1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 SetVector<InputFile *> macho::inputFiles; 99 std::unique_ptr<TarWriter> macho::tar; 100 int InputFile::idCount = 0; 101 102 static VersionTuple decodeVersion(uint32_t version) { 103 unsigned major = version >> 16; 104 unsigned minor = (version >> 8) & 0xffu; 105 unsigned subMinor = version & 0xffu; 106 return VersionTuple(major, minor, subMinor); 107 } 108 109 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 110 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 111 return {}; 112 113 const char *hdr = input->mb.getBufferStart(); 114 115 std::vector<PlatformInfo> platformInfos; 116 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 117 PlatformInfo info; 118 info.target.Platform = static_cast<PlatformType>(cmd->platform); 119 info.minimum = decodeVersion(cmd->minos); 120 platformInfos.emplace_back(std::move(info)); 121 } 122 for (auto *cmd : findCommands<version_min_command>( 123 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 124 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 125 PlatformInfo info; 126 switch (cmd->cmd) { 127 case LC_VERSION_MIN_MACOSX: 128 info.target.Platform = PLATFORM_MACOS; 129 break; 130 case LC_VERSION_MIN_IPHONEOS: 131 info.target.Platform = PLATFORM_IOS; 132 break; 133 case LC_VERSION_MIN_TVOS: 134 info.target.Platform = PLATFORM_TVOS; 135 break; 136 case LC_VERSION_MIN_WATCHOS: 137 info.target.Platform = PLATFORM_WATCHOS; 138 break; 139 } 140 info.minimum = decodeVersion(cmd->version); 141 platformInfos.emplace_back(std::move(info)); 142 } 143 144 return platformInfos; 145 } 146 147 static bool checkCompatibility(const InputFile *input) { 148 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 149 if (platformInfos.empty()) 150 return true; 151 152 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 153 return removeSimulator(info.target.Platform) == 154 removeSimulator(config->platform()); 155 }); 156 if (it == platformInfos.end()) { 157 std::string platformNames; 158 raw_string_ostream os(platformNames); 159 interleave( 160 platformInfos, os, 161 [&](const PlatformInfo &info) { 162 os << getPlatformName(info.target.Platform); 163 }, 164 "/"); 165 error(toString(input) + " has platform " + platformNames + 166 Twine(", which is different from target platform ") + 167 getPlatformName(config->platform())); 168 return false; 169 } 170 171 if (it->minimum > config->platformInfo.minimum) 172 warn(toString(input) + " has version " + it->minimum.getAsString() + 173 ", which is newer than target minimum of " + 174 config->platformInfo.minimum.getAsString()); 175 176 return true; 177 } 178 179 // This cache mostly exists to store system libraries (and .tbds) as they're 180 // loaded, rather than the input archives, which are already cached at a higher 181 // level, and other files like the filelist that are only read once. 182 // Theoretically this caching could be more efficient by hoisting it, but that 183 // would require altering many callers to track the state. 184 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 185 // Open a given file path and return it as a memory-mapped file. 186 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 187 CachedHashStringRef key(path); 188 auto entry = cachedReads.find(key); 189 if (entry != cachedReads.end()) 190 return entry->second; 191 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return cachedReads[key] = mbref; 210 } 211 212 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 213 214 // Object files and archive files may be fat files, which contain multiple 215 // real files for different CPU ISAs. Here, we search for a file that matches 216 // with the current link target and returns it as a MemoryBufferRef. 217 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 218 219 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 220 if (reinterpret_cast<const char *>(arch + i + 1) > 221 buf + mbref.getBufferSize()) { 222 error(path + ": fat_arch struct extends beyond end of file"); 223 return None; 224 } 225 226 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 227 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 228 continue; 229 230 uint32_t offset = read32be(&arch[i].offset); 231 uint32_t size = read32be(&arch[i].size); 232 if (offset + size > mbref.getBufferSize()) 233 error(path + ": slice extends beyond end of file"); 234 if (tar) 235 tar->append(relativeToRoot(path), mbref.getBuffer()); 236 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 237 path.copy(bAlloc)); 238 } 239 240 error("unable to find matching architecture in " + path); 241 return None; 242 } 243 244 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 245 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 246 247 // Some sections comprise of fixed-size records, so instead of splitting them at 248 // symbol boundaries, we split them based on size. Records are distinct from 249 // literals in that they may contain references to other sections, instead of 250 // being leaf nodes in the InputSection graph. 251 // 252 // Note that "record" is a term I came up with. In contrast, "literal" is a term 253 // used by the Mach-O format. 254 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 255 if (name == section_names::compactUnwind) { 256 if (segname == segment_names::ld) 257 return target->wordSize == 8 ? 32 : 20; 258 } 259 if (config->icfLevel == ICFLevel::none) 260 return {}; 261 262 if (name == section_names::cfString && segname == segment_names::data) 263 return target->wordSize == 8 ? 32 : 16; 264 if (name == section_names::objcClassRefs && segname == segment_names::data) 265 return target->wordSize; 266 return {}; 267 } 268 269 static Error parseCallGraph(ArrayRef<uint8_t> data, 270 std::vector<CallGraphEntry> &callGraph) { 271 TimeTraceScope timeScope("Parsing call graph section"); 272 BinaryStreamReader reader(data, support::little); 273 while (!reader.empty()) { 274 uint32_t fromIndex, toIndex; 275 uint64_t count; 276 if (Error err = reader.readInteger(fromIndex)) 277 return err; 278 if (Error err = reader.readInteger(toIndex)) 279 return err; 280 if (Error err = reader.readInteger(count)) 281 return err; 282 callGraph.emplace_back(fromIndex, toIndex, count); 283 } 284 return Error::success(); 285 } 286 287 // Parse the sequence of sections within a single LC_SEGMENT(_64). 288 // Split each section into subsections. 