1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/LEB128.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/TarWriter.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/TextAPI/Architecture.h" 74 #include "llvm/TextAPI/InterfaceFile.h" 75 76 #include <type_traits> 77 78 using namespace llvm; 79 using namespace llvm::MachO; 80 using namespace llvm::support::endian; 81 using namespace llvm::sys; 82 using namespace lld; 83 using namespace lld::macho; 84 85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 86 std::string lld::toString(const InputFile *f) { 87 if (!f) 88 return "<internal>"; 89 90 // Multiple dylibs can be defined in one .tbd file. 91 if (auto dylibFile = dyn_cast<DylibFile>(f)) 92 if (f->getName().endswith(".tbd")) 93 return (f->getName() + "(" + dylibFile->installName + ")").str(); 94 95 if (f->archiveName.empty()) 96 return std::string(f->getName()); 97 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 98 } 99 100 std::string lld::toString(const Section &sec) { 101 return (toString(sec.file) + ":(" + sec.name + ")").str(); 102 } 103 104 SetVector<InputFile *> macho::inputFiles; 105 std::unique_ptr<TarWriter> macho::tar; 106 int InputFile::idCount = 0; 107 108 static VersionTuple decodeVersion(uint32_t version) { 109 unsigned major = version >> 16; 110 unsigned minor = (version >> 8) & 0xffu; 111 unsigned subMinor = version & 0xffu; 112 return VersionTuple(major, minor, subMinor); 113 } 114 115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 116 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 117 return {}; 118 119 const char *hdr = input->mb.getBufferStart(); 120 121 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 122 std::vector<PlatformInfo> platformInfos; 123 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 124 PlatformInfo info; 125 info.target.Platform = static_cast<PlatformType>(cmd->platform); 126 info.minimum = decodeVersion(cmd->minos); 127 platformInfos.emplace_back(std::move(info)); 128 } 129 for (auto *cmd : findCommands<version_min_command>( 130 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 131 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 132 PlatformInfo info; 133 switch (cmd->cmd) { 134 case LC_VERSION_MIN_MACOSX: 135 info.target.Platform = PLATFORM_MACOS; 136 break; 137 case LC_VERSION_MIN_IPHONEOS: 138 info.target.Platform = PLATFORM_IOS; 139 break; 140 case LC_VERSION_MIN_TVOS: 141 info.target.Platform = PLATFORM_TVOS; 142 break; 143 case LC_VERSION_MIN_WATCHOS: 144 info.target.Platform = PLATFORM_WATCHOS; 145 break; 146 } 147 info.minimum = decodeVersion(cmd->version); 148 platformInfos.emplace_back(std::move(info)); 149 } 150 151 return platformInfos; 152 } 153 154 static bool checkCompatibility(const InputFile *input) { 155 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 156 if (platformInfos.empty()) 157 return true; 158 159 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 160 return removeSimulator(info.target.Platform) == 161 removeSimulator(config->platform()); 162 }); 163 if (it == platformInfos.end()) { 164 std::string platformNames; 165 raw_string_ostream os(platformNames); 166 interleave( 167 platformInfos, os, 168 [&](const PlatformInfo &info) { 169 os << getPlatformName(info.target.Platform); 170 }, 171 "/"); 172 error(toString(input) + " has platform " + platformNames + 173 Twine(", which is different from target platform ") + 174 getPlatformName(config->platform())); 175 return false; 176 } 177 178 if (it->minimum > config->platformInfo.minimum) 179 warn(toString(input) + " has version " + it->minimum.getAsString() + 180 ", which is newer than target minimum of " + 181 config->platformInfo.minimum.getAsString()); 182 183 return true; 184 } 185 186 // This cache mostly exists to store system libraries (and .tbds) as they're 187 // loaded, rather than the input archives, which are already cached at a higher 188 // level, and other files like the filelist that are only read once. 189 // Theoretically this caching could be more efficient by hoisting it, but that 190 // would require altering many callers to track the state. 191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 192 // Open a given file path and return it as a memory-mapped file. 193 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 194 CachedHashStringRef key(path); 195 auto entry = cachedReads.find(key); 196 if (entry != cachedReads.end()) 197 return entry->second; 198 199 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 200 if (std::error_code ec = mbOrErr.getError()) { 201 error("cannot open " + path + ": " + ec.message()); 202 return None; 203 } 204 205 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 206 MemoryBufferRef mbref = mb->getMemBufferRef(); 207 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 208 209 // If this is a regular non-fat file, return it. 210 const char *buf = mbref.getBufferStart(); 211 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 212 if (mbref.getBufferSize() < sizeof(uint32_t) || 213 read32be(&hdr->magic) != FAT_MAGIC) { 214 if (tar) 215 tar->append(relativeToRoot(path), mbref.getBuffer()); 216 return cachedReads[key] = mbref; 217 } 218 219 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 220 221 // Object files and archive files may be fat files, which contain multiple 222 // real files for different CPU ISAs. Here, we search for a file that matches 223 // with the current link target and returns it as a MemoryBufferRef. 224 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 225 226 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 227 if (reinterpret_cast<const char *>(arch + i + 1) > 228 buf + mbref.getBufferSize()) { 229 error(path + ": fat_arch struct extends beyond end of file"); 230 return None; 231 } 232 233 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 234 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 235 continue; 236 237 uint32_t offset = read32be(&arch[i].offset); 238 uint32_t size = read32be(&arch[i].size); 239 if (offset + size > mbref.getBufferSize()) 240 error(path + ": slice extends beyond end of file"); 241 if (tar) 242 tar->append(relativeToRoot(path), mbref.getBuffer()); 243 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 244 path.copy(bAlloc)); 245 } 246 247 error("unable to find matching architecture in " + path); 248 return None; 249 } 250 251 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 252 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 253 254 // Some sections comprise of fixed-size records, so instead of splitting them at 255 // symbol boundaries, we split them based on size. Records are distinct from 256 // literals in that they may contain references to other sections, instead of 257 // being leaf nodes in the InputSection graph. 258 // 259 // Note that "record" is a term I came up with. In contrast, "literal" is a term 260 // used by the Mach-O format. 261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 262 if (name == section_names::compactUnwind) { 263 if (segname == segment_names::ld) 264 return target->wordSize == 8 ? 32 : 20; 265 } 266 if (!config->dedupLiterals) 267 return {}; 268 269 if (name == section_names::cfString && segname == segment_names::data) 270 return target->wordSize == 8 ? 32 : 16; 271 272 if (config->icfLevel == ICFLevel::none) 273 return {}; 274 275 if (name == section_names::objcClassRefs && segname == segment_names::data) 276 return target->wordSize; 277 return {}; 278 } 279 280 static Error parseCallGraph(ArrayRef<uint8_t> data, 281 std::vector<CallGraphEntry> &callGraph) { 282 TimeTraceScope timeScope("Parsing call graph section"); 283 BinaryStreamReader reader(data, support::little); 284 while (!reader.empty()) { 285 uint32_t fromIndex, toIndex; 286 uint64_t count; 287 if (Error err = reader.readInteger(fromIndex)) 288 return err; 289 if (Error err = reader.readInteger(toIndex)) 290 return err; 291 if (Error err = reader.readInteger(count)) 292 return err; 293 callGraph.emplace_back(fromIndex, toIndex, count); 294 } 295 return Error::success(); 296 } 297 298 // Parse the sequence of sections within a single LC_SEGMENT(_64). 299 // Split each section into subsections. 300 template <class SectionHeader> 301 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 302 sections.reserve(sectionHeaders.size()); 303 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 304 305 for (const SectionHeader &sec : sectionHeaders) { 306 StringRef name = 307 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 308 StringRef segname = 309 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 310 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 311 if (sec.align >= 32) { 312 error("alignment " + std::to_string(sec.align) + " of section " + name + 313 " is too large"); 314 continue; 315 } 316 Section §ion = *sections.back(); 317 uint32_t align = 1 << sec.align; 318 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 319 : buf + sec.offset, 320 static_cast<size_t>(sec.size)}; 321 322 auto splitRecords = [&](int recordSize) -> void { 323 if (data.empty()) 324 return; 325 Subsections &subsections = section.subsections; 326 subsections.reserve(data.size() / recordSize); 327 for (uint64_t off = 0; off < data.size(); off += recordSize) { 328 auto *isec = make<ConcatInputSection>( 329 section, data.slice(off, recordSize), align); 330 subsections.push_back({off, isec}); 331 } 332 section.doneSplitting = true; 333 }; 334 335 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 336 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 337 if (sec.nreloc && config->dedupLiterals) 338 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 339 sec.sectname + 340 ", so LLD cannot deduplicate literals. Try re-running without " 341 "--deduplicate-literals."); 342 343 InputSection *isec; 344 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 345 isec = make<CStringInputSection>(section, data, align); 346 // FIXME: parallelize this? 347 cast<CStringInputSection>(isec)->splitIntoPieces(); 348 } else { 349 isec = make<WordLiteralInputSection>(section, data, align); 350 } 351 section.subsections.push_back({0, isec}); 352 } else if (auto recordSize = getRecordSize(segname, name)) { 353 splitRecords(*recordSize); 354 } else if (name == section_names::ehFrame && 355 segname == segment_names::text) { 356 splitEhFrames(data, *sections.back()); 357 } else if (segname == segment_names::llvm) { 358 if (config->callGraphProfileSort && name == section_names::cgProfile) 359 checkError(parseCallGraph(data, callGraph)); 360 // ld64 does not appear to emit contents from sections within the __LLVM 361 // segment. Symbols within those sections point to bitcode metadata 362 // instead of actual symbols. Global symbols within those sections could 363 // have the same name without causing duplicate symbol errors. To avoid 364 // spurious duplicate symbol errors, we do not parse these sections. 