531 for (uint32_t i = 0; i < nList.size(); ++i) { 532 const NList &sym = nList[i]; 533 StringRef name = strtab + sym.n_strx; 534 if ((sym.n_type & N_TYPE) == N_SECT) { 535 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 536 // parseSections() may have chosen not to parse this section. 537 if (subsecMap.empty()) 538 continue; 539 symbolsBySection[sym.n_sect - 1].push_back(i); 540 } else { 541 symbols[i] = parseNonSectionSymbol(sym, name); 542 } 543 } 544 545 // Calculate symbol sizes and create subsections by splitting the sections 546 // along symbol boundaries. 547 for (size_t i = 0; i < subsections.size(); ++i) { 548 SubsectionMap &subsecMap = subsections[i]; 549 if (subsecMap.empty()) 550 continue; 551 552 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 553 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 554 return nList[lhs].n_value < nList[rhs].n_value; 555 }); 556 uint64_t sectionAddr = sectionHeaders[i].addr; 557 558 // We populate subsecMap by repeatedly splitting the last (highest address) 559 // subsection. 560 SubsectionEntry subsecEntry = subsecMap.back(); 561 for (size_t j = 0; j < symbolIndices.size(); ++j) { 562 uint32_t symIndex = symbolIndices[j]; 563 const NList &sym = nList[symIndex]; 564 StringRef name = strtab + sym.n_strx; 565 InputSection *isec = subsecEntry.isec; 566 567 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 568 uint64_t symbolOffset = sym.n_value - subsecAddr; 569 uint64_t symbolSize = 570 j + 1 < symbolIndices.size() 571 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 572 : isec->data.size() - symbolOffset; 573 // There are 3 cases where we do not need to create a new subsection: 574 // 1. If the input file does not use subsections-via-symbols. 575 // 2. Multiple symbols at the same address only induce one subsection. 576 // 3. Alternative entry points do not induce new subsections. 577 if (!subsectionsViaSymbols || symbolOffset == 0 || 578 sym.n_desc & N_ALT_ENTRY) { 579 symbols[symIndex] = 580 createDefined(sym, name, isec, symbolOffset, symbolSize); 581 continue; 582 } 583 584 auto *nextIsec = make<InputSection>(*isec); 585 nextIsec->data = isec->data.slice(symbolOffset); 586 isec->data = isec->data.slice(0, symbolOffset); 587 588 // By construction, the symbol will be at offset zero in the new 589 // subsection. 590 symbols[symIndex] = 591 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 592 // TODO: ld64 appears to preserve the original alignment as well as each 593 // subsection's offset from the last aligned address. We should consider 594 // emulating that behavior. 595 nextIsec->align = MinAlign(isec->align, sym.n_value); 596 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 597 subsecEntry = subsecMap.back(); 598 } 599 } 600 } 601 602 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 603 StringRef sectName) 604 : InputFile(OpaqueKind, mb) { 605 InputSection *isec = make<InputSection>(); 606 isec->file = this; 607 isec->name = sectName.take_front(16); 608 isec->segname = segName.take_front(16); 609 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 610 isec->data = {buf, mb.getBufferSize()}; 611 subsections.push_back({{0, isec}}); 612 } 613 614 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 615 : InputFile(ObjKind, mb), modTime(modTime) { 616 this->archiveName = std::string(archiveName); 617 if (target->wordSize == 8) 618 parse<LP64>(); 619 else 620 parse<ILP32>(); 621 } 622 623 template <class LP> void ObjFile::parse() { 624 using Header = typename LP::mach_header; 625 using SegmentCommand = typename LP::segment_command; 626 using Section = typename LP::section; 627 using NList = typename LP::nlist; 628 629 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 630 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 631 632 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 633 if (arch != config->arch()) { 634 error(toString(this) + " has architecture " + getArchitectureName(arch) + 635 " which is incompatible with target architecture " + 636 getArchitectureName(config->arch())); 637 return; 638 } 639 640 if (!checkCompatibility(this)) 641 return; 642 643 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 644 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 645 StringRef data{reinterpret_cast<const char *>(c + 1), 646 c->cmdsize - sizeof(linker_option_command)}; 647 parseLCLinkerOption(this, c->count, data); 648 } 649 650 ArrayRef<Section> sectionHeaders; 651 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 652 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 653 sectionHeaders = 654 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 655 parseSections(sectionHeaders); 656 } 657 658 // TODO: Error on missing LC_SYMTAB? 659 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 660 auto *c = reinterpret_cast<const symtab_command *>(cmd); 661 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 662 c->nsyms); 663 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 664 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 665 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 666 } 667 668 // The relocations may refer to the symbols, so we parse them after we have 669 // parsed all the symbols. 670 for (size_t i = 0, n = subsections.size(); i < n; ++i) 671 if (!subsections[i].empty()) 672 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 673 674 parseDebugInfo(); 675 } 676 677 void ObjFile::parseDebugInfo() { 678 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 679 if (!dObj) 680 return; 681 682 auto *ctx = make<DWARFContext>( 683 std::move(dObj), "", 684 [&](Error err) { 685 warn(toString(this) + ": " + toString(std::move(err))); 686 }, 687 [&](Error warning) { 688 warn(toString(this) + ": " + toString(std::move(warning))); 689 }); 690 691 // TODO: Since object files can contain a lot of DWARF info, we should verify 692 // that we are parsing just the info we need 693 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 694 // FIXME: There can be more than one compile unit per object file. See 695 // PR48637. 