289 template <class SectionHeader> 290 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 291 sections.reserve(sectionHeaders.size()); 292 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 293 294 for (const SectionHeader &sec : sectionHeaders) { 295 StringRef name = 296 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 297 StringRef segname = 298 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 299 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 300 : buf + sec.offset, 301 static_cast<size_t>(sec.size)}; 302 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 303 if (sec.align >= 32) { 304 error("alignment " + std::to_string(sec.align) + " of section " + name + 305 " is too large"); 306 continue; 307 } 308 const Section §ion = *sections.back(); 309 uint32_t align = 1 << sec.align; 310 311 auto splitRecords = [&](int recordSize) -> void { 312 if (data.empty()) 313 return; 314 Subsections &subsections = sections.back()->subsections; 315 subsections.reserve(data.size() / recordSize); 316 for (uint64_t off = 0; off < data.size(); off += recordSize) { 317 auto *isec = make<ConcatInputSection>( 318 section, data.slice(off, recordSize), align); 319 subsections.push_back({off, isec}); 320 } 321 }; 322 323 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 324 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 325 if (sec.nreloc && config->dedupLiterals) 326 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 327 sec.sectname + 328 ", so LLD cannot deduplicate literals. Try re-running without " 329 "--deduplicate-literals."); 330 331 InputSection *isec; 332 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 333 isec = make<CStringInputSection>(section, data, align); 334 // FIXME: parallelize this? 335 cast<CStringInputSection>(isec)->splitIntoPieces(); 336 } else { 337 isec = make<WordLiteralInputSection>(section, data, align); 338 } 339 sections.back()->subsections.push_back({0, isec}); 340 } else if (auto recordSize = getRecordSize(segname, name)) { 341 splitRecords(*recordSize); 342 if (name == section_names::compactUnwind) 343 compactUnwindSection = sections.back(); 344 } else if (segname == segment_names::llvm) { 345 if (config->callGraphProfileSort && name == section_names::cgProfile) 346 checkError(parseCallGraph(data, callGraph)); 347 // ld64 does not appear to emit contents from sections within the __LLVM 348 // segment. Symbols within those sections point to bitcode metadata 349 // instead of actual symbols. Global symbols within those sections could 350 // have the same name without causing duplicate symbol errors. To avoid 351 // spurious duplicate symbol errors, we do not parse these sections. 352 // TODO: Evaluate whether the bitcode metadata is needed. 353 } else { 354 auto *isec = make<ConcatInputSection>(section, data, align); 355 if (isDebugSection(isec->getFlags()) && 356 isec->getSegName() == segment_names::dwarf) { 357 // Instead of emitting DWARF sections, we emit STABS symbols to the 358 // object files that contain them. We filter them out early to avoid 359 // parsing their relocations unnecessarily. 360 debugSections.push_back(isec); 361 } else { 362 sections.back()->subsections.push_back({0, isec}); 363 } 364 } 365 } 366 } 367 368 // Find the subsection corresponding to the greatest section offset that is <= 369 // that of the given offset. 370 // 371 // offset: an offset relative to the start of the original InputSection (before 372 // any subsection splitting has occurred). It will be updated to represent the 373 // same location as an offset relative to the start of the containing 374 // subsection. 375 template <class T> 376 static InputSection *findContainingSubsection(const Subsections &subsections, 377 T *offset) { 378 static_assert(std::is_same<uint64_t, T>::value || 379 std::is_same<uint32_t, T>::value, 380 "unexpected type for offset"); 381 auto it = std::prev(llvm::upper_bound( 382 subsections, *offset, 383 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 384 *offset -= it->offset; 385 return it->isec; 386 } 387 388 template <class SectionHeader> 389 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 390 relocation_info rel) { 391 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 392 bool valid = true; 393 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 394 valid = false; 395 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 396 std::to_string(rel.r_address) + " of " + sec.segname + "," + 397 sec.sectname + " in " + toString(file)) 398 .str(); 399 }; 400 401 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 402 error(message("must be extern")); 403 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 404 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 405 "be PC-relative")); 406 if (isThreadLocalVariables(sec.flags) && 407 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 408 error(message("not allowed in thread-local section, must be UNSIGNED")); 409 if (rel.r_length < 2 || rel.r_length > 3 || 410 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 411 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 412 error(message("has width " + std::to_string(1 << rel.r_length) + 413 " bytes, but must be " + 414 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 415 " bytes")); 416 } 417 return valid; 418 } 419 420 template <class SectionHeader> 421 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 422 const SectionHeader &sec, 423 Subsections &subsections) { 424 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 425 ArrayRef<relocation_info> relInfos( 426 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 427 428 auto subsecIt = subsections.rbegin(); 429 for (size_t i = 0; i < relInfos.size(); i++) { 430 // Paired relocations serve as Mach-O's method for attaching a 431 // supplemental datum to a primary relocation record. ELF does not 432 // need them because the *_RELOC_RELA records contain the extra 433 // addend field, vs. *_RELOC_REL which omit the addend. 434 // 435 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 436 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 437 // datum for each is a symbolic address. The result is the offset 438 // between two addresses. 439 // 440 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 441 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 442 // base symbolic address. 443 // 444 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 445 // addend into the instruction stream. On X86, a relocatable address 446 // field always occupies an entire contiguous sequence of byte(s), 447 // so there is no need to merge opcode bits with address 448 // bits. Therefore, it's easy and convenient to store addends in the 449 // instruction-stream bytes that would otherwise contain zeroes. By 450 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 451 // address bits so that bitwise arithmetic is necessary to extract 452 // and insert them. Storing addends in the instruction stream is 453 // possible, but inconvenient and more costly at link time. 454 455 relocation_info relInfo = relInfos[i]; 456 bool isSubtrahend = 457 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 458 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 459 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 460 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 461 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 462 ++i; 463 continue; 464 } 465 int64_t pairedAddend = 0; 466 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 467 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 468 relInfo = relInfos[++i]; 469 } 470 assert(i < relInfos.size()); 471 if (!validateRelocationInfo(this, sec, relInfo)) 472 continue; 473 if (relInfo.r_address & R_SCATTERED) 474 fatal("TODO: Scattered relocations not supported"); 475 476 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 477 assert(!