365 // TODO: Evaluate whether the bitcode metadata is needed. 366 } else if (name == section_names::objCImageInfo && 367 segname == segment_names::data) { 368 objCImageInfo = data; 369 } else { 370 if (name == section_names::addrSig) 371 addrSigSection = sections.back(); 372 373 auto *isec = make<ConcatInputSection>(section, data, align); 374 if (isDebugSection(isec->getFlags()) && 375 isec->getSegName() == segment_names::dwarf) { 376 // Instead of emitting DWARF sections, we emit STABS symbols to the 377 // object files that contain them. We filter them out early to avoid 378 // parsing their relocations unnecessarily. 379 debugSections.push_back(isec); 380 } else { 381 section.subsections.push_back({0, isec}); 382 } 383 } 384 } 385 } 386 387 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 388 EhReader reader(this, data, /*dataOff=*/0, target->wordSize); 389 size_t off = 0; 390 while (off < reader.size()) { 391 uint64_t frameOff = off; 392 uint64_t length = reader.readLength(&off); 393 if (length == 0) 394 break; 395 uint64_t fullLength = length + (off - frameOff); 396 off += length; 397 // We hard-code an alignment of 1 here because we don't actually want our 398 // EH frames to be aligned to the section alignment. EH frame decoders don't 399 // expect this alignment. Moreover, each EH frame must start where the 400 // previous one ends, and where it ends is indicated by the length field. 401 // Unless we update the length field (troublesome), we should keep the 402 // alignment to 1. 403 // Note that we still want to preserve the alignment of the overall section, 404 // just not of the individual EH frames. 405 ehFrameSection.subsections.push_back( 406 {frameOff, make<ConcatInputSection>(ehFrameSection, 407 data.slice(frameOff, fullLength), 408 /*align=*/1)}); 409 } 410 ehFrameSection.doneSplitting = true; 411 } 412 413 template <class T> 414 static Section *findContainingSection(const std::vector<Section *> §ions, 415 T *offset) { 416 static_assert(std::is_same<uint64_t, T>::value || 417 std::is_same<uint32_t, T>::value, 418 "unexpected type for offset"); 419 auto it = std::prev(llvm::upper_bound( 420 sections, *offset, 421 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 422 *offset -= (*it)->addr; 423 return *it; 424 } 425 426 // Find the subsection corresponding to the greatest section offset that is <= 427 // that of the given offset. 428 // 429 // offset: an offset relative to the start of the original InputSection (before 430 // any subsection splitting has occurred). It will be updated to represent the 431 // same location as an offset relative to the start of the containing 432 // subsection. 433 template <class T> 434 static InputSection *findContainingSubsection(const Section §ion, 435 T *offset) { 436 static_assert(std::is_same<uint64_t, T>::value || 437 std::is_same<uint32_t, T>::value, 438 "unexpected type for offset"); 439 auto it = std::prev(llvm::upper_bound( 440 section.subsections, *offset, 441 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 442 *offset -= it->offset; 443 return it->isec; 444 } 445 446 // Find a symbol at offset `off` within `isec`. 447 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 448 uint64_t off) { 449 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 450 return d->value < off; 451 }); 452 // The offset should point at the exact address of a symbol (with no addend.) 453 if (it == isec->symbols.end() || (*it)->value != off) { 454 assert(isec->wasCoalesced); 455 return nullptr; 456 } 457 return *it; 458 } 459 460 // Linker optimization hints mark a sequence of instructions used for 461 // synthesizing an address which that be transformed into a faster sequence. The 462 // transformations depend on conditions that are determined at link time, like 463 // the distance to the referenced symbol or its alignment. 464 // 465 // Each hint has a type and refers to 2 or 3 instructions. Each of those 466 // instructions must have a corresponding relocation. After addresses have been 467 // finalized and relocations have been performed, we check if the requirements 468 // hold, and perform the optimizations if they do. 469 // 470 // Similar linker relaxations exist for ELF as well, with the difference being 471 // that the explicit marking allows for the relaxation of non-consecutive 472 // relocations too. 473 // 474 // The specific types of hints are documented in Arch/ARM64.cpp 475 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) { 476 auto expectedArgCount = [](uint8_t type) { 477 switch (type) { 478 case LOH_ARM64_ADRP_ADRP: 479 case LOH_ARM64_ADRP_LDR: 480 case LOH_ARM64_ADRP_ADD: 481 case LOH_ARM64_ADRP_LDR_GOT: 482 return 2; 483 case LOH_ARM64_ADRP_ADD_LDR: 484 case LOH_ARM64_ADRP_ADD_STR: 485 case LOH_ARM64_ADRP_LDR_GOT_LDR: 486 case LOH_ARM64_ADRP_LDR_GOT_STR: 487 return 3; 488 } 489 return -1; 490 }; 491 492 // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case, 493 // there are data.size() / 4 LOHs. It's a huge overestimation though, as 494 // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate 495 // half as much. 496 optimizationHints.reserve(data.size() / 8); 497 498 for (const uint8_t *p = data.begin(); p < data.end();) { 499 const ptrdiff_t inputOffset = p - data.begin(); 500 unsigned int n = 0; 501 uint8_t type = decodeULEB128(p, &n, data.end()); 502 p += n; 503 504 // An entry of type 0 terminates the list. 505 if (type == 0) 506 break; 507 508 int expectedCount = expectedArgCount(type); 509 if (LLVM_UNLIKELY(expectedCount == -1)) { 510 error("Linker optimization hint at offset " + Twine(inputOffset) + 511 " has unknown type " + Twine(type)); 512 return; 513 } 514 515 uint8_t argCount = decodeULEB128(p, &n, data.end()); 516 p += n; 517 518 if (LLVM_UNLIKELY(argCount != expectedCount)) { 519 error("Linker optimization hint at offset " + Twine(inputOffset) + 520 " has " + Twine(argCount) + " arguments instead of the expected " + 521 Twine(expectedCount)); 522 return; 523 } 524 525 uint64_t offset0 = decodeULEB128(p, &n, data.end()); 526 p += n; 527 528 int16_t delta[2]; 529 for (int i = 0; i < argCount - 1; ++i) { 530 uint64_t address = decodeULEB128(p, &n, data.end()); 531 p += n; 532 int64_t d = address - offset0; 533 if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() || 534 d < std::numeric_limits<int16_t>::min())) { 535 error("Linker optimization hint at offset " + Twine(inputOffset) + 536 " has addresses too far apart"); 537 return; 538 } 539 delta[i] = d; 540 } 541 542 optimizationHints.push_back({offset0, {delta[0], delta[1]}, type}); 543 } 544 545 // We sort the per-object vector of optimization hints so each section only 546 // needs to hold an ArrayRef to a contiguous range of hints. 547 llvm::sort(optimizationHints, 548 [](const OptimizationHint &a, const OptimizationHint &b) { 549 return a.offset0 < b.offset0; 550 }); 551 552 auto section = sections.begin(); 553 auto subsection = (*section)->subsections.begin(); 554 uint64_t subsectionBase = 0; 555 uint64_t subsectionEnd = 0; 556 557 auto updateAddr = [&]() { 558 subsectionBase = (*section)->addr + subsection->offset; 559 subsectionEnd = subsectionBase + subsection->isec->getSize(); 560 }; 561 562 auto advanceSubsection = [&]() { 563 if (section == sections.end()) 564 return; 565 ++subsection; 566 while (subsection == (*section)->subsections.end()) { 567 ++section; 568 if (section == sections.end()) 569 return; 570 subsection = (*section)->subsections.begin(); 571 } 572 }; 573 574 updateAddr(); 575 auto hintStart = optimizationHints.begin(); 576 for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end; 577 ++hintEnd) { 578 if (hintEnd->offset0 >= subsectionEnd) { 579 subsection->isec->optimizationHints = 580 ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart); 581 582 hintStart = hintEnd; 583 while (hintStart->offset0 >= subsectionEnd) { 584 advanceSubsection(); 585 if (section == sections.end()) 586 break; 587 updateAddr(); 588 assert(hintStart->offset0 >= subsectionBase); 589 } 590 } 591 592 hintEnd->offset0 -= subsectionBase; 593 for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1; 594 ++i) { 595 if (LLVM_UNLIKELY( 596 hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) || 597 hintEnd->delta[i] >= 598 static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) { 599 error("Linker optimization hint spans multiple sections"); 600 return; 601 } 602 } 603 } 604 if (section != sections.end()) 605 subsection->isec->optimizationHints = ArrayRef<OptimizationHint>( 606 &*hintStart, optimizationHints.end() - hintStart); 607 } 608 609 template <class SectionHeader> 610 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 611 relocation_info rel) { 612 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 613 bool valid = true; 614 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 615 valid = false; 616 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 617 std::to_string(rel.r_address) + " of " + sec.segname + "," + 618 sec.sectname + " in " + toString(file)) 619 .str(); 620 }; 621 622 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 623 error(message("must be extern")); 624 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 625 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 626 "be PC-relative")); 627 if (isThreadLocalVariables(sec.flags) && 628 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 629 error(message("not allowed in thread-local section, must be UNSIGNED")); 630 if (rel.r_length < 2 || rel.r_length > 3 || 631 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 632 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 633 error(message("has width " + std::to_string(1 << rel.r_length) + 634 " bytes, but must be " + 635 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 636 " bytes")); 637 } 638 return valid; 639 } 640 641 template <class SectionHeader> 642 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 643 const SectionHeader &sec, Section §ion) { 644 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 645 ArrayRef<relocation_info> relInfos( 646 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 647 648 Subsections &subsections = section.subsections; 649 auto subsecIt = subsections.rbegin(); 650 for (size_t i = 0; i < relInfos.size(); i++) { 651 // Paired relocations serve as Mach-O's method for attaching a 652 // supplemental datum to a primary relocation record. ELF does not 653 // need them because the *_RELOC_RELA records contain the extra 654 // addend field, vs. *_RELOC_REL which omit the addend. 