1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/CommonLinkerContext.h"
60 #include "lld/Common/DWARF.h"
61 #include "lld/Common/Reproduce.h"
62 #include "llvm/ADT/iterator.h"
63 #include "llvm/BinaryFormat/MachO.h"
64 #include "llvm/LTO/LTO.h"
65 #include "llvm/Support/BinaryStreamReader.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/Support/TimeProfiler.h"
71 #include "llvm/TextAPI/Architecture.h"
72 #include "llvm/TextAPI/InterfaceFile.h"
73 
74 #include <type_traits>
75 
76 using namespace llvm;
77 using namespace llvm::MachO;
78 using namespace llvm::support::endian;
79 using namespace llvm::sys;
80 using namespace lld;
81 using namespace lld::macho;
82 
83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
84 std::string lld::toString(const InputFile *f) {
85   if (!f)
86     return "<internal>";
87 
88   // Multiple dylibs can be defined in one .tbd file.
89   if (auto dylibFile = dyn_cast<DylibFile>(f))
90     if (f->getName().endswith(".tbd"))
91       return (f->getName() + "(" + dylibFile->installName + ")").str();
92 
93   if (f->archiveName.empty())
94     return std::string(f->getName());
95   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
96 }
97 
98 std::string lld::toString(const Section &sec) {
99   return (toString(sec.file) + ":(" + sec.name + ")").str();
100 }
101 
102 SetVector<InputFile *> macho::inputFiles;
103 std::unique_ptr<TarWriter> macho::tar;
104 int InputFile::idCount = 0;
105 
106 static VersionTuple decodeVersion(uint32_t version) {
107   unsigned major = version >> 16;
108   unsigned minor = (version >> 8) & 0xffu;
109   unsigned subMinor = version & 0xffu;
110   return VersionTuple(major, minor, subMinor);
111 }
112 
113 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
114   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
115     return {};
116 
117   const char *hdr = input->mb.getBufferStart();
118 
119   // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
120   std::vector<PlatformInfo> platformInfos;
121   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
122     PlatformInfo info;
123     info.target.Platform = static_cast<PlatformType>(cmd->platform);
124     info.minimum = decodeVersion(cmd->minos);
125     platformInfos.emplace_back(std::move(info));
126   }
127   for (auto *cmd : findCommands<version_min_command>(
128            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
129            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
130     PlatformInfo info;
131     switch (cmd->cmd) {
132     case LC_VERSION_MIN_MACOSX:
133       info.target.Platform = PLATFORM_MACOS;
134       break;
135     case LC_VERSION_MIN_IPHONEOS:
136       info.target.Platform = PLATFORM_IOS;
137       break;
138     case LC_VERSION_MIN_TVOS:
139       info.target.Platform = PLATFORM_TVOS;
140       break;
141     case LC_VERSION_MIN_WATCHOS:
142       info.target.Platform = PLATFORM_WATCHOS;
143       break;
144     }
145     info.minimum = decodeVersion(cmd->version);
146     platformInfos.emplace_back(std::move(info));
147   }
148 
149   return platformInfos;
150 }
151 
152 static bool checkCompatibility(const InputFile *input) {
153   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
154   if (platformInfos.empty())
155     return true;
156 
157   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
158     return removeSimulator(info.target.Platform) ==
159            removeSimulator(config->platform());
160   });
161   if (it == platformInfos.end()) {
162     std::string platformNames;
163     raw_string_ostream os(platformNames);
164     interleave(
165         platformInfos, os,
166         [&](const PlatformInfo &info) {
167           os << getPlatformName(info.target.Platform);
168         },
169         "/");
170     error(toString(input) + " has platform " + platformNames +
171           Twine(", which is different from target platform ") +
172           getPlatformName(config->platform()));
173     return false;
174   }
175 
176   if (it->minimum > config->platformInfo.minimum)
177     warn(toString(input) + " has version " + it->minimum.getAsString() +
178          ", which is newer than target minimum of " +
179          config->platformInfo.minimum.getAsString());
180 
181   return true;
182 }
183 
184 // This cache mostly exists to store system libraries (and .tbds) as they're
185 // loaded, rather than the input archives, which are already cached at a higher
186 // level, and other files like the filelist that are only read once.
187 // Theoretically this caching could be more efficient by hoisting it, but that
188 // would require altering many callers to track the state.