(embeddedAddend && pairedAddend)); 478 int64_t totalAddend = pairedAddend + embeddedAddend; 479 Reloc r; 480 r.type = relInfo.r_type; 481 r.pcrel = relInfo.r_pcrel; 482 r.length = relInfo.r_length; 483 r.offset = relInfo.r_address; 484 if (relInfo.r_extern) { 485 r.referent = symbols[relInfo.r_symbolnum]; 486 r.addend = isSubtrahend ? 0 : totalAddend; 487 } else { 488 assert(!isSubtrahend); 489 const SectionHeader &referentSecHead = 490 sectionHeaders[relInfo.r_symbolnum - 1]; 491 uint64_t referentOffset; 492 if (relInfo.r_pcrel) { 493 // The implicit addend for pcrel section relocations is the pcrel offset 494 // in terms of the addresses in the input file. Here we adjust it so 495 // that it describes the offset from the start of the referent section. 496 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 497 // have pcrel section relocations. We may want to factor this out into 498 // the arch-specific .cpp file. 499 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 500 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 501 referentSecHead.addr; 502 } else { 503 // The addend for a non-pcrel relocation is its absolute address. 504 referentOffset = totalAddend - referentSecHead.addr; 505 } 506 Subsections &referentSubsections = 507 sections[relInfo.r_symbolnum - 1]->subsections; 508 r.referent = 509 findContainingSubsection(referentSubsections, &referentOffset); 510 r.addend = referentOffset; 511 } 512 513 // Find the subsection that this relocation belongs to. 514 // Though not required by the Mach-O format, clang and gcc seem to emit 515 // relocations in order, so let's take advantage of it. However, ld64 emits 516 // unsorted relocations (in `-r` mode), so we have a fallback for that 517 // uncommon case. 518 InputSection *subsec; 519 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 520 ++subsecIt; 521 if (subsecIt == subsections.rend() || 522 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 523 subsec = findContainingSubsection(subsections, &r.offset); 524 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 525 // for the other relocations. 526 subsecIt = subsections.rend(); 527 } else { 528 subsec = subsecIt->isec; 529 r.offset -= subsecIt->offset; 530 } 531 subsec->relocs.push_back(r); 532 533 if (isSubtrahend) { 534 relocation_info minuendInfo = relInfos[++i]; 535 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 536 // attached to the same address. 537 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 538 relInfo.r_address == minuendInfo.r_address); 539 Reloc p; 540 p.type = minuendInfo.r_type; 541 if (minuendInfo.r_extern) { 542 p.referent = symbols[minuendInfo.r_symbolnum]; 543 p.addend = totalAddend; 544 } else { 545 uint64_t referentOffset = 546 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 547 Subsections &referentSubsectVec = 548 sections[minuendInfo.r_symbolnum - 1]->subsections; 549 p.referent = 550 findContainingSubsection(referentSubsectVec, &referentOffset); 551 p.addend = referentOffset; 552 } 553 subsec->relocs.push_back(p); 554 } 555 } 556 } 557 558 template <class NList> 559 static macho::Symbol *createDefined(const NList &sym, StringRef name, 560 InputSection *isec, uint64_t value, 561 uint64_t size) { 562 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 563 // N_EXT: Global symbols. These go in the symbol table during the link, 564 // and also in the export table of the output so that the dynamic 565 // linker sees them. 566 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 567 // symbol table during the link so that duplicates are 568 // either reported (for non-weak symbols) or merged 569 // (for weak symbols), but they do not go in the export 570 // table of the output. 571 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 572 // object files) may produce them. LLD does not yet support -r. 573 // These are translation-unit scoped, identical to the `0` case. 574 // 0: Translation-unit scoped. These are not in the symbol table during 575 // link, and not in the export table of the output either. 576 bool isWeakDefCanBeHidden = 577 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 578 579 if (sym.n_type & N_EXT) { 580 bool isPrivateExtern = sym.n_type & N_PEXT; 581 // lld's behavior for merging symbols is slightly different from ld64: 582 // ld64 picks the winning symbol based on several criteria (see 583 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 584 // just merges metadata and keeps the contents of the first symbol 585 // with that name (see SymbolTable::addDefined). For: 586 // * inline function F in a TU built with -fvisibility-inlines-hidden 587 // * and inline function F in another TU built without that flag 588 // ld64 will pick the one from the file built without 589 // -fvisibility-inlines-hidden. 590 // lld will instead pick the one listed first on the link command line and 591 // give it visibility as if the function was built without 592 // -fvisibility-inlines-hidden. 593 // If both functions have the same contents, this will have the same 594 // behavior. If not, it won't, but the input had an ODR violation in 595 // that case. 596 // 597 // Similarly, merging a symbol 598 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 599 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 600 // should produce one 601 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 602 // with ld64's semantics, because it means the non-private-extern 603 // definition will continue to take priority if more private extern 604 // definitions are encountered. With lld's semantics there's no observable 605 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 606 // that's privateExtern -- neither makes it into the dynamic symbol table, 607 // unless the autohide symbol is explicitly exported. 608 // But if a symbol is both privateExtern and autohide then it can't 609 // be exported. 610 // So we nullify the autohide flag when privateExtern is present 611 // and promote the symbol to privateExtern when it is not already. 612 if (isWeakDefCanBeHidden && isPrivateExtern) 613 isWeakDefCanBeHidden = false; 614 else if (isWeakDefCanBeHidden) 615 isPrivateExtern = true; 616 return symtab->addDefined( 617 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 618 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 619 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 620 isWeakDefCanBeHidden); 621 } 622 assert(!isWeakDefCanBeHidden && 623 "weak_def_can_be_hidden on already-hidden symbol?"); 624 return make<Defined>( 625 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 626 /*isExternal=*/false, /*isPrivateExtern=*/false, 627 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 628 sym.n_desc & N_NO_DEAD_STRIP); 629 } 630 631 // Absolute symbols are defined symbols that do not have an associated 632 // InputSection. They cannot be weak. 633 template <class NList> 634 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 635 StringRef name) { 636 if (sym.n_type & N_EXT) { 637 return symtab->addDefined( 638 name, file, nullptr, sym.n_value, /*size=*/0, 639 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 640 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 641 /*isWeakDefCanBeHidden=*/false); 642 } 643 