655 // 656 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 657 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 658 // datum for each is a symbolic address. The result is the offset 659 // between two addresses. 660 // 661 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 662 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 663 // base symbolic address. 664 // 665 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 666 // addend into the instruction stream. On X86, a relocatable address 667 // field always occupies an entire contiguous sequence of byte(s), 668 // so there is no need to merge opcode bits with address 669 // bits. Therefore, it's easy and convenient to store addends in the 670 // instruction-stream bytes that would otherwise contain zeroes. By 671 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 672 // address bits so that bitwise arithmetic is necessary to extract 673 // and insert them. Storing addends in the instruction stream is 674 // possible, but inconvenient and more costly at link time. 675 676 relocation_info relInfo = relInfos[i]; 677 bool isSubtrahend = 678 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 679 int64_t pairedAddend = 0; 680 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 681 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 682 relInfo = relInfos[++i]; 683 } 684 assert(i < relInfos.size()); 685 if (!validateRelocationInfo(this, sec, relInfo)) 686 continue; 687 if (relInfo.r_address & R_SCATTERED) 688 fatal("TODO: Scattered relocations not supported"); 689 690 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 691 assert(!(embeddedAddend && pairedAddend)); 692 int64_t totalAddend = pairedAddend + embeddedAddend; 693 Reloc r; 694 r.type = relInfo.r_type; 695 r.pcrel = relInfo.r_pcrel; 696 r.length = relInfo.r_length; 697 r.offset = relInfo.r_address; 698 if (relInfo.r_extern) { 699 r.referent = symbols[relInfo.r_symbolnum]; 700 r.addend = isSubtrahend ? 0 : totalAddend; 701 } else { 702 assert(!isSubtrahend); 703 const SectionHeader &referentSecHead = 704 sectionHeaders[relInfo.r_symbolnum - 1]; 705 uint64_t referentOffset; 706 if (relInfo.r_pcrel) { 707 // The implicit addend for pcrel section relocations is the pcrel offset 708 // in terms of the addresses in the input file. Here we adjust it so 709 // that it describes the offset from the start of the referent section. 710 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 711 // have pcrel section relocations. We may want to factor this out into 712 // the arch-specific .cpp file. 713 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 714 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 715 referentSecHead.addr; 716 } else { 717 // The addend for a non-pcrel relocation is its absolute address. 718 referentOffset = totalAddend - referentSecHead.addr; 719 } 720 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 721 &referentOffset); 722 r.addend = referentOffset; 723 } 724 725 // Find the subsection that this relocation belongs to. 726 // Though not required by the Mach-O format, clang and gcc seem to emit 727 // relocations in order, so let's take advantage of it. However, ld64 emits 728 // unsorted relocations (in `-r` mode), so we have a fallback for that 729 // uncommon case. 730 InputSection *subsec; 731 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 732 ++subsecIt; 733 if (subsecIt == subsections.rend() || 734 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 735 subsec = findContainingSubsection(section, &r.offset); 736 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 737 // for the other relocations. 738 subsecIt = subsections.rend(); 739 } else { 740 subsec = subsecIt->isec; 741 r.offset -= subsecIt->offset; 742 } 743 subsec->relocs.push_back(r); 744 745 if (isSubtrahend) { 746 relocation_info minuendInfo = relInfos[++i]; 747 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 748 // attached to the same address. 749 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 750 relInfo.r_address == minuendInfo.r_address); 751 Reloc p; 752 p.type = minuendInfo.r_type; 753 if (minuendInfo.r_extern) { 754 p.referent = symbols[minuendInfo.r_symbolnum]; 755 p.addend = totalAddend; 756 } else { 757 uint64_t referentOffset = 758 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 759 p.referent = findContainingSubsection( 760 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 761 p.addend = referentOffset; 762 } 763 subsec->relocs.push_back(p); 764 } 765 } 766 } 767 768 template <class NList> 769 static macho::Symbol *createDefined(const NList &sym, StringRef name, 770 InputSection *isec, uint64_t value, 771 uint64_t size) { 772 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 773 // N_EXT: Global symbols. These go in the symbol table during the link, 774 // and also in the export table of the output so that the dynamic 775 // linker sees them. 776 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 777 // symbol table during the link so that duplicates are 778 // either reported (for non-weak symbols) or merged 779 // (for weak symbols), but they do not go in the export 780 // table of the output. 781 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 782 // object files) may produce them. LLD does not yet support -r. 783 // These are translation-unit scoped, identical to the `0` case. 784 // 0: Translation-unit scoped. These are not in the symbol table during 785 // link, and not in the export table of the output either. 786 bool isWeakDefCanBeHidden = 787 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 788 789 if (sym.n_type & N_EXT) { 790 bool isPrivateExtern = sym.n_type & N_PEXT; 791 // lld's behavior for merging symbols is slightly different from ld64: 792 // ld64 picks the winning symbol based on several criteria (see 793 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 794 // just merges metadata and keeps the contents of the first symbol 795 // with that name (see SymbolTable::addDefined). For: 796 // * inline function F in a TU built with -fvisibility-inlines-hidden 797 // * and inline function F in another TU built without that flag 798 // ld64 will pick the one from the file built without 799 // -fvisibility-inlines-hidden. 800 // lld will instead pick the one listed first on the link command line and 801 // give it visibility as if the function was built without 802 // -fvisibility-inlines-hidden. 803 // If both functions have the same contents, this will have the same 804 // behavior. If not, it won't, but the input had an ODR violation in 805 // that case. 806 // 807 // Similarly, merging a symbol 808 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 809 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 810 // should produce one 811 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 812 // with ld64's semantics, because it means the non-private-extern 813 // definition will continue to take priority if more private extern 814 // definitions are encountered. With lld's semantics there's no observable 815 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 816 // that's privateExtern -- neither makes it into the dynamic symbol table, 817 // unless the autohide symbol is explicitly exported. 818 // But if a symbol is both privateExtern and autohide then it can't 819 // be exported. 820 // So we nullify the autohide flag when privateExtern is present 821 // and promote the symbol to privateExtern when it is not already. 822 if (isWeakDefCanBeHidden && isPrivateExtern) 823 isWeakDefCanBeHidden = false; 824 else if (isWeakDefCanBeHidden) 825 isPrivateExtern = true; 826 return symtab->addDefined( 827 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 828 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 829 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 830 isWeakDefCanBeHidden); 831 } 832 assert(!isWeakDefCanBeHidden && 833 "weak_def_can_be_hidden on already-hidden symbol?"); 834 bool includeInSymtab = 835 !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec); 836 return make<Defined>( 837 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 838 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 839 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 840 sym.n_desc & N_NO_DEAD_STRIP); 841 } 842 843 // Absolute symbols are defined symbols that do not have an associated 844 // InputSection. They cannot be weak. 845 template <class NList> 846 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 847 StringRef name) { 848 if (sym.n_type & N_EXT) { 849 return symtab->addDefined( 850 name, file, nullptr, sym.n_value, /*size=*/0, 851 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 852 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 853 /*isWeakDefCanBeHidden=*/false); 854 } 855 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 856 /*isWeakDef=*/false, 857 /*isExternal=*/false, /*isPrivateExtern=*/false, 858 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 859 /*isReferencedDynamically=*/false, 860 sym.n_desc & N_NO_DEAD_STRIP); 861 } 862 863 template <class NList> 864 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 865 StringRef name) { 866 uint8_t type = sym.n_type & N_TYPE; 867 switch (type) { 868 case N_UNDF: 869 return sym.n_value == 0 870 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 871 : symtab->addCommon(name, this, sym.n_value, 872 1 << GET_COMM_ALIGN(sym.n_desc), 873 sym.n_type & N_PEXT); 874 case N_ABS: 875 return createAbsolute(sym, this, name); 876 case N_PBUD: 877 case N_INDR: 878 error("TODO: support symbols of type " + std::to_string(type)); 879 return nullptr; 880 case N_SECT: 881 llvm_unreachable( 882 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 883 default: 884 llvm_unreachable("invalid symbol type"); 885 } 886 } 887 888 template <class NList> static bool isUndef(const NList &sym) { 889 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 890 } 891 892 template <class LP> 893 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 894 ArrayRef<typename LP::nlist> nList, 895 const char *strtab, bool subsectionsViaSymbols) { 896 using NList = typename LP::nlist; 897 898 // Groups indices of the symbols by the sections that contain them. 899 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 900 symbols.resize(nList.size()); 901 SmallVector<unsigned, 32> undefineds; 902 for (uint32_t i = 0; i < nList.size(); ++i) { 903 const NList &sym = nList[i]; 904 905 // Ignore debug symbols for now. 906 // FIXME: may need special handling. 