189 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
190 // Open a given file path and return it as a memory-mapped file.
191 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
192   CachedHashStringRef key(path);
193   auto entry = cachedReads.find(key);
194   if (entry != cachedReads.end())
195     return entry->second;
196 
197   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
198   if (std::error_code ec = mbOrErr.getError()) {
199     error("cannot open " + path + ": " + ec.message());
200     return None;
201   }
202 
203   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
204   MemoryBufferRef mbref = mb->getMemBufferRef();
205   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
206 
207   // If this is a regular non-fat file, return it.
208   const char *buf = mbref.getBufferStart();
209   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
210   if (mbref.getBufferSize() < sizeof(uint32_t) ||
211       read32be(&hdr->magic) != FAT_MAGIC) {
212     if (tar)
213       tar->append(relativeToRoot(path), mbref.getBuffer());
214     return cachedReads[key] = mbref;
215   }
216 
217   llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
218 
219   // Object files and archive files may be fat files, which contain multiple
220   // real files for different CPU ISAs. Here, we search for a file that matches
221   // with the current link target and returns it as a MemoryBufferRef.
222   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
223 
224   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
225     if (reinterpret_cast<const char *>(arch + i + 1) >
226         buf + mbref.getBufferSize()) {
227       error(path + ": fat_arch struct extends beyond end of file");
228       return None;
229     }
230 
231     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
232         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
233       continue;
234 
235     uint32_t offset = read32be(&arch[i].offset);
236     uint32_t size = read32be(&arch[i].size);
237     if (offset + size > mbref.getBufferSize())
238       error(path + ": slice extends beyond end of file");
239     if (tar)
240       tar->append(relativeToRoot(path), mbref.getBuffer());
241     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
242                                               path.copy(bAlloc));
243   }
244 
245   error("unable to find matching architecture in " + path);
246   return None;
247 }
248 
249 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
250     : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
251 
252 // Some sections comprise of fixed-size records, so instead of splitting them at
253 // symbol boundaries, we split them based on size. Records are distinct from
254 // literals in that they may contain references to other sections, instead of
255 // being leaf nodes in the InputSection graph.
256 //
257 // Note that "record" is a term I came up with. In contrast, "literal" is a term
258 // used by the Mach-O format.
259 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
260   if (name == section_names::compactUnwind) {
261       if (segname == segment_names::ld)
262         return target->wordSize == 8 ? 32 : 20;
263   }
264   if (config->icfLevel == ICFLevel::none)
265     return {};
266 
267   if (name == section_names::cfString && segname == segment_names::data)
268     return target->wordSize == 8 ? 32 : 16;
269   if (name == section_names::objcClassRefs && segname == segment_names::data)
270     return target->wordSize;
271   return {};
272 }
273 
274 static Error parseCallGraph(ArrayRef<uint8_t> data,
275                             std::vector<CallGraphEntry> &callGraph) {
276   TimeTraceScope timeScope("Parsing call graph section");
277   BinaryStreamReader reader(data, support::little);
278   while (!reader.empty()) {
279     uint32_t fromIndex, toIndex;
280     uint64_t count;
281     if (Error err = reader.readInteger(fromIndex))
282       return err;
283     if (Error err = reader.readInteger(toIndex))
284       return err;
285     if (Error err = reader.readInteger(count))
286       return err;
287     callGraph.emplace_back(fromIndex, toIndex, count);
288   }
289   return Error::success();
290 }
291 
292 // Parse the sequence of sections within a single LC_SEGMENT(_64).
293 // Split each section into subsections.
294 template <class SectionHeader>
295 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
296   sections.reserve(sectionHeaders.size());
297   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
298 
299   for (const SectionHeader &sec : sectionHeaders) {
300     StringRef name =
301         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
302     StringRef segname =
303         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
304     sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
305     if (sec.align >= 32) {
306       error("alignment " + std::to_string(sec.align) + " of section " + name +
307             " is too large");
308       continue;
309     }
310     Section &section = *sections.back();
311     uint32_t align = 1 << sec.align;
312     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
313                                                     : buf + sec.offset,
314                               static_cast<size_t>(sec.size)};
315 
316     auto splitRecords = [&](int recordSize) -> void {
317       if (data.empty())
318         return;
319       Subsections &subsections = section.subsections;
320       subsections.reserve(data.size() / recordSize);
321       for (uint64_t off = 0; off < data.size(); off += recordSize) {
322         auto *isec = make<ConcatInputSection>(
323             section, data.slice(off, recordSize), align);
324         subsections.push_back({off, isec});
325       }
326     };
327 
328     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
329         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
330       if (sec.nreloc && config->dedupLiterals)
331         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
332               sec.sectname +
333               ", so LLD cannot deduplicate literals. Try re-running without "
334               "--deduplicate-literals.");
335 
336       InputSection *isec;
337       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
338         isec = make<CStringInputSection>(section, data, align);
339         // FIXME: parallelize this?