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 644 /*isWeakDef=*/false, 645 /*isExternal=*/false, /*isPrivateExtern=*/false, 646 sym.n_desc & N_ARM_THUMB_DEF, 647 /*isReferencedDynamically=*/false, 648 sym.n_desc & N_NO_DEAD_STRIP); 649 } 650 651 template <class NList> 652 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 653 StringRef name) { 654 uint8_t type = sym.n_type & N_TYPE; 655 switch (type) { 656 case N_UNDF: 657 return sym.n_value == 0 658 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 659 : symtab->addCommon(name, this, sym.n_value, 660 1 << GET_COMM_ALIGN(sym.n_desc), 661 sym.n_type & N_PEXT); 662 case N_ABS: 663 return createAbsolute(sym, this, name); 664 case N_PBUD: 665 case N_INDR: 666 error("TODO: support symbols of type " + std::to_string(type)); 667 return nullptr; 668 case N_SECT: 669 llvm_unreachable( 670 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 671 default: 672 llvm_unreachable("invalid symbol type"); 673 } 674 } 675 676 template <class NList> static bool isUndef(const NList &sym) { 677 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 678 } 679 680 template <class LP> 681 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 682 ArrayRef<typename LP::nlist> nList, 683 const char *strtab, bool subsectionsViaSymbols) { 684 using NList = typename LP::nlist; 685 686 // Groups indices of the symbols by the sections that contain them. 687 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 688 symbols.resize(nList.size()); 689 SmallVector<unsigned, 32> undefineds; 690 for (uint32_t i = 0; i < nList.size(); ++i) { 691 const NList &sym = nList[i]; 692 693 // Ignore debug symbols for now. 694 // FIXME: may need special handling. 695 if (sym.n_type & N_STAB) 696 continue; 697 698 StringRef name = strtab + sym.n_strx; 699 if ((sym.n_type & N_TYPE) == N_SECT) { 700 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 701 // parseSections() may have chosen not to parse this section. 702 if (subsections.empty()) 703 continue; 704 symbolsBySection[sym.n_sect - 1].push_back(i); 705 } else if (isUndef(sym)) { 706 undefineds.push_back(i); 707 } else { 708 symbols[i] = parseNonSectionSymbol(sym, name); 709 } 710 } 711 712 for (size_t i = 0; i < sections.size(); ++i) { 713 Subsections &subsections = sections[i]->subsections; 714 if (subsections.empty()) 715 continue; 716 InputSection *lastIsec = subsections.back().isec; 717 if (lastIsec->getName() == section_names::ehFrame) { 718 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 719 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 720 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 721 continue; 722 } 723 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 724 uint64_t sectionAddr = sectionHeaders[i].addr; 725 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 726 727 // Record-based sections have already been split into subsections during 728 // parseSections(), so we simply need to match Symbols to the corresponding 729 // subsection here. 730 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 731 for (size_t j = 0; j < symbolIndices.size(); ++j) { 732 uint32_t symIndex = symbolIndices[j]; 733 const NList &sym = nList[symIndex]; 734 StringRef name = strtab + sym.n_strx; 735 uint64_t symbolOffset = sym.n_value - sectionAddr; 736 InputSection *isec = 737 findContainingSubsection(subsections, &symbolOffset); 738 if (symbolOffset != 0) { 739 error(toString(lastIsec) + ": symbol " + name + 740 " at misaligned offset"); 741 continue; 742 } 743 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 744 } 745 continue; 746 } 747 748 // Calculate symbol sizes and create subsections by splitting the sections 749 // along symbol boundaries. 750 // We populate subsections by repeatedly splitting the last (highest 751 // address) subsection. 752 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 753 return nList[lhs].n_value < nList[rhs].n_value; 754 }); 755 for (size_t j = 0; j < symbolIndices.size(); ++j) { 756 uint32_t symIndex = symbolIndices[j]; 757 const NList &sym = nList[symIndex]; 758 StringRef name = strtab + sym.n_strx; 759 Subsection &subsec = subsections.back(); 760 InputSection *isec = subsec.isec; 761 762 uint64_t subsecAddr = sectionAddr + subsec.offset; 763 size_t symbolOffset = sym.n_value - subsecAddr; 764 uint64_t symbolSize = 765 j + 1 < symbolIndices.size() 766 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 767 : isec->data.size() - symbolOffset; 768 // There are 4 cases where we do not need to create a new subsection: 769 // 1. If the input file does not use subsections-via-symbols. 770 // 2. Multiple symbols at the same address only induce one subsection. 771 // (The symbolOffset == 0 check covers both this case as well as 772 // the first loop iteration.) 773 // 3. Alternative entry points do not induce new subsections. 774 // 4. If we have a literal section (e.g. __cstring and __literal4). 775 if (!subsectionsViaSymbols || symbolOffset == 0 || 776 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 777 symbols[symIndex] = 778 createDefined(sym, name, isec, symbolOffset, symbolSize); 779 continue; 780 } 781 auto *concatIsec = cast<ConcatInputSection>(isec); 782 783 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 784 nextIsec->wasCoalesced = false; 785 if (isZeroFill(isec->getFlags())) { 786 // Zero-fill sections have NULL data.data() non-zero data.size() 787 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 788 isec->data = {nullptr, symbolOffset}; 789 } else { 790 nextIsec->data = isec->data.slice(symbolOffset); 791 isec->data = isec->data.slice(0, symbolOffset); 792 } 793 794 // By construction, the symbol will be at offset zero in the new 795 // subsection. 796 symbols[symIndex] = 797 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 798 // TODO: ld64 appears to preserve the original alignment as well as each 799 // subsection's offset from the last aligned address. We should consider 800 // emulating that behavior. 801 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 802 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 803 } 804 } 805 806 // Undefined symbols can trigger recursive fetch from Archives due to 807 // LazySymbols. Process defined symbols first so that the relative order 808 // between a defined symbol and an undefined symbol does not change the 809 // symbol resolution behavior. In addition, a set of interconnected symbols 810 // will all be resolved to the same file, instead of being resolved to 811 // different files. 