907 if (sym.n_type & N_STAB) 908 continue; 909 910 if ((sym.n_type & N_TYPE) == N_SECT) { 911 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 912 // parseSections() may have chosen not to parse this section. 913 if (subsections.empty()) 914 continue; 915 symbolsBySection[sym.n_sect - 1].push_back(i); 916 } else if (isUndef(sym)) { 917 undefineds.push_back(i); 918 } else { 919 symbols[i] = parseNonSectionSymbol(sym, StringRef(strtab + sym.n_strx)); 920 } 921 } 922 923 for (size_t i = 0; i < sections.size(); ++i) { 924 Subsections &subsections = sections[i]->subsections; 925 if (subsections.empty()) 926 continue; 927 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 928 uint64_t sectionAddr = sectionHeaders[i].addr; 929 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 930 931 // Some sections have already been split into subsections during 932 // parseSections(), so we simply need to match Symbols to the corresponding 933 // subsection here. 934 if (sections[i]->doneSplitting) { 935 for (size_t j = 0; j < symbolIndices.size(); ++j) { 936 uint32_t symIndex = symbolIndices[j]; 937 const NList &sym = nList[symIndex]; 938 StringRef name = strtab + sym.n_strx; 939 uint64_t symbolOffset = sym.n_value - sectionAddr; 940 InputSection *isec = 941 findContainingSubsection(*sections[i], &symbolOffset); 942 if (symbolOffset != 0) { 943 error(toString(*sections[i]) + ": symbol " + name + 944 " at misaligned offset"); 945 continue; 946 } 947 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 948 } 949 continue; 950 } 951 sections[i]->doneSplitting = true; 952 953 // Calculate symbol sizes and create subsections by splitting the sections 954 // along symbol boundaries. 955 // We populate subsections by repeatedly splitting the last (highest 956 // address) subsection. 957 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 958 return nList[lhs].n_value < nList[rhs].n_value; 959 }); 960 for (size_t j = 0; j < symbolIndices.size(); ++j) { 961 uint32_t symIndex = symbolIndices[j]; 962 const NList &sym = nList[symIndex]; 963 StringRef name = strtab + sym.n_strx; 964 Subsection &subsec = subsections.back(); 965 InputSection *isec = subsec.isec; 966 967 uint64_t subsecAddr = sectionAddr + subsec.offset; 968 size_t symbolOffset = sym.n_value - subsecAddr; 969 uint64_t symbolSize = 970 j + 1 < symbolIndices.size() 971 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 972 : isec->data.size() - symbolOffset; 973 // There are 4 cases where we do not need to create a new subsection: 974 // 1. If the input file does not use subsections-via-symbols. 975 // 2. Multiple symbols at the same address only induce one subsection. 976 // (The symbolOffset == 0 check covers both this case as well as 977 // the first loop iteration.) 978 // 3. Alternative entry points do not induce new subsections. 979 // 4. If we have a literal section (e.g. __cstring and __literal4). 980 if (!subsectionsViaSymbols || symbolOffset == 0 || 981 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 982 symbols[symIndex] = 983 createDefined(sym, name, isec, symbolOffset, symbolSize); 984 continue; 985 } 986 auto *concatIsec = cast<ConcatInputSection>(isec); 987 988 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 989 nextIsec->wasCoalesced = false; 990 if (isZeroFill(isec->getFlags())) { 991 // Zero-fill sections have NULL data.data() non-zero data.size() 992 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 993 isec->data = {nullptr, symbolOffset}; 994 } else { 995 nextIsec->data = isec->data.slice(symbolOffset); 996 isec->data = isec->data.slice(0, symbolOffset); 997 } 998 999 // By construction, the symbol will be at offset zero in the new 1000 // subsection. 1001 symbols[symIndex] = 1002 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 1003 // TODO: ld64 appears to preserve the original alignment as well as each 1004 // subsection's offset from the last aligned address. We should consider 1005 // emulating that behavior. 1006 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 1007 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 1008 } 1009 } 1010 1011 // Undefined symbols can trigger recursive fetch from Archives due to 1012 // LazySymbols. Process defined symbols first so that the relative order 1013 // between a defined symbol and an undefined symbol does not change the 1014 // symbol resolution behavior. In addition, a set of interconnected symbols 1015 // will all be resolved to the same file, instead of being resolved to 1016 // different files. 1017 for (unsigned i : undefineds) { 1018 const NList &sym = nList[i]; 1019 StringRef name = strtab + sym.n_strx; 1020 symbols[i] = parseNonSectionSymbol(sym, name); 1021 } 1022 } 1023 1024 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 1025 StringRef sectName) 1026 : InputFile(OpaqueKind, mb) { 1027 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1028 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 1029 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 1030 sectName.take_front(16), 1031 /*flags=*/0, /*addr=*/0)); 1032 Section §ion = *sections.back(); 1033 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 1034 isec->live = true; 1035 section.subsections.push_back({0, isec}); 1036 } 1037 1038 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 1039 bool lazy) 1040 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 1041 this->archiveName = std::string(archiveName); 1042 if (lazy) { 1043 if (target->wordSize == 8) 1044 parseLazy<LP64>(); 1045 else 1046 parseLazy<ILP32>(); 1047 } else { 1048 if (target->wordSize == 8) 1049 parse<LP64>(); 1050 else 1051 parse<ILP32>(); 1052 } 1053 } 1054 1055 template <class LP> void ObjFile::parse() { 1056 using Header = typename LP::mach_header; 1057 using SegmentCommand = typename LP::segment_command; 1058 using SectionHeader = typename LP::section; 1059 using NList = typename LP::nlist; 1060 1061 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1062 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1063 1064 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 1065 if (arch != config->arch()) { 1066 auto msg = config->errorForArchMismatch 1067 ? static_cast<void (*)(const Twine &)>(error) 1068 : warn; 1069 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 1070 " which is incompatible with target architecture " + 1071 getArchitectureName(config->arch())); 1072 return; 1073 } 1074 1075 if (!checkCompatibility(this)) 1076 return; 1077 1078 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 1079 StringRef data{reinterpret_cast<const char *>(cmd + 1), 1080 cmd->cmdsize - sizeof(linker_option_command)}; 1081 parseLCLinkerOption(this, cmd->count, data); 1082 } 1083 1084 ArrayRef<SectionHeader> sectionHeaders; 1085 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 1086 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 1087 sectionHeaders = ArrayRef<SectionHeader>{ 1088 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 1089 parseSections(sectionHeaders); 1090 } 1091 1092 // TODO: Error on missing LC_SYMTAB? 1093 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 1094 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1095 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1096 c->nsyms); 1097 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1098 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 1099 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 1100 } 1101 1102 // The relocations may refer to the symbols, so we parse them after we have 1103 // parsed all the symbols. 1104 for (size_t i = 0, n = sections.size(); i < n; ++i) 1105 if (!sections[i]->subsections.empty()) 1106 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 1107 1108 if (!config->ignoreOptimizationHints) 1109 if (auto *cmd = findCommand<linkedit_data_command>( 1110 hdr, LC_LINKER_OPTIMIZATION_HINT)) 1111 parseOptimizationHints({buf + cmd->dataoff, cmd->datasize}); 1112 1113 parseDebugInfo(); 1114 1115 Section *ehFrameSection = nullptr; 1116 Section *compactUnwindSection = nullptr; 1117 for (Section *sec : sections) { 1118 Section **s = StringSwitch<Section **>(sec->name) 1119 .Case(section_names::compactUnwind, &compactUnwindSection) 1120 .Case(section_names::ehFrame, &ehFrameSection) 1121 .Default(nullptr); 1122 if (s) 1123 *s = sec; 1124 } 1125 if (compactUnwindSection) 1126 registerCompactUnwind(*compactUnwindSection); 1127 if (ehFrameSection) 1128 registerEhFrames(*ehFrameSection); 1129 } 1130 1131 template <class LP> void ObjFile::parseLazy() { 1132 using Header = typename LP::mach_header; 1133 using NList = typename LP::nlist; 1134 1135 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1136 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1137 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 1138 if (!cmd) 1139 return; 1140 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1141 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1142 c->nsyms); 1143 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1144 symbols.resize(nList.size()); 1145 for (auto it : llvm::enumerate(nList)) { 1146 const NList &sym = it.value(); 1147 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 1148 // TODO: Bound checking 1149 StringRef name = strtab + sym.n_strx; 1150 symbols[it.index()] = symtab->addLazyObject(name, *this); 1151 if (!lazy) 1152 break; 1153 } 1154 } 1155 } 1156 1157 void ObjFile::parseDebugInfo() { 1158 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 1159 if (!dObj) 1160 return; 1161 1162 // We do not re-use the context from getDwarf() here as that function 1163 // constructs an expensive DWARFCache object. 