340         cast<CStringInputSection>(isec)->splitIntoPieces();
341       } else {
342         isec = make<WordLiteralInputSection>(section, data, align);
343       }
344       section.subsections.push_back({0, isec});
345     } else if (auto recordSize = getRecordSize(segname, name)) {
346       splitRecords(*recordSize);
347     } else if (segname == segment_names::llvm) {
348       if (config->callGraphProfileSort && name == section_names::cgProfile)
349         checkError(parseCallGraph(data, callGraph));
350       // ld64 does not appear to emit contents from sections within the __LLVM
351       // segment. Symbols within those sections point to bitcode metadata
352       // instead of actual symbols. Global symbols within those sections could
353       // have the same name without causing duplicate symbol errors. To avoid
354       // spurious duplicate symbol errors, we do not parse these sections.
355       // TODO: Evaluate whether the bitcode metadata is needed.
356     } else {
357       auto *isec = make<ConcatInputSection>(section, data, align);
358       if (isDebugSection(isec->getFlags()) &&
359           isec->getSegName() == segment_names::dwarf) {
360         // Instead of emitting DWARF sections, we emit STABS symbols to the
361         // object files that contain them. We filter them out early to avoid
362         // parsing their relocations unnecessarily.
363         debugSections.push_back(isec);
364       } else {
365         section.subsections.push_back({0, isec});
366       }
367     }
368   }
369 }
370 
371 // Find the subsection corresponding to the greatest section offset that is <=
372 // that of the given offset.
373 //
374 // offset: an offset relative to the start of the original InputSection (before
375 // any subsection splitting has occurred). It will be updated to represent the
376 // same location as an offset relative to the start of the containing
377 // subsection.
378 template <class T>
379 static InputSection *findContainingSubsection(const Section &section,
380                                               T *offset) {
381   static_assert(std::is_same<uint64_t, T>::value ||
382                     std::is_same<uint32_t, T>::value,
383                 "unexpected type for offset");
384   auto it = std::prev(llvm::upper_bound(
385       section.subsections, *offset,
386       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
387   *offset -= it->offset;
388   return it->isec;
389 }
390 
391 // Find a symbol at offset `off` within `isec`.
392 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
393                                    uint64_t off) {
394   auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
395     return d->value < off;
396   });
397   // The offset should point at the exact address of a symbol (with no addend.)
398   if (it == isec->symbols.end() || (*it)->value != off) {
399     assert(isec->wasCoalesced);
400     return nullptr;
401   }
402   return *it;
403 }
404 
405 template <class SectionHeader>
406 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
407                                    relocation_info rel) {
408   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
409   bool valid = true;
410   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
411     valid = false;
412     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
413             std::to_string(rel.r_address) + " of " + sec.segname + "," +
414             sec.sectname + " in " + toString(file))
415         .str();
416   };
417 
418   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
419     error(message("must be extern"));
420   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
421     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
422                   "be PC-relative"));
423   if (isThreadLocalVariables(sec.flags) &&
424       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
425     error(message("not allowed in thread-local section, must be UNSIGNED"));
426   if (rel.r_length < 2 || rel.r_length > 3 ||
427       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
428     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
429     error(message("has width " + std::to_string(1 << rel.r_length) +
430                   " bytes, but must be " +
431                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
432                   " bytes"));
433   }
434   return valid;
435 }
436 
437 template <class SectionHeader>
438 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
439                                const SectionHeader &sec,
440                                Section &section) {
441   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
442   ArrayRef<relocation_info> relInfos(
443       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
444 
445   Subsections &subsections = section.subsections;
446   auto subsecIt = subsections.rbegin();
447   for (size_t i = 0; i < relInfos.size(); i++) {
448     // Paired relocations serve as Mach-O's method for attaching a
449     // supplemental datum to a primary relocation record. ELF does not
450     // need them because the *_RELOC_RELA records contain the extra
451     // addend field, vs. *_RELOC_REL which omit the addend.