696 auto it = units.begin(); 697 compileUnit = it->get(); 698 } 699 700 // The path can point to either a dylib or a .tbd file. 701 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 702 Optional<MemoryBufferRef> mbref = readFile(path); 703 if (!mbref) { 704 error("could not read dylib file at " + path); 705 return {}; 706 } 707 return loadDylib(*mbref, umbrella); 708 } 709 710 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 711 // the first document storing child pointers to the rest of them. When we are 712 // processing a given TBD file, we store that top-level document in 713 // currentTopLevelTapi. When processing re-exports, we search its children for 714 // potentially matching documents in the same TBD file. Note that the children 715 // themselves don't point to further documents, i.e. this is a two-level tree. 716 // 717 // Re-exports can either refer to on-disk files, or to documents within .tbd 718 // files. 719 static Optional<DylibFile *> 720 findDylib(StringRef path, DylibFile *umbrella, 721 const InterfaceFile *currentTopLevelTapi) { 722 if (path::is_absolute(path, path::Style::posix)) 723 for (StringRef root : config->systemLibraryRoots) 724 if (Optional<std::string> dylibPath = 725 resolveDylibPath((root + path).str())) 726 return loadDylib(*dylibPath, umbrella); 727 728 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 729 730 if (currentTopLevelTapi) { 731 for (InterfaceFile &child : 732 make_pointee_range(currentTopLevelTapi->documents())) { 733 assert(child.documents().empty()); 734 if (path == child.getInstallName()) 735 return make<DylibFile>(child, umbrella); 736 } 737 } 738 739 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 740 return loadDylib(*dylibPath, umbrella); 741 742 return {}; 743 } 744 745 // If a re-exported dylib is public (lives in /usr/lib or 746 // /System/Library/Frameworks), then it is considered implicitly linked: we 747 // should bind to its symbols directly instead of via the re-exporting umbrella 748 // library. 749 static bool isImplicitlyLinked(StringRef path) { 750 if (!config->implicitDylibs) 751 return false; 752 753 if (path::parent_path(path) == "/usr/lib") 754 return true; 755 756 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 757 if (path.consume_front("/System/Library/Frameworks/")) { 758 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 759 return path::filename(path) == frameworkName; 760 } 761 762 return false; 763 } 764 765 void loadReexport(StringRef path, DylibFile *umbrella, 766 const InterfaceFile *currentTopLevelTapi) { 767 Optional<DylibFile *> reexport = 768 findDylib(path, umbrella, currentTopLevelTapi); 769 if (!reexport) 770 error("unable to locate re-export with install name " + path); 771 else if (isImplicitlyLinked(path)) 772 inputFiles.insert(*reexport); 773 } 774 775 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 776 bool isBundleLoader) 777 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 778 isBundleLoader(isBundleLoader) { 779 assert(!isBundleLoader || !umbrella); 780 if (umbrella == nullptr) 781 umbrella = this; 782 783 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 784 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 785 786 // Initialize dylibName. 787 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 788 auto *c = reinterpret_cast<const dylib_command *>(cmd); 789 currentVersion = read32le(&c->dylib.current_version); 790 compatibilityVersion = read32le(&c->dylib.compatibility_version); 791 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 792 } else if (!isBundleLoader) { 793 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 794 // so it's OK. 795 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 796 return; 797 } 798 799 if (!checkCompatibility(this)) 800 return; 801 802 // Initialize symbols. 803 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 804 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 805 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 806 parseTrie(buf + c->export_off, c->export_size, 807 [&](const Twine &name, uint64_t flags) { 808 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 809 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 810 symbols.push_back(symtab->addDylib( 811 saver.save(name), exportingFile, isWeakDef, isTlv)); 812 }); 813 } else { 814 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 815 return; 816 } 817 818 const uint8_t *p = 819 reinterpret_cast<const uint8_t *>(hdr) + target->headerSize; 820 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 821 auto *cmd = reinterpret_cast<const load_command *>(p); 822 p += cmd->cmdsize; 823 824 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 825 cmd->cmd == LC_REEXPORT_DYLIB) { 826 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 827 StringRef reexportPath = 828 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 829 loadReexport(reexportPath, exportingFile, nullptr); 830 } 831 832 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 833 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 834 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 835 if (config->namespaceKind == NamespaceKind::flat && 836 cmd->cmd == LC_LOAD_DYLIB) { 837 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 838 StringRef dylibPath = 839 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 840 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 841 if (!dylib) 842 error(Twine("unable to locate library '") + dylibPath + 843 "' loaded from '" + toString(this) + "' for -flat_namespace"); 844 } 845 } 846 } 847 848 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 849 bool isBundleLoader) 850 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 851 isBundleLoader(isBundleLoader) { 852 // FIXME: Add test for the missing TBD code path. 853 854 if (umbrella == nullptr) 855 umbrella = this; 856 857 dylibName = saver.save(interface.getInstallName()); 858 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 859 currentVersion = interface.getCurrentVersion().rawValue(); 860 861 // Some versions of XCode ship with .tbd files that don't have the right 862 // platform settings. 