1164 auto *ctx = make<DWARFContext>( 1165 std::move(dObj), "", 1166 [&](Error err) { 1167 warn(toString(this) + ": " + toString(std::move(err))); 1168 }, 1169 [&](Error warning) { 1170 warn(toString(this) + ": " + toString(std::move(warning))); 1171 }); 1172 1173 // TODO: Since object files can contain a lot of DWARF info, we should verify 1174 // that we are parsing just the info we need 1175 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1176 // FIXME: There can be more than one compile unit per object file. See 1177 // PR48637. 1178 auto it = units.begin(); 1179 compileUnit = it != units.end() ? it->get() : nullptr; 1180 } 1181 1182 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1183 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1184 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1185 if (!cmd) 1186 return {}; 1187 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1188 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1189 c->datasize / sizeof(data_in_code_entry)}; 1190 } 1191 1192 // Create pointers from symbols to their associated compact unwind entries. 1193 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1194 for (const Subsection &subsection : compactUnwindSection.subsections) { 1195 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1196 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed 1197 // their addends in its data. Thus if ICF operated naively and compared the 1198 // entire contents of each CUE, entries with identical unwind info but e.g. 1199 // belonging to different functions would never be considered equivalent. To 1200 // work around this problem, we remove some parts of the data containing the 1201 // embedded addends. In particular, we remove the function address and LSDA 1202 // pointers. Since these locations are at the start and end of the entry, 1203 // we can do this using a simple, efficient slice rather than performing a 1204 // copy. We are not losing any information here because the embedded 1205 // addends have already been parsed in the corresponding Reloc structs. 1206 // 1207 // Removing these pointers would not be safe if they were pointers to 1208 // absolute symbols. In that case, there would be no corresponding 1209 // relocation. However, (AFAIK) MC cannot emit references to absolute 1210 // symbols for either the function address or the LSDA. However, it *can* do 1211 // so for the personality pointer, so we are not slicing that field away. 1212 // 1213 // Note that we do not adjust the offsets of the corresponding relocations; 1214 // instead, we rely on `relocateCompactUnwind()` to correctly handle these 1215 // truncated input sections. 1216 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); 1217 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1218 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1219 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1220 // CU entries from the DWARF info during the output phase. 1221 if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding) 1222 continue; 1223 1224 ConcatInputSection *referentIsec; 1225 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1226 Reloc &r = *it; 1227 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1228 if (r.offset != 0) { 1229 ++it; 1230 continue; 1231 } 1232 uint64_t add = r.addend; 1233 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1234 // Check whether the symbol defined in this file is the prevailing one. 1235 // Skip if it is e.g. a weak def that didn't prevail. 1236 if (sym->getFile() != this) { 1237 ++it; 1238 continue; 1239 } 1240 add += sym->value; 1241 referentIsec = cast<ConcatInputSection>(sym->isec); 1242 } else { 1243 referentIsec = 1244 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1245 } 1246 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1247 // before finalization of __DATA. Moreover, the finalization of unwind 1248 // info depends on the exact addresses that it references. So it is safe 1249 // for compact unwind to reference addresses in __TEXT, but not addresses 1250 // in any other segment. 1251 if (referentIsec->getSegName() != segment_names::text) 1252 error(isec->getLocation(r.offset) + " references section " + 1253 referentIsec->getName() + " which is not in segment __TEXT"); 1254 // The functionAddress relocations are typically section relocations. 1255 // However, unwind info operates on a per-symbol basis, so we search for 1256 // the function symbol here. 1257 Defined *d = findSymbolAtOffset(referentIsec, add); 1258 if (!d) { 1259 ++it; 1260 continue; 1261 } 1262 d->unwindEntry = isec; 1263 // Now that the symbol points to the unwind entry, we can remove the reloc 1264 // that points from the unwind entry back to the symbol. 1265 // 1266 // First, the symbol keeps the unwind entry alive (and not vice versa), so 1267 // this keeps dead-stripping simple. 1268 // 1269 // Moreover, it reduces the work that ICF needs to do to figure out if 1270 // functions with unwind info are foldable. 1271 // 1272 // However, this does make it possible for ICF to fold CUEs that point to 1273 // distinct functions (if the CUEs are otherwise identical). 1274 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that 1275 // each one can hold a distinct functionAddress value. 1276 // 1277 // Given that clang emits relocations in reverse order of address, this 1278 // relocation should be at the end of the vector for most of our input 1279 // object files, so this erase() is typically an O(1) operation. 1280 it = isec->relocs.erase(it); 1281 } 1282 } 1283 } 1284 1285 struct CIE { 1286 macho::Symbol *personalitySymbol = nullptr; 1287 bool fdesHaveLsda = false; 1288 bool fdesHaveAug = false; 1289 }; 1290 1291 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1292 size_t off) { 1293 // Handling the full generality of possible DWARF encodings would be a major 1294 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1295 // DWARF and handle just that. 1296 constexpr uint8_t expectedPersonalityEnc = 1297 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1298 constexpr uint8_t expectedPointerEnc = 1299 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr; 1300 1301 CIE cie; 1302 uint8_t version = reader.readByte(&off); 1303 if (version != 1 && version != 3) 1304 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1305 StringRef aug = reader.readString(&off); 1306 reader.skipLeb128(&off); // skip code alignment 1307 reader.skipLeb128(&off); // skip data alignment 1308 reader.skipLeb128(&off); // skip return address register 1309 reader.skipLeb128(&off); // skip aug data length 1310 uint64_t personalityAddrOff = 0; 1311 for (char c : aug) { 1312 switch (c) { 1313 case 'z': 1314 cie.fdesHaveAug = true; 1315 break; 1316 case 'P': { 1317 uint8_t personalityEnc = reader.readByte(&off); 1318 if (personalityEnc != expectedPersonalityEnc) 1319 reader.failOn(off, "unexpected personality encoding 0x" + 1320 Twine::utohexstr(personalityEnc)); 1321 personalityAddrOff = off; 1322 off += 4; 1323 break; 1324 } 1325 case 'L': { 1326 cie.fdesHaveLsda = true; 1327 uint8_t lsdaEnc = reader.readByte(&off); 1328 if (lsdaEnc != expectedPointerEnc) 1329 reader.failOn(off, "unexpected LSDA encoding 0x" + 1330 Twine::utohexstr(lsdaEnc)); 1331 break; 1332 } 1333 case 'R': { 1334 uint8_t pointerEnc = reader.readByte(&off); 1335 if (pointerEnc != expectedPointerEnc) 1336 reader.failOn(off, "unexpected pointer encoding 0x" + 1337 Twine::utohexstr(pointerEnc)); 1338 break; 1339 } 1340 default: 1341 break; 1342 } 1343 } 1344 if (personalityAddrOff != 0) { 1345 auto personalityRelocIt = 1346 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) { 1347 return r.offset == personalityAddrOff; 1348 }); 1349 if (personalityRelocIt == isec->relocs.end()) 1350 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1351 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>(); 1352 } 1353 return cie; 1354 } 1355 1356 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1357 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1358 // This function recovers the target address from the subtractors, essentially 1359 // performing the inverse operation of EhRelocator. 1360 // 1361 // Concretely, we expect our relocations to write the value of `PC - 1362 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1363 // points to a symbol plus an addend. 1364 // 1365 // It is important that the minuend relocation point to a symbol within the 1366 // same section as the fixup value, since sections may get moved around. 1367 // 1368 // For example, for arm64, llvm-mc emits relocations for the target function 1369 // address like so: 1370 // 1371 // ltmp: 1372 // <CIE start> 1373 // ... 1374 // <CIE end> 1375 // ... multiple FDEs ... 1376 // <FDE start> 1377 // <target function address - (ltmp + pcrel offset)> 1378 // ... 1379 // 1380 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1381 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1382 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1383 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1384 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1385 // 1386 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1387 // to `PC`. 1388 template <bool Invert = false> 1389 Defined * 1390 targetSymFromCanonicalSubtractor(const InputSection *isec, 1391 std::vector<macho::Reloc>::iterator relocIt) { 1392 macho::Reloc &subtrahend = *relocIt; 1393 macho::Reloc &minuend = *std::next(relocIt); 1394 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1395 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1396 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1397 // addend. 