812 for (unsigned i : undefineds) { 813 const NList &sym = nList[i]; 814 StringRef name = strtab + sym.n_strx; 815 symbols[i] = parseNonSectionSymbol(sym, name); 816 } 817 } 818 819 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 820 StringRef sectName) 821 : InputFile(OpaqueKind, mb) { 822 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 823 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 824 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 825 sectName.take_front(16), 826 /*flags=*/0, /*addr=*/0)); 827 Section §ion = *sections.back(); 828 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 829 isec->live = true; 830 section.subsections.push_back({0, isec}); 831 } 832 833 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 834 bool lazy) 835 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 836 this->archiveName = std::string(archiveName); 837 if (lazy) { 838 if (target->wordSize == 8) 839 parseLazy<LP64>(); 840 else 841 parseLazy<ILP32>(); 842 } else { 843 if (target->wordSize == 8) 844 parse<LP64>(); 845 else 846 parse<ILP32>(); 847 } 848 } 849 850 template <class LP> void ObjFile::parse() { 851 using Header = typename LP::mach_header; 852 using SegmentCommand = typename LP::segment_command; 853 using SectionHeader = typename LP::section; 854 using NList = typename LP::nlist; 855 856 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 857 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 858 859 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 860 if (arch != config->arch()) { 861 auto msg = config->errorForArchMismatch 862 ? static_cast<void (*)(const Twine &)>(error) 863 : warn; 864 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 865 " which is incompatible with target architecture " + 866 getArchitectureName(config->arch())); 867 return; 868 } 869 870 if (!checkCompatibility(this)) 871 return; 872 873 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 874 StringRef data{reinterpret_cast<const char *>(cmd + 1), 875 cmd->cmdsize - sizeof(linker_option_command)}; 876 parseLCLinkerOption(this, cmd->count, data); 877 } 878 879 ArrayRef<SectionHeader> sectionHeaders; 880 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 881 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 882 sectionHeaders = ArrayRef<SectionHeader>{ 883 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 884 parseSections(sectionHeaders); 885 } 886 887 // TODO: Error on missing LC_SYMTAB? 888 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 889 auto *c = reinterpret_cast<const symtab_command *>(cmd); 890 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 891 c->nsyms); 892 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 893 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 894 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 895 } 896 897 // The relocations may refer to the symbols, so we parse them after we have 898 // parsed all the symbols. 899 for (size_t i = 0, n = sections.size(); i < n; ++i) 900 if (!sections[i]->subsections.empty()) 901 parseRelocations(sectionHeaders, sectionHeaders[i], 902 sections[i]->subsections); 903 904 parseDebugInfo(); 905 if (compactUnwindSection) 906 registerCompactUnwind(); 907 } 908 909 template <class LP> void ObjFile::parseLazy() { 910 using Header = typename LP::mach_header; 911 using NList = typename LP::nlist; 912 913 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 914 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 915 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 916 if (!cmd) 917 return; 918 auto *c = reinterpret_cast<const symtab_command *>(cmd); 919 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 920 c->nsyms); 921 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 922 symbols.resize(nList.size()); 923 for (auto it : llvm::enumerate(nList)) { 924 const NList &sym = it.value(); 925 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 926 // TODO: Bound checking 927 StringRef name = strtab + sym.n_strx; 928 symbols[it.index()] = symtab->addLazyObject(name, *this); 929 if (!lazy) 930 break; 931 } 932 } 933 } 934 935 void ObjFile::parseDebugInfo() { 936 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 937 if (!dObj) 938 return; 939 940 auto *ctx = make<DWARFContext>( 941 std::move(dObj), "", 942 [&](Error err) { 943 warn(toString(this) + ": " + toString(std::move(err))); 944 }, 945 [&](Error warning) { 946 warn(toString(this) + ": " + toString(std::move(warning))); 947 }); 948 949 // TODO: Since object files can contain a lot of DWARF info, we should verify 950 // that we are parsing just the info we need 951 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 952 // FIXME: There can be more than one compile unit per object file. See 953 // PR48637. 954 auto it = units.begin(); 955 compileUnit = it->get(); 956 } 957 958 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 959 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 960 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 961 if (!cmd) 962 return {}; 963 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 964 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 965 c->datasize / sizeof(data_in_code_entry)}; 966 } 967 968 // Create pointers from symbols to their associated compact unwind entries. 969 void ObjFile::registerCompactUnwind() { 970 for (const Subsection &subsection : compactUnwindSection->subsections) { 971 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 972 // Hack!! Since each CUE contains a different function address, if ICF 973 // operated naively and compared the entire contents of each CUE, entries 974 // with identical unwind info but belonging to different functions would 975 // never be considered equivalent. To work around this problem, we slice 976 // away the function address here. (Note that we do not adjust the offsets 977 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 978 // to correctly handle these truncated input sections. 979 isec->data = isec->data.slice(target->wordSize); 980 981 ConcatInputSection *referentIsec; 982 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 983 Reloc &r = *it; 984 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 985 if (r.offset != 0) { 986 ++it; 987 continue; 988 } 989 uint64_t add = r.addend; 990 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 991 // Check whether the symbol defined in this file is the prevailing one. 992 // Skip if it is e.g. a weak def that didn't prevail. 993 if (sym->getFile() != this) { 994 ++it; 995 continue; 996 } 997 add += sym->value; 998 referentIsec = cast<ConcatInputSection>(sym->isec); 999 } else { 1000 referentIsec = 1001 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1002 } 1003 if (referentIsec->getSegName() != segment_names::text) 1004 error(isec->getLocation(r.offset) + " references section " + 1005 referentIsec->getName() + " which is not in segment __TEXT"); 1006 // The functionAddress relocations are typically section relocations. 1007 // However, unwind info operates on a per-symbol basis, so we search for 1008 // the function symbol here. 1009 auto symIt = llvm::lower_bound( 1010 referentIsec->symbols, add, 1011 [](Defined *d, uint64_t add) { return d->value < add; }); 1012 // The relocation should point at the exact address of a symbol (with no 1013 // addend). 1014 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 1015 assert(referentIsec->wasCoalesced); 1016 ++it; 1017 continue; 1018 } 1019 (*symIt)->unwindEntry = isec; 1020 // Since we've sliced away the functionAddress, we should remove the 1021 // corresponding relocation too. Given that clang emits relocations in 1022 // reverse order of address, this relocation should be at the end of the 1023 // vector for most of our input object files, so this is typically an O(1) 1024 // operation. 