452     //
453     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
454     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
455     // datum for each is a symbolic address. The result is the offset
456     // between two addresses.
457     //
458     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
459     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
460     // base symbolic address.
461     //
462     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
463     // addend into the instruction stream. On X86, a relocatable address
464     // field always occupies an entire contiguous sequence of byte(s),
465     // so there is no need to merge opcode bits with address
466     // bits. Therefore, it's easy and convenient to store addends in the
467     // instruction-stream bytes that would otherwise contain zeroes. By
468     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
469     // address bits so that bitwise arithmetic is necessary to extract
470     // and insert them. Storing addends in the instruction stream is
471     // possible, but inconvenient and more costly at link time.
472 
473     relocation_info relInfo = relInfos[i];
474     bool isSubtrahend =
475         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
476     if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) {
477       // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r
478       // adds local "EH_Frame1" and "func.eh". Ignore them because they have
479       // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009.
480       ++i;
481       continue;
482     }
483     int64_t pairedAddend = 0;
484     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
485       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
486       relInfo = relInfos[++i];
487     }
488     assert(i < relInfos.size());
489     if (!validateRelocationInfo(this, sec, relInfo))
490       continue;
491     if (relInfo.r_address & R_SCATTERED)
492       fatal("TODO: Scattered relocations not supported");
493 
494     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
495     assert(!(embeddedAddend && pairedAddend));
496     int64_t totalAddend = pairedAddend + embeddedAddend;
497     Reloc r;
498     r.type = relInfo.r_type;
499     r.pcrel = relInfo.r_pcrel;
500     r.length = relInfo.r_length;
501     r.offset = relInfo.r_address;
502     if (relInfo.r_extern) {
503       r.referent = symbols[relInfo.r_symbolnum];
504       r.addend = isSubtrahend ? 0 : totalAddend;
505     } else {
506       assert(!isSubtrahend);
507       const SectionHeader &referentSecHead =
508           sectionHeaders[relInfo.r_symbolnum - 1];
509       uint64_t referentOffset;
510       if (relInfo.r_pcrel) {
511         // The implicit addend for pcrel section relocations is the pcrel offset
512         // in terms of the addresses in the input file. Here we adjust it so
513         // that it describes the offset from the start of the referent section.
514         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
515         // have pcrel section relocations. We may want to factor this out into
516         // the arch-specific .cpp file.
517         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
518         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
519                          referentSecHead.addr;
520       } else {
521         // The addend for a non-pcrel relocation is its absolute address.
522         referentOffset = totalAddend - referentSecHead.addr;
523       }
524       r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
525                                             &referentOffset);
526       r.addend = referentOffset;
527     }
528 
529     // Find the subsection that this relocation belongs to.
530     // Though not required by the Mach-O format, clang and gcc seem to emit
531     // relocations in order, so let's take advantage of it. However, ld64 emits
532     // unsorted relocations (in `-r` mode), so we have a fallback for that
533     // uncommon case.
534     InputSection *subsec;
535     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
536       ++subsecIt;
537     if (subsecIt == subsections.rend() ||
538         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
539       subsec = findContainingSubsection(section, &r.offset);
540       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
541       // for the other relocations.
542       subsecIt = subsections.rend();
543     } else {
544       subsec = subsecIt->isec;
545       r.offset -= subsecIt->offset;
546     }
547     subsec->relocs.push_back(r);
548 
549     if (isSubtrahend) {
550       relocation_info minuendInfo = relInfos[++i];
551       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
552       // attached to the same address.
553       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
554              relInfo.r_address == minuendInfo.r_address);
555       Reloc p;
556       p.type = minuendInfo.r_type;
557       if (minuendInfo.r_extern) {
558         p.referent = symbols[minuendInfo.r_symbolnum];
559         p.addend = totalAddend;
560       } else {
561         uint64_t referentOffset =
562             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
563         p.referent = findContainingSubsection(
564             *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
565         p.addend = referentOffset;
566       }
567       subsec->relocs.push_back(p);
568     }
569   }
570 }
571 
572 template <class NList>
573 static macho::Symbol *createDefined(const NList &sym, StringRef name,
574                                     InputSection *isec, uint64_t value,
575                                     uint64_t size) {
576   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
577   // N_EXT: Global symbols. These go in the symbol table during the link,
578   //        and also in the export table of the output so that the dynamic
579   //        linker sees them.