1398 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1399 Defined *target = 1400 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1401 if (!pcSym) { 1402 auto *targetIsec = 1403 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1404 target = findSymbolAtOffset(targetIsec, minuend.addend); 1405 } 1406 if (Invert) 1407 std::swap(pcSym, target); 1408 if (pcSym->isec == isec) { 1409 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1410 fatal("invalid FDE relocation in __eh_frame"); 1411 } else { 1412 // Ensure the pcReloc points to a symbol within the current EH frame. 1413 // HACK: we should really verify that the original relocation's semantics 1414 // are preserved. In particular, we should have 1415 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1416 // have an easy way to access the offsets from this point in the code; some 1417 // refactoring is needed for that. 1418 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1419 pcReloc.referent = isec->symbols[0]; 1420 assert(isec->symbols[0]->value == 0); 1421 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1422 } 1423 return target; 1424 } 1425 1426 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1427 uint64_t addr) { 1428 Section *sec = findContainingSection(sections, &addr); 1429 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1430 return findSymbolAtOffset(isec, addr); 1431 } 1432 1433 // For symbols that don't have compact unwind info, associate them with the more 1434 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1435 // 1436 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1437 // description of its format. 1438 // 1439 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1440 // are relocations which are implicitly encoded as offsets in the section data. 1441 // We convert them into explicit Reloc structs so that the EH frames can be 1442 // handled just like a regular ConcatInputSection later in our output phase. 1443 // 1444 // We also need to handle the case where our input object file has explicit 1445 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1446 // look for the "abs-ified" relocation if an explicit relocation is absent. 1447 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1448 DenseMap<const InputSection *, CIE> cieMap; 1449 for (const Subsection &subsec : ehFrameSection.subsections) { 1450 auto *isec = cast<ConcatInputSection>(subsec.isec); 1451 uint64_t isecOff = subsec.offset; 1452 1453 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1454 // that all EH frames have an associated symbol so that we can generate 1455 // subtractor relocs that reference them. 1456 if (isec->symbols.size() == 0) 1457 isec->symbols.push_back(make<Defined>( 1458 "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0, 1459 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, 1460 /*includeInSymtab=*/false, /*isThumb=*/false, 1461 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false)); 1462 else if (isec->symbols[0]->value != 0) 1463 fatal("found symbol at unexpected offset in __eh_frame"); 1464 1465 EhReader reader(this, isec->data, subsec.offset, target->wordSize); 1466 size_t dataOff = 0; // Offset from the start of the EH frame. 1467 reader.skipValidLength(&dataOff); // readLength() already validated this. 1468 // cieOffOff is the offset from the start of the EH frame to the cieOff 1469 // value, which is itself an offset from the current PC to a CIE. 1470 const size_t cieOffOff = dataOff; 1471 1472 EhRelocator ehRelocator(isec); 1473 auto cieOffRelocIt = llvm::find_if( 1474 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1475 InputSection *cieIsec = nullptr; 1476 if (cieOffRelocIt != isec->relocs.end()) { 1477 // We already have an explicit relocation for the CIE offset. 1478 cieIsec = 1479 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1480 ->isec; 1481 dataOff += sizeof(uint32_t); 1482 } else { 1483 // If we haven't found a relocation, then the CIE offset is most likely 1484 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1485 // and generate a Reloc struct. 1486 uint32_t cieMinuend = reader.readU32(&dataOff); 1487 if (cieMinuend == 0) 1488 cieIsec = isec; 1489 else { 1490 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1491 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1492 if (cieIsec == nullptr) 1493 fatal("failed to find CIE"); 1494 } 1495 if (cieIsec != isec) 1496 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1497 /*length=*/2); 1498 } 1499 if (cieIsec == isec) { 1500 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1501 continue; 1502 } 1503 1504 // Offset of the function address within the EH frame. 1505 const size_t funcAddrOff = dataOff; 1506 uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr + 1507 isecOff + funcAddrOff; 1508 uint32_t funcLength = reader.readPointer(&dataOff); 1509 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1510 assert(cieMap.count(cieIsec)); 1511 const CIE &cie = cieMap[cieIsec]; 1512 Optional<uint64_t> lsdaAddrOpt; 1513 if (cie.fdesHaveAug) { 1514 reader.skipLeb128(&dataOff); 1515 lsdaAddrOff = dataOff; 1516 if (cie.fdesHaveLsda) { 1517 uint64_t lsdaOff = reader.readPointer(&dataOff); 1518 if (lsdaOff != 0) // FIXME possible to test this? 1519 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1520 } 1521 } 1522 1523 auto funcAddrRelocIt = isec->relocs.end(); 1524 auto lsdaAddrRelocIt = isec->relocs.end(); 1525 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1526 if (it->offset == funcAddrOff) 1527 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1528 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1529 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1530 } 1531 1532 Defined *funcSym; 1533 if (funcAddrRelocIt != isec->relocs.end()) { 1534 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1535 // Canonicalize the symbol. If there are multiple symbols at the same 1536 // address, we want both `registerEhFrame` and `registerCompactUnwind` 1537 // to register the unwind entry under same symbol. 1538 // This is not particularly efficient, but we should run into this case 1539 // infrequently (only when handling the output of `ld -r`). 1540 if (funcSym->isec) 1541 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), 1542 funcSym->value); 1543 } else { 1544 funcSym = findSymbolAtAddress(sections, funcAddr); 1545 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1546 } 1547 // The symbol has been coalesced, or already has a compact unwind entry. 1548 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1549 // We must prune unused FDEs for correctness, so we cannot rely on 1550 // -dead_strip being enabled. 1551 isec->live = false; 1552 continue; 1553 } 1554 1555 InputSection *lsdaIsec = nullptr; 1556 if (lsdaAddrRelocIt != isec->relocs.end()) { 1557 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1558 } else if (lsdaAddrOpt) { 1559 uint64_t lsdaAddr = *lsdaAddrOpt; 1560 Section *sec = findContainingSection(sections, &lsdaAddr); 1561 lsdaIsec = 1562 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1563 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1564 } 1565 1566 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1567 funcSym->unwindEntry = isec; 1568 ehRelocator.commit(); 1569 } 1570 } 1571 1572 std::string ObjFile::sourceFile() const { 1573 SmallString<261> dir(compileUnit->getCompilationDir()); 1574 StringRef sep = sys::path::get_separator(); 1575 // We don't use `path::append` here because we want an empty `dir` to result 1576 // in an absolute path. `append` would give us a relative path for that case. 1577 if (!dir.endswith(sep)) 1578 dir += sep; 1579 return (dir + compileUnit->getUnitDIE().getShortName()).str(); 1580 } 1581 1582 lld::DWARFCache *ObjFile::getDwarf() { 1583 llvm::call_once(initDwarf, [this]() { 1584 auto dwObj = DwarfObject::create(this); 1585 if (!dwObj) 1586 return; 1587 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1588 std::move(dwObj), "", 1589 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1590 [&](Error warning) { 1591 warn(getName() + ": " + toString(std::move(warning))); 1592 })); 1593 }); 1594 1595 return dwarfCache.get(); 1596 } 1597 // The path can point to either a dylib or a .tbd file. 1598 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1599 Optional<MemoryBufferRef> mbref = readFile(path); 1600 if (!mbref) { 1601 error("could not read dylib file at " + path); 1602 return nullptr; 1603 } 1604 return loadDylib(*mbref, umbrella); 1605 } 1606 1607 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1608 // the first document storing child pointers to the rest of them. When we are 1609 // processing a given TBD file, we store that top-level document in 1610 // currentTopLevelTapi. When processing re-exports, we search its children for 1611 // potentially matching documents in the same TBD file. Note that the children 1612 // themselves don't point to further documents, i.e. this is a two-level tree. 1613 // 1614 // Re-exports can either refer to on-disk files, or to documents within .tbd 1615 // files. 1616 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1617 const InterfaceFile *currentTopLevelTapi) { 1618 // Search order: 1619 // 1. Install name basename in -F / -L directories. 1620 { 1621 StringRef stem = path::stem(path); 1622 SmallString<128> frameworkName; 1623 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1624 bool isFramework = path.endswith(frameworkName); 1625 if (isFramework) { 1626 for (StringRef dir : config->frameworkSearchPaths) { 1627 SmallString<128> candidate = dir; 1628 path::append(candidate, frameworkName); 1629 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1630 return loadDylib(*dylibPath, umbrella); 1631 } 1632 } else if (Optional<StringRef> dylibPath = findPathCombination( 1633 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1634 return loadDylib(*dylibPath, umbrella); 1635 } 1636 1637 // 2. As absolute path. 1638 if (path::is_absolute(path, path::Style::posix)) 1639 for (StringRef root : config->systemLibraryRoots) 1640 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1641 return loadDylib(*dylibPath, umbrella); 1642 1643 // 3. As relative path. 1644 1645 // TODO: Handle -dylib_file 1646 1647 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1648 SmallString<128> newPath; 1649 if (config->outputType == MH_EXECUTE && 1650 path.consume_front("@executable_path/")) { 1651 // ld64 allows overriding this with the undocumented flag -executable_path. 1652 // lld doesn't currently implement that flag. 1653 // FIXME: Consider using finalOutput instead of outputFile. 