1025 it = isec->relocs.erase(it); 1026 } 1027 } 1028 } 1029 1030 // The path can point to either a dylib or a .tbd file. 1031 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1032 Optional<MemoryBufferRef> mbref = readFile(path); 1033 if (!mbref) { 1034 error("could not read dylib file at " + path); 1035 return nullptr; 1036 } 1037 return loadDylib(*mbref, umbrella); 1038 } 1039 1040 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1041 // the first document storing child pointers to the rest of them. When we are 1042 // processing a given TBD file, we store that top-level document in 1043 // currentTopLevelTapi. When processing re-exports, we search its children for 1044 // potentially matching documents in the same TBD file. Note that the children 1045 // themselves don't point to further documents, i.e. this is a two-level tree. 1046 // 1047 // Re-exports can either refer to on-disk files, or to documents within .tbd 1048 // files. 1049 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1050 const InterfaceFile *currentTopLevelTapi) { 1051 // Search order: 1052 // 1. Install name basename in -F / -L directories. 1053 { 1054 StringRef stem = path::stem(path); 1055 SmallString<128> frameworkName; 1056 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1057 bool isFramework = path.endswith(frameworkName); 1058 if (isFramework) { 1059 for (StringRef dir : config->frameworkSearchPaths) { 1060 SmallString<128> candidate = dir; 1061 path::append(candidate, frameworkName); 1062 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1063 return loadDylib(*dylibPath, umbrella); 1064 } 1065 } else if (Optional<StringRef> dylibPath = findPathCombination( 1066 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1067 return loadDylib(*dylibPath, umbrella); 1068 } 1069 1070 // 2. As absolute path. 1071 if (path::is_absolute(path, path::Style::posix)) 1072 for (StringRef root : config->systemLibraryRoots) 1073 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1074 return loadDylib(*dylibPath, umbrella); 1075 1076 // 3. As relative path. 1077 1078 // TODO: Handle -dylib_file 1079 1080 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1081 SmallString<128> newPath; 1082 if (config->outputType == MH_EXECUTE && 1083 path.consume_front("@executable_path/")) { 1084 // ld64 allows overriding this with the undocumented flag -executable_path. 1085 // lld doesn't currently implement that flag. 1086 // FIXME: Consider using finalOutput instead of outputFile. 1087 path::append(newPath, path::parent_path(config->outputFile), path); 1088 path = newPath; 1089 } else if (path.consume_front("@loader_path/")) { 1090 fs::real_path(umbrella->getName(), newPath); 1091 path::remove_filename(newPath); 1092 path::append(newPath, path); 1093 path = newPath; 1094 } else if (path.startswith("@rpath/")) { 1095 for (StringRef rpath : umbrella->rpaths) { 1096 newPath.clear(); 1097 if (rpath.consume_front("@loader_path/")) { 1098 fs::real_path(umbrella->getName(), newPath); 1099 path::remove_filename(newPath); 1100 } 1101 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1102 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1103 return loadDylib(*dylibPath, umbrella); 1104 } 1105 } 1106 1107 // FIXME: Should this be further up? 1108 if (currentTopLevelTapi) { 1109 for (InterfaceFile &child : 1110 make_pointee_range(currentTopLevelTapi->documents())) { 1111 assert(child.documents().empty()); 1112 if (path == child.getInstallName()) { 1113 auto file = make<DylibFile>(child, umbrella); 1114 file->parseReexports(child); 1115 return file; 1116 } 1117 } 1118 } 1119 1120 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1121 return loadDylib(*dylibPath, umbrella); 1122 1123 return nullptr; 1124 } 1125 1126 // If a re-exported dylib is public (lives in /usr/lib or 1127 // /System/Library/Frameworks), then it is considered implicitly linked: we 1128 // should bind to its symbols directly instead of via the re-exporting umbrella 1129 // library. 1130 static bool isImplicitlyLinked(StringRef path) { 1131 if (!config->implicitDylibs) 1132 return false; 1133 1134 if (path::parent_path(path) == "/usr/lib") 1135 return true; 1136 1137 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1138 if (path.consume_front("/System/Library/Frameworks/")) { 1139 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1140 return path::filename(path) == frameworkName; 1141 } 1142 1143 return false; 1144 } 1145 1146 static void loadReexport(StringRef path, DylibFile *umbrella, 1147 const InterfaceFile *currentTopLevelTapi) { 1148 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1149 if (!reexport) 1150 error("unable to locate re-export with install name " + path); 1151 } 1152 1153 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1154 bool isBundleLoader) 1155 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1156 isBundleLoader(isBundleLoader) { 1157 assert(!isBundleLoader || !umbrella); 1158 if (umbrella == nullptr) 1159 umbrella = this; 1160 this->umbrella = umbrella; 1161 1162 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1163 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1164 1165 // Initialize installName. 1166 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1167 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1168 currentVersion = read32le(&c->dylib.current_version); 1169 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1170 installName = 1171 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1172 } else if (!isBundleLoader) { 1173 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1174 // so it's OK. 1175 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1176 return; 1177 } 1178 1179 if (config->printEachFile) 1180 message(toString(this)); 1181 inputFiles.insert(this); 1182 1183 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1184 1185 if (!checkCompatibility(this)) 1186 return; 1187 1188 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1189 1190 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1191 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1192 rpaths.push_back(rpath); 1193 } 1194 1195 // Initialize symbols. 1196 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1197 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1198 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1199 struct TrieEntry { 1200 StringRef name; 1201 uint64_t flags; 1202 }; 1203 1204 std::vector<TrieEntry> entries; 1205 // Find all the $ld$* symbols to process first. 1206 parseTrie(buf + c->export_off, c->export_size, 1207 [&](const Twine &name, uint64_t flags) { 1208 StringRef savedName = saver().save(name); 1209 if (handleLDSymbol(savedName)) 1210 return; 1211 entries.push_back({savedName, flags}); 1212 }); 1213 1214 // Process the "normal" symbols. 