580   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
581   //                 symbol table during the link so that duplicates are
582   //                 either reported (for non-weak symbols) or merged
583   //                 (for weak symbols), but they do not go in the export
584   //                 table of the output.
585   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
586   //         object files) may produce them. LLD does not yet support -r.
587   //         These are translation-unit scoped, identical to the `0` case.
588   // 0: Translation-unit scoped. These are not in the symbol table during
589   //    link, and not in the export table of the output either.
590   bool isWeakDefCanBeHidden =
591       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
592 
593   if (sym.n_type & N_EXT) {
594     bool isPrivateExtern = sym.n_type & N_PEXT;
595     // lld's behavior for merging symbols is slightly different from ld64:
596     // ld64 picks the winning symbol based on several criteria (see
597     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
598     // just merges metadata and keeps the contents of the first symbol
599     // with that name (see SymbolTable::addDefined). For:
600     // * inline function F in a TU built with -fvisibility-inlines-hidden
601     // * and inline function F in another TU built without that flag
602     // ld64 will pick the one from the file built without
603     // -fvisibility-inlines-hidden.
604     // lld will instead pick the one listed first on the link command line and
605     // give it visibility as if the function was built without
606     // -fvisibility-inlines-hidden.
607     // If both functions have the same contents, this will have the same
608     // behavior. If not, it won't, but the input had an ODR violation in
609     // that case.
610     //
611     // Similarly, merging a symbol
612     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
613     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
614     // should produce one
615     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
616     // with ld64's semantics, because it means the non-private-extern
617     // definition will continue to take priority if more private extern
618     // definitions are encountered. With lld's semantics there's no observable
619     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
620     // that's privateExtern -- neither makes it into the dynamic symbol table,
621     // unless the autohide symbol is explicitly exported.
622     // But if a symbol is both privateExtern and autohide then it can't
623     // be exported.
624     // So we nullify the autohide flag when privateExtern is present
625     // and promote the symbol to privateExtern when it is not already.
626     if (isWeakDefCanBeHidden && isPrivateExtern)
627       isWeakDefCanBeHidden = false;
628     else if (isWeakDefCanBeHidden)
629       isPrivateExtern = true;
630     return symtab->addDefined(
631         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
632         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
633         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
634         isWeakDefCanBeHidden);
635   }
636   assert(!isWeakDefCanBeHidden &&
637          "weak_def_can_be_hidden on already-hidden symbol?");
638   bool includeInSymtab = !name.startswith("l") && !name.startswith("L");
639   return make<Defined>(
640       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
641       /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
642       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
643       sym.n_desc & N_NO_DEAD_STRIP);
644 }
645 
646 // Absolute symbols are defined symbols that do not have an associated
647 // InputSection. They cannot be weak.
648 template <class NList>
649 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
650                                      StringRef name) {
651   if (sym.n_type & N_EXT) {
652     return symtab->addDefined(
653         name, file, nullptr, sym.n_value, /*size=*/0,
654         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
655         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
656         /*isWeakDefCanBeHidden=*/false);
657   }
658   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
659                        /*isWeakDef=*/false,
660                        /*isExternal=*/false, /*isPrivateExtern=*/false,
661                        /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
662                        /*isReferencedDynamically=*/false,
663                        sym.n_desc & N_NO_DEAD_STRIP);
664 }
665 
666 template <class NList>
667 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
668                                               StringRef name) {
669   uint8_t type = sym.n_type & N_TYPE;
670   switch (type) {
671   case N_UNDF:
672     return sym.n_value == 0
673                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
674                : symtab->addCommon(name, this, sym.n_value,
675                                    1 << GET_COMM_ALIGN(sym.n_desc),
676                                    sym.n_type & N_PEXT);
677   case N_ABS:
678     return createAbsolute(sym, this, name);
679   case N_PBUD:
680   case N_INDR:
681     error("TODO: support symbols of type " + std::to_string(type));
682     return nullptr;
683   case N_SECT:
684     llvm_unreachable(
685         "N_SECT symbols should not be passed to parseNonSectionSymbol");
686   default:
687     llvm_unreachable("invalid symbol type");
688   }
689 }
690 
691 template <class NList> static bool isUndef(const NList &sym) {
692   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
693 }
694 
695 template <class LP>
696 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
697                            ArrayRef<typename LP::nlist> nList,
698                            const char *strtab, bool subsectionsViaSymbols) {
699   using NList = typename LP::nlist;
700 
701   // Groups indices of the symbols by the sections that contain them.