1654 path::append(newPath, path::parent_path(config->outputFile), path); 1655 path = newPath; 1656 } else if (path.consume_front("@loader_path/")) { 1657 fs::real_path(umbrella->getName(), newPath); 1658 path::remove_filename(newPath); 1659 path::append(newPath, path); 1660 path = newPath; 1661 } else if (path.startswith("@rpath/")) { 1662 for (StringRef rpath : umbrella->rpaths) { 1663 newPath.clear(); 1664 if (rpath.consume_front("@loader_path/")) { 1665 fs::real_path(umbrella->getName(), newPath); 1666 path::remove_filename(newPath); 1667 } 1668 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1669 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1670 return loadDylib(*dylibPath, umbrella); 1671 } 1672 } 1673 1674 // FIXME: Should this be further up? 1675 if (currentTopLevelTapi) { 1676 for (InterfaceFile &child : 1677 make_pointee_range(currentTopLevelTapi->documents())) { 1678 assert(child.documents().empty()); 1679 if (path == child.getInstallName()) { 1680 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1681 /*explicitlyLinked=*/false); 1682 file->parseReexports(child); 1683 return file; 1684 } 1685 } 1686 } 1687 1688 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1689 return loadDylib(*dylibPath, umbrella); 1690 1691 return nullptr; 1692 } 1693 1694 // If a re-exported dylib is public (lives in /usr/lib or 1695 // /System/Library/Frameworks), then it is considered implicitly linked: we 1696 // should bind to its symbols directly instead of via the re-exporting umbrella 1697 // library. 1698 static bool isImplicitlyLinked(StringRef path) { 1699 if (!config->implicitDylibs) 1700 return false; 1701 1702 if (path::parent_path(path) == "/usr/lib") 1703 return true; 1704 1705 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1706 if (path.consume_front("/System/Library/Frameworks/")) { 1707 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1708 return path::filename(path) == frameworkName; 1709 } 1710 1711 return false; 1712 } 1713 1714 static void loadReexport(StringRef path, DylibFile *umbrella, 1715 const InterfaceFile *currentTopLevelTapi) { 1716 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1717 if (!reexport) 1718 error("unable to locate re-export with install name " + path); 1719 } 1720 1721 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1722 bool isBundleLoader, bool explicitlyLinked) 1723 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1724 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1725 assert(!isBundleLoader || !umbrella); 1726 if (umbrella == nullptr) 1727 umbrella = this; 1728 this->umbrella = umbrella; 1729 1730 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1731 1732 // Initialize installName. 1733 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1734 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1735 currentVersion = read32le(&c->dylib.current_version); 1736 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1737 installName = 1738 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1739 } else if (!isBundleLoader) { 1740 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1741 // so it's OK. 1742 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1743 return; 1744 } 1745 1746 if (config->printEachFile) 1747 message(toString(this)); 1748 inputFiles.insert(this); 1749 1750 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1751 1752 if (!checkCompatibility(this)) 1753 return; 1754 1755 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1756 1757 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1758 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1759 rpaths.push_back(rpath); 1760 } 1761 1762 // Initialize symbols. 1763 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1764 1765 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); 1766 const auto *exportsTrie = 1767 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); 1768 if (dyldInfo && exportsTrie) { 1769 // It's unclear what should happen in this case. Maybe we should only error 1770 // out if the two load commands refer to different data? 1771 error("dylib " + toString(this) + 1772 " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); 1773 return; 1774 } else if (dyldInfo) { 1775 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); 1776 } else if (exportsTrie) { 1777 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); 1778 } else { 1779 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + 1780 toString(this)); 1781 return; 1782 } 1783 } 1784 1785 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { 1786 struct TrieEntry { 1787 StringRef name; 1788 uint64_t flags; 1789 }; 1790 1791 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1792 std::vector<TrieEntry> entries; 1793 // Find all the $ld$* symbols to process first. 1794 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { 1795 StringRef savedName = saver().save(name); 1796 if (handleLDSymbol(savedName)) 1797 return; 1798 entries.push_back({savedName, flags}); 1799 }); 1800 1801 // Process the "normal" symbols. 1802 for (TrieEntry &entry : entries) { 1803 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) 1804 continue; 1805 1806 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1807 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1808 1809 symbols.push_back( 1810 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1811 } 1812 } 1813 1814 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1815 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1816 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1817 target->headerSize; 1818 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1819 auto *cmd = reinterpret_cast<const load_command *>(p); 1820 p += cmd->cmdsize; 1821 1822 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1823 cmd->cmd == LC_REEXPORT_DYLIB) { 1824 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1825 StringRef reexportPath = 1826 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1827 loadReexport(reexportPath, exportingFile, nullptr); 1828 } 1829 1830 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1831 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1832 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1833 if (config->namespaceKind == NamespaceKind::flat && 1834 cmd->cmd == LC_LOAD_DYLIB) { 1835 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1836 StringRef dylibPath = 1837 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1838 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1839 if (!dylib) 1840 error(Twine("unable to locate library '") + dylibPath + 1841 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1842 } 1843 } 1844 } 1845 1846 // Some versions of Xcode ship with .tbd files that don't have the right 1847 // platform settings. 1848 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1849 "/usr/lib/system/libsystem_kernel.dylib", 1850 "/usr/lib/system/libsystem_platform.dylib", 1851 "/usr/lib/system/libsystem_pthread.dylib"}; 1852 1853 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1854 bool explicitlyLinked) { 1855 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1856 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1857 return false; 1858 return is_contained(interface.targets(), 1859 MachO::Target(config->arch(), PLATFORM_MACOS)); 1860 } 1861 1862 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1863 bool isBundleLoader, bool explicitlyLinked) 1864 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1865 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1866 // FIXME: Add test for the missing TBD code path. 1867 1868 if (umbrella == nullptr) 1869 umbrella = this; 1870 this->umbrella = umbrella; 1871 1872 installName = saver().save(interface.getInstallName()); 1873 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1874 currentVersion = interface.getCurrentVersion().rawValue(); 1875 1876 if (config->printEachFile) 1877 message(toString(this)); 1878 inputFiles.insert(this); 1879 1880 if (!is_contained(skipPlatformChecks, installName) && 1881 !is_contained(interface.targets(), config->platformInfo.target) && 1882 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1883 error(toString(this) + " is incompatible with " + 1884 std::string(config->platformInfo.target)); 1885 return; 1886 } 1887 1888 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1889 1890 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1891 auto addSymbol = [&](const Twine &name) -> void { 1892 StringRef savedName = saver().save(name); 1893 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1894 return; 1895 1896 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1897 /*isWeakDef=*/false, 1898 /*isTlv=*/false)); 1899 }; 1900 1901 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1902 normalSymbols.reserve(interface.symbolsCount()); 1903 for (const auto *symbol : interface.symbols()) { 1904 if (!symbol->getArchitectures().has(config->arch())) 1905 continue; 1906 if (handleLDSymbol(symbol->getName())) 1907 continue; 1908 1909 switch (symbol->getKind()) { 1910 case SymbolKind::GlobalSymbol: // Fallthrough 1911 case SymbolKind::ObjectiveCClass: // Fallthrough 1912 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1913 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1914 normalSymbols.push_back(symbol); 1915 } 1916 } 1917 1918 // TODO(compnerd) filter out symbols based on the target platform 1919 // TODO: handle weak defs, thread locals 1920 for (const auto *symbol : normalSymbols) { 1921 switch (symbol->getKind()) { 1922 case SymbolKind::GlobalSymbol: 1923 addSymbol(symbol->getName()); 1924 break; 1925 case SymbolKind::ObjectiveCClass: 1926 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1927 // want to emulate that. 1928 addSymbol(objc::klass + symbol->getName()); 1929 addSymbol(objc::metaclass + symbol->getName()); 1930 break; 1931 case SymbolKind::ObjectiveCClassEHType: 1932 addSymbol(objc::ehtype + symbol->getName()); 1933 break; 1934 case SymbolKind::ObjectiveCInstanceVariable: 1935 addSymbol(objc::ivar + symbol->getName()); 1936 break; 1937 } 1938 } 1939 } 1940 1941 void DylibFile::parseReexports(const InterfaceFile &interface) { 1942 const InterfaceFile *topLevel = 1943 interface.getParent() == nullptr ? &interface : interface.getParent(); 1944 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1945 InterfaceFile::const_target_range targets = intfRef.targets(); 1946 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1947 is_contained(targets, config->platformInfo.target)) 1948 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1949 } 1950 } 1951 1952 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1953 // name, compatibility version or hide/add symbols) for specific target 1954 // versions. 