1215 for (TrieEntry &entry : entries) { 1216 if (exportingFile->hiddenSymbols.contains( 1217 CachedHashStringRef(entry.name))) 1218 continue; 1219 1220 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1221 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1222 1223 symbols.push_back( 1224 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1225 } 1226 1227 } else { 1228 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1229 return; 1230 } 1231 } 1232 1233 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1234 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1235 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1236 target->headerSize; 1237 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1238 auto *cmd = reinterpret_cast<const load_command *>(p); 1239 p += cmd->cmdsize; 1240 1241 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1242 cmd->cmd == LC_REEXPORT_DYLIB) { 1243 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1244 StringRef reexportPath = 1245 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1246 loadReexport(reexportPath, exportingFile, nullptr); 1247 } 1248 1249 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1250 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1251 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1252 if (config->namespaceKind == NamespaceKind::flat && 1253 cmd->cmd == LC_LOAD_DYLIB) { 1254 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1255 StringRef dylibPath = 1256 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1257 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1258 if (!dylib) 1259 error(Twine("unable to locate library '") + dylibPath + 1260 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1261 } 1262 } 1263 } 1264 1265 // Some versions of XCode ship with .tbd files that don't have the right 1266 // platform settings. 1267 constexpr std::array<StringRef, 4> skipPlatformChecks{ 1268 "/usr/lib/system/libsystem_kernel.dylib", 1269 "/usr/lib/system/libsystem_platform.dylib", 1270 "/usr/lib/system/libsystem_pthread.dylib", 1271 "/usr/lib/system/libcompiler_rt.dylib"}; 1272 1273 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1274 bool isBundleLoader) 1275 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1276 isBundleLoader(isBundleLoader) { 1277 // FIXME: Add test for the missing TBD code path. 1278 1279 if (umbrella == nullptr) 1280 umbrella = this; 1281 this->umbrella = umbrella; 1282 1283 installName = saver().save(interface.getInstallName()); 1284 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1285 currentVersion = interface.getCurrentVersion().rawValue(); 1286 1287 if (config->printEachFile) 1288 message(toString(this)); 1289 inputFiles.insert(this); 1290 1291 if (!is_contained(skipPlatformChecks, installName) && 1292 !is_contained(interface.targets(), config->platformInfo.target)) { 1293 error(toString(this) + " is incompatible with " + 1294 std::string(config->platformInfo.target)); 1295 return; 1296 } 1297 1298 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1299 1300 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1301 auto addSymbol = [&](const Twine &name) -> void { 1302 StringRef savedName = saver().save(name); 1303 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1304 return; 1305 1306 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1307 /*isWeakDef=*/false, 1308 /*isTlv=*/false)); 1309 }; 1310 1311 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1312 normalSymbols.reserve(interface.symbolsCount()); 1313 for (const auto *symbol : interface.symbols()) { 1314 if (!symbol->getArchitectures().has(config->arch())) 1315 continue; 1316 if (handleLDSymbol(symbol->getName())) 1317 continue; 1318 1319 switch (symbol->getKind()) { 1320 case SymbolKind::GlobalSymbol: // Fallthrough 1321 case SymbolKind::ObjectiveCClass: // Fallthrough 1322 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1323 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1324 normalSymbols.push_back(symbol); 1325 } 1326 } 1327 1328 // TODO(compnerd) filter out symbols based on the target platform 1329 // TODO: handle weak defs, thread locals 1330 for (const auto *symbol : normalSymbols) { 1331 switch (symbol->getKind()) { 1332 case SymbolKind::GlobalSymbol: 1333 addSymbol(symbol->getName()); 1334 break; 1335 case SymbolKind::ObjectiveCClass: 1336 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1337 // want to emulate that. 1338 addSymbol(objc::klass + symbol->getName()); 1339 addSymbol(objc::metaclass + symbol->getName()); 1340 break; 1341 case SymbolKind::ObjectiveCClassEHType: 1342 addSymbol(objc::ehtype + symbol->getName()); 1343 break; 1344 case SymbolKind::ObjectiveCInstanceVariable: 1345 addSymbol(objc::ivar + symbol->getName()); 1346 break; 1347 } 1348 } 1349 } 1350 1351 void DylibFile::parseReexports(const InterfaceFile &interface) { 1352 const InterfaceFile *topLevel = 1353 interface.getParent() == nullptr ? &interface : interface.getParent(); 1354 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1355 InterfaceFile::const_target_range targets = intfRef.targets(); 1356 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1357 is_contained(targets, config->platformInfo.target)) 1358 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1359 } 1360 } 1361 1362 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1363 // name, compatibility version or hide/add symbols) for specific target 1364 // versions. 1365 bool DylibFile::handleLDSymbol(StringRef originalName) { 1366 if (!originalName.startswith("$ld$")) 1367 return false; 1368 1369 StringRef action; 1370 StringRef name; 1371 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1372 if (action == "previous") 1373 handleLDPreviousSymbol(name, originalName); 1374 else if (action == "install_name") 1375 handleLDInstallNameSymbol(name, originalName); 1376 else if (action == "hide") 1377 handleLDHideSymbol(name, originalName); 1378 return true; 1379 } 1380 1381 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1382 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1383 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1384 StringRef installName; 1385 StringRef compatVersion; 1386 StringRef platformStr; 1387 StringRef startVersion; 1388 StringRef endVersion; 1389 StringRef symbolName; 1390 StringRef rest; 1391 1392 std::tie(installName, name) = name.split('$'); 1393 std::tie(compatVersion, name) = name.split('$'); 1394 std::tie(platformStr, name) = name.split('$'); 1395 std::tie(startVersion, name) = name.split('$'); 1396 std::tie(endVersion, name) = name.split('$'); 1397 std::tie(symbolName, rest) = name.split('$'); 1398 // TODO: ld64 contains some logic for non-empty symbolName as well. 1399 if (!symbolName.empty()) 1400 return; 1401 unsigned platform; 1402 if (platformStr.getAsInteger(10, platform) || 1403 platform != static_cast<unsigned>(config->platform())) 1404 return; 1405 1406 VersionTuple start; 1407 if (start.tryParse(startVersion)) { 1408 warn("failed to parse start version, symbol '" + originalName + 1409 "' ignored"); 1410 return; 1411 } 1412 VersionTuple end; 1413 if (end.tryParse(endVersion)) { 1414 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1415 return; 1416 } 1417 if (config->platformInfo.minimum < start || 1418 config->platformInfo.minimum >= end) 1419 return; 1420 1421 this->installName = saver().save(installName); 1422 1423 if (!compatVersion.empty()) { 1424 VersionTuple cVersion; 1425 if (cVersion.tryParse(compatVersion)) { 1426 warn("failed to parse compatibility version, symbol '" + originalName + 1427 "' ignored"); 1428 return; 1429 } 1430 compatibilityVersion = encodeVersion(cVersion); 1431 } 1432 } 1433 1434 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1435 StringRef originalName) { 1436 // originalName: $ld$ install_name $ os<version> $ install_name 1437 StringRef condition, installName; 1438 std::tie(condition, installName) = name.split('$'); 1439 VersionTuple version; 1440 if (!condition.consume_front("os") || version.tryParse(condition)) 1441 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1442 else if (version == config->platformInfo.minimum) 1443 this->installName = saver().save(installName); 1444 } 1445 1446 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1447 StringRef symbolName; 1448 bool shouldHide = true; 1449 if (name.startswith("os")) { 1450 // If it's hidden based on versions. 