863 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 864 "/usr/lib/system/libsystem_kernel.dylib", 865 "/usr/lib/system/libsystem_platform.dylib", 866 "/usr/lib/system/libsystem_pthread.dylib"}; 867 868 if (!is_contained(skipPlatformChecks, dylibName) && 869 !is_contained(interface.targets(), config->platformInfo.target)) { 870 error(toString(this) + " is incompatible with " + 871 std::string(config->platformInfo.target)); 872 return; 873 } 874 875 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 876 auto addSymbol = [&](const Twine &name) -> void { 877 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 878 /*isWeakDef=*/false, 879 /*isTlv=*/false)); 880 }; 881 // TODO(compnerd) filter out symbols based on the target platform 882 // TODO: handle weak defs, thread locals 883 for (const auto *symbol : interface.symbols()) { 884 if (!symbol->getArchitectures().has(config->arch())) 885 continue; 886 887 switch (symbol->getKind()) { 888 case SymbolKind::GlobalSymbol: 889 addSymbol(symbol->getName()); 890 break; 891 case SymbolKind::ObjectiveCClass: 892 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 893 // want to emulate that. 894 addSymbol(objc::klass + symbol->getName()); 895 addSymbol(objc::metaclass + symbol->getName()); 896 break; 897 case SymbolKind::ObjectiveCClassEHType: 898 addSymbol(objc::ehtype + symbol->getName()); 899 break; 900 case SymbolKind::ObjectiveCInstanceVariable: 901 addSymbol(objc::ivar + symbol->getName()); 902 break; 903 } 904 } 905 906 const InterfaceFile *topLevel = 907 interface.getParent() == nullptr ? &interface : interface.getParent(); 908 909 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 910 InterfaceFile::const_target_range targets = intfRef.targets(); 911 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 912 is_contained(targets, config->platformInfo.target)) 913 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 914 } 915 } 916 917 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 918 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 919 for (const object::Archive::Symbol &sym : file->symbols()) 920 symtab->addLazy(sym.getName(), this, sym); 921 } 922 923 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 924 object::Archive::Child c = 925 CHECK(sym.getMember(), toString(this) + 926 ": could not get the member for symbol " + 927 toMachOString(sym)); 928 929 if (!seen.insert(c.getChildOffset()).second) 930 return; 931 932 MemoryBufferRef mb = 933 CHECK(c.getMemoryBufferRef(), 934 toString(this) + 935 ": could not get the buffer for the member defining symbol " + 936 toMachOString(sym)); 937 938 if (tar && c.getParent()->isThin()) 939 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 940 941 uint32_t modTime = toTimeT( 942 CHECK(c.getLastModified(), toString(this) + 943 ": could not get the modification time " 944 "for the member defining symbol " + 945 toMachOString(sym))); 946 947 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 948 // and become invalid after that call. Copy it to the stack so we can refer 949 // to it later. 950 const object::Archive::Symbol symCopy = sym; 951 952 if (Optional<InputFile *> file = 953 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 954 inputFiles.insert(*file); 955 // ld64 doesn't demangle sym here even with -demangle. 956 // Match that: intentionally don't call toMachOString(). 957 printArchiveMemberLoad(symCopy.getName(), *file); 958 } 959 } 960 961 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 962 BitcodeFile &file) { 963 StringRef name = saver.save(objSym.getName()); 964 965 // TODO: support weak references 966 if (objSym.isUndefined()) 967 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 968 969 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 970 971 // TODO: Write a test demonstrating why computing isPrivateExtern before 972 // LTO compilation is important. 973 bool isPrivateExtern = false; 974 switch (objSym.getVisibility()) { 975 case GlobalValue::HiddenVisibility: 976 isPrivateExtern = true; 977 break; 978 case GlobalValue::ProtectedVisibility: 979 error(name + " has protected visibility, which is not supported by Mach-O"); 980 break; 981 case GlobalValue::DefaultVisibility: 982 break; 983 } 984 985 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 986 /*size=*/0, objSym.isWeak(), isPrivateExtern, 987 /*isThumb=*/false); 988 } 989 990 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 991 : InputFile(BitcodeKind, mbref) { 992 obj = check(lto::InputFile::create(mbref)); 993 994 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 995 // "winning" symbol will then be marked as Prevailing at LTO compilation 996 // time. 997 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 998 symbols.push_back(createBitcodeSymbol(objSym, *this)); 999 } 1000 1001 template void ObjFile::parse<LP64>(); 1002