1955 bool DylibFile::handleLDSymbol(StringRef originalName) { 1956 if (!originalName.startswith("$ld$")) 1957 return false; 1958 1959 StringRef action; 1960 StringRef name; 1961 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1962 if (action == "previous") 1963 handleLDPreviousSymbol(name, originalName); 1964 else if (action == "install_name") 1965 handleLDInstallNameSymbol(name, originalName); 1966 else if (action == "hide") 1967 handleLDHideSymbol(name, originalName); 1968 return true; 1969 } 1970 1971 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1972 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1973 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1974 StringRef installName; 1975 StringRef compatVersion; 1976 StringRef platformStr; 1977 StringRef startVersion; 1978 StringRef endVersion; 1979 StringRef symbolName; 1980 StringRef rest; 1981 1982 std::tie(installName, name) = name.split('$'); 1983 std::tie(compatVersion, name) = name.split('$'); 1984 std::tie(platformStr, name) = name.split('$'); 1985 std::tie(startVersion, name) = name.split('$'); 1986 std::tie(endVersion, name) = name.split('$'); 1987 std::tie(symbolName, rest) = name.split('$'); 1988 // TODO: ld64 contains some logic for non-empty symbolName as well. 1989 if (!symbolName.empty()) 1990 return; 1991 unsigned platform; 1992 if (platformStr.getAsInteger(10, platform) || 1993 platform != static_cast<unsigned>(config->platform())) 1994 return; 1995 1996 VersionTuple start; 1997 if (start.tryParse(startVersion)) { 1998 warn("failed to parse start version, symbol '" + originalName + 1999 "' ignored"); 2000 return; 2001 } 2002 VersionTuple end; 2003 if (end.tryParse(endVersion)) { 2004 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 2005 return; 2006 } 2007 if (config->platformInfo.minimum < start || 2008 config->platformInfo.minimum >= end) 2009 return; 2010 2011 this->installName = saver().save(installName); 2012 2013 if (!compatVersion.empty()) { 2014 VersionTuple cVersion; 2015 if (cVersion.tryParse(compatVersion)) { 2016 warn("failed to parse compatibility version, symbol '" + originalName + 2017 "' ignored"); 2018 return; 2019 } 2020 compatibilityVersion = encodeVersion(cVersion); 2021 } 2022 } 2023 2024 void DylibFile::handleLDInstallNameSymbol(StringRef name, 2025 StringRef originalName) { 2026 // originalName: $ld$ install_name $ os<version> $ install_name 2027 StringRef condition, installName; 2028 std::tie(condition, installName) = name.split('$'); 2029 VersionTuple version; 2030 if (!condition.consume_front("os") || version.tryParse(condition)) 2031 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 2032 else if (version == config->platformInfo.minimum) 2033 this->installName = saver().save(installName); 2034 } 2035 2036 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 2037 StringRef symbolName; 2038 bool shouldHide = true; 2039 if (name.startswith("os")) { 2040 // If it's hidden based on versions. 2041 name = name.drop_front(2); 2042 StringRef minVersion; 2043 std::tie(minVersion, symbolName) = name.split('$'); 2044 VersionTuple versionTup; 2045 if (versionTup.tryParse(minVersion)) { 2046 warn("Failed to parse hidden version, symbol `" + originalName + 2047 "` ignored."); 2048 return; 2049 } 2050 shouldHide = versionTup == config->platformInfo.minimum; 2051 } else { 2052 symbolName = name; 2053 } 2054 2055 if (shouldHide) 2056 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 2057 } 2058 2059 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 2060 if (config->applicationExtension && !dylibIsAppExtensionSafe) 2061 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 2062 } 2063 2064 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 2065 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 2066 2067 void ArchiveFile::addLazySymbols() { 2068 for (const object::Archive::Symbol &sym : file->symbols()) 2069 symtab->addLazyArchive(sym.getName(), this, sym); 2070 } 2071 2072 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 2073 uint32_t modTime, 2074 StringRef archiveName, 2075 uint64_t offsetInArchive) { 2076 if (config->zeroModTime) 2077 modTime = 0; 2078 2079 switch (identify_magic(mb.getBuffer())) { 2080 case file_magic::macho_object: 2081 return make<ObjFile>(mb, modTime, archiveName); 2082 case file_magic::bitcode: 2083 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 2084 default: 2085 return createStringError(inconvertibleErrorCode(), 2086 mb.getBufferIdentifier() + 2087 " has unhandled file type"); 2088 } 2089 } 2090 2091 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 2092 if (!seen.insert(c.getChildOffset()).second) 2093 return Error::success(); 2094 2095 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 2096 if (!mb) 2097 return mb.takeError(); 2098 2099 // Thin archives refer to .o files, so --reproduce needs the .o files too. 2100 if (tar && c.getParent()->isThin()) 2101 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 2102 2103 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 2104 if (!modTime) 2105 return modTime.takeError(); 2106 2107 Expected<InputFile *> file = 2108 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 2109 2110 if (!file) 2111 return file.takeError(); 2112 2113 inputFiles.insert(*file); 2114 printArchiveMemberLoad(reason, *file); 2115 return Error::success(); 2116 } 2117 2118 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 2119 object::Archive::Child c = 2120 CHECK(sym.getMember(), toString(this) + 2121 ": could not get the member defining symbol " + 2122 toMachOString(sym)); 2123 2124 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 2125 // and become invalid after that call. Copy it to the stack so we can refer 2126 // to it later. 2127 const object::Archive::Symbol symCopy = sym; 2128 2129 // ld64 doesn't demangle sym here even with -demangle. 2130 // Match that: intentionally don't call toMachOString(). 2131 if (Error e = fetch(c, symCopy.getName())) 2132 error(toString(this) + ": could not get the member defining symbol " + 2133 toMachOString(symCopy) + ": " + toString(std::move(e))); 2134 } 2135 2136 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 2137 BitcodeFile &file) { 2138 StringRef name = saver().save(objSym.getName()); 2139 2140 if (objSym.isUndefined()) 2141 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 2142 2143 // TODO: Write a test demonstrating why computing isPrivateExtern before 2144 // LTO compilation is important. 2145 bool isPrivateExtern = false; 2146 switch (objSym.getVisibility()) { 2147 case GlobalValue::HiddenVisibility: 2148 isPrivateExtern = true; 2149 break; 2150 case GlobalValue::ProtectedVisibility: 2151 error(name + " has protected visibility, which is not supported by Mach-O"); 2152 break; 2153 case GlobalValue::DefaultVisibility: 2154 break; 2155 } 2156 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 2157 2158 if (objSym.isCommon()) 2159 return symtab->addCommon(name, &file, objSym.getCommonSize(), 2160 objSym.getCommonAlignment(), isPrivateExtern); 2161 2162 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 2163 /*size=*/0, objSym.isWeak(), isPrivateExtern, 2164 /*isThumb=*/false, 2165 /*isReferencedDynamically=*/false, 2166 /*noDeadStrip=*/false, 2167 /*isWeakDefCanBeHidden=*/false); 2168 } 2169 2170 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 2171 uint64_t offsetInArchive, bool lazy) 2172 : InputFile(BitcodeKind, mb, lazy) { 2173 this->archiveName = std::string(archiveName); 2174 std::string path = mb.getBufferIdentifier().str(); 2175 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 2176 // name. If two members with the same name are provided, this causes a 2177 // collision and ThinLTO can't proceed. 2178 // So, we append the archive name to disambiguate two members with the same 2179 // name from multiple different archives, and offset within the archive to 2180 // disambiguate two members of the same name from a single archive. 2181 MemoryBufferRef mbref(mb.getBuffer(), 2182 saver().save(archiveName.empty() 2183 ? path 2184 : archiveName + 2185 sys::path::filename(path) + 2186 utostr(offsetInArchive))); 2187 2188 obj = check(lto::InputFile::create(mbref)); 2189 if (lazy) 2190 parseLazy(); 2191 else 2192 parse(); 2193 } 2194 2195 void BitcodeFile::parse() { 2196 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 2197 // "winning" symbol will then be marked as Prevailing at LTO compilation 2198 // time. 2199 symbols.clear(); 2200 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 2201 symbols.push_back(createBitcodeSymbol(objSym, *this)); 2202 } 2203 2204 void BitcodeFile::parseLazy() { 2205 symbols.resize(obj->symbols().size()); 2206 for (auto it : llvm::enumerate(obj->symbols())) { 2207 const lto::InputFile::Symbol &objSym = it.value(); 2208 if (!objSym.isUndefined()) { 2209 symbols[it.index()] = 2210 symtab->addLazyObject(saver().save(objSym.getName()), *this); 2211 if (!lazy) 2212 break; 2213 } 2214 } 2215 } 2216 2217 void macho::extract(InputFile &file, StringRef reason) { 2218 assert(file.lazy); 2219 file.lazy = false; 2220 printArchiveMemberLoad(reason, &file); 2221 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2222 bitcode->parse(); 2223 } else { 2224 auto &f = cast<ObjFile>(file); 2225 if (target->wordSize == 8) 2226 f.parse<LP64>(); 2227 else 2228 f.parse<ILP32>(); 2229 } 2230 } 2231 2232 template void ObjFile::parse<LP64>(); 2233