1451 name = name.drop_front(2); 1452 StringRef minVersion; 1453 std::tie(minVersion, symbolName) = name.split('$'); 1454 VersionTuple versionTup; 1455 if (versionTup.tryParse(minVersion)) { 1456 warn("Failed to parse hidden version, symbol `" + originalName + 1457 "` ignored."); 1458 return; 1459 } 1460 shouldHide = versionTup == config->platformInfo.minimum; 1461 } else { 1462 symbolName = name; 1463 } 1464 1465 if (shouldHide) 1466 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1467 } 1468 1469 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1470 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1471 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1472 } 1473 1474 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1475 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1476 1477 void ArchiveFile::addLazySymbols() { 1478 for (const object::Archive::Symbol &sym : file->symbols()) 1479 symtab->addLazyArchive(sym.getName(), this, sym); 1480 } 1481 1482 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1483 uint32_t modTime, 1484 StringRef archiveName, 1485 uint64_t offsetInArchive) { 1486 if (config->zeroModTime) 1487 modTime = 0; 1488 1489 switch (identify_magic(mb.getBuffer())) { 1490 case file_magic::macho_object: 1491 return make<ObjFile>(mb, modTime, archiveName); 1492 case file_magic::bitcode: 1493 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1494 default: 1495 return createStringError(inconvertibleErrorCode(), 1496 mb.getBufferIdentifier() + 1497 " has unhandled file type"); 1498 } 1499 } 1500 1501 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1502 if (!seen.insert(c.getChildOffset()).second) 1503 return Error::success(); 1504 1505 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1506 if (!mb) 1507 return mb.takeError(); 1508 1509 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1510 if (tar && c.getParent()->isThin()) 1511 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1512 1513 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1514 if (!modTime) 1515 return modTime.takeError(); 1516 1517 Expected<InputFile *> file = 1518 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1519 1520 if (!file) 1521 return file.takeError(); 1522 1523 inputFiles.insert(*file); 1524 printArchiveMemberLoad(reason, *file); 1525 return Error::success(); 1526 } 1527 1528 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1529 object::Archive::Child c = 1530 CHECK(sym.getMember(), toString(this) + 1531 ": could not get the member defining symbol " + 1532 toMachOString(sym)); 1533 1534 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1535 // and become invalid after that call. Copy it to the stack so we can refer 1536 // to it later. 1537 const object::Archive::Symbol symCopy = sym; 1538 1539 // ld64 doesn't demangle sym here even with -demangle. 1540 // Match that: intentionally don't call toMachOString(). 1541 if (Error e = fetch(c, symCopy.getName())) 1542 error(toString(this) + ": could not get the member defining symbol " + 1543 toMachOString(symCopy) + ": " + toString(std::move(e))); 1544 } 1545 1546 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1547 BitcodeFile &file) { 1548 StringRef name = saver().save(objSym.getName()); 1549 1550 if (objSym.isUndefined()) 1551 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1552 1553 // TODO: Write a test demonstrating why computing isPrivateExtern before 1554 // LTO compilation is important. 1555 bool isPrivateExtern = false; 1556 switch (objSym.getVisibility()) { 1557 case GlobalValue::HiddenVisibility: 1558 isPrivateExtern = true; 1559 break; 1560 case GlobalValue::ProtectedVisibility: 1561 error(name + " has protected visibility, which is not supported by Mach-O"); 1562 break; 1563 case GlobalValue::DefaultVisibility: 1564 break; 1565 } 1566 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 1567 1568 if (objSym.isCommon()) 1569 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1570 objSym.getCommonAlignment(), isPrivateExtern); 1571 1572 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1573 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1574 /*isThumb=*/false, 1575 /*isReferencedDynamically=*/false, 1576 /*noDeadStrip=*/false, 1577 /*isWeakDefCanBeHidden=*/false); 1578 } 1579 1580 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1581 uint64_t offsetInArchive, bool lazy) 1582 : InputFile(BitcodeKind, mb, lazy) { 1583 this->archiveName = std::string(archiveName); 1584 std::string path = mb.getBufferIdentifier().str(); 1585 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1586 // name. If two members with the same name are provided, this causes a 1587 // collision and ThinLTO can't proceed. 1588 // So, we append the archive name to disambiguate two members with the same 1589 // name from multiple different archives, and offset within the archive to 1590 // disambiguate two members of the same name from a single archive. 1591 MemoryBufferRef mbref(mb.getBuffer(), 1592 saver().save(archiveName.empty() 1593 ? path 1594 : archiveName + 1595 sys::path::filename(path) + 1596 utostr(offsetInArchive))); 1597 1598 obj = check(lto::InputFile::create(mbref)); 1599 if (lazy) 1600 parseLazy(); 1601 else 1602 parse(); 1603 } 1604 1605 void BitcodeFile::parse() { 1606 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1607 // "winning" symbol will then be marked as Prevailing at LTO compilation 1608 // time. 1609 symbols.clear(); 1610 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1611 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1612 } 1613 1614 void BitcodeFile::parseLazy() { 1615 symbols.resize(obj->symbols().size()); 1616 for (auto it : llvm::enumerate(obj->symbols())) { 1617 const lto::InputFile::Symbol &objSym = it.value(); 1618 if (!objSym.isUndefined()) { 1619 symbols[it.index()] = 1620 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1621 if (!lazy) 1622 break; 1623 } 1624 } 1625 } 1626 1627 void macho::extract(InputFile &file, StringRef reason) { 1628 assert(file.lazy); 1629 file.lazy = false; 1630 printArchiveMemberLoad(reason, &file); 1631 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1632 bitcode->parse(); 1633 } else { 1634 auto &f = cast<ObjFile>(file); 1635 if (target->wordSize == 8) 1636 f.parse<LP64>(); 1637 else 1638 f.parse<ILP32>(); 1639 } 1640 } 1641 1642 template void ObjFile::parse<LP64>(); 1643