702   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
703   symbols.resize(nList.size());
704   SmallVector<unsigned, 32> undefineds;
705   for (uint32_t i = 0; i < nList.size(); ++i) {
706     const NList &sym = nList[i];
707 
708     // Ignore debug symbols for now.
709     // FIXME: may need special handling.
710     if (sym.n_type & N_STAB)
711       continue;
712 
713     StringRef name = strtab + sym.n_strx;
714     if ((sym.n_type & N_TYPE) == N_SECT) {
715       Subsections &subsections = sections[sym.n_sect - 1]->subsections;
716       // parseSections() may have chosen not to parse this section.
717       if (subsections.empty())
718         continue;
719       symbolsBySection[sym.n_sect - 1].push_back(i);
720     } else if (isUndef(sym)) {
721       undefineds.push_back(i);
722     } else {
723       symbols[i] = parseNonSectionSymbol(sym, name);
724     }
725   }
726 
727   for (size_t i = 0; i < sections.size(); ++i) {
728     Subsections &subsections = sections[i]->subsections;
729     if (subsections.empty())
730       continue;
731     if (sections[i]->name == section_names::ehFrame) {
732       // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r
733       // adds local "EH_Frame1" and "func.eh". Ignore them because they have
734       // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009.
735       continue;
736     }
737     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
738     uint64_t sectionAddr = sectionHeaders[i].addr;
739     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
740 
741     // Record-based sections have already been split into subsections during
742     // parseSections(), so we simply need to match Symbols to the corresponding
743     // subsection here.
744     if (getRecordSize(sections[i]->segname, sections[i]->name)) {
745       for (size_t j = 0; j < symbolIndices.size(); ++j) {
746         uint32_t symIndex = symbolIndices[j];
747         const NList &sym = nList[symIndex];
748         StringRef name = strtab + sym.n_strx;
749         uint64_t symbolOffset = sym.n_value - sectionAddr;
750         InputSection *isec =
751             findContainingSubsection(*sections[i], &symbolOffset);
752         if (symbolOffset != 0) {
753           error(toString(*sections[i]) + ":  symbol " + name +
754                 " at misaligned offset");
755           continue;
756         }
757         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
758       }
759       continue;
760     }
761 
762     // Calculate symbol sizes and create subsections by splitting the sections
763     // along symbol boundaries.
764     // We populate subsections by repeatedly splitting the last (highest
765     // address) subsection.
766     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
767       return nList[lhs].n_value < nList[rhs].n_value;
768     });
769     for (size_t j = 0; j < symbolIndices.size(); ++j) {
770       uint32_t symIndex = symbolIndices[j];
771       const NList &sym = nList[symIndex];
772       StringRef name = strtab + sym.n_strx;
773       Subsection &subsec = subsections.back();
774       InputSection *isec = subsec.isec;
775 
776       uint64_t subsecAddr = sectionAddr + subsec.offset;
777       size_t symbolOffset = sym.n_value - subsecAddr;
778       uint64_t symbolSize =
779           j + 1 < symbolIndices.size()
780               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
781               : isec->data.size() - symbolOffset;
782       // There are 4 cases where we do not need to create a new subsection:
783       //   1. If the input file does not use subsections-via-symbols.
784       //   2. Multiple symbols at the same address only induce one subsection.
785       //      (The symbolOffset == 0 check covers both this case as well as
786       //      the first loop iteration.)
787       //   3. Alternative entry points do not induce new subsections.
788       //   4. If we have a literal section (e.g. __cstring and __literal4).
789       if (!subsectionsViaSymbols || symbolOffset == 0 ||
790           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
791         symbols[symIndex] =
792             createDefined(sym, name, isec, symbolOffset, symbolSize);
793         continue;
794       }
795       auto *concatIsec = cast<ConcatInputSection>(isec);
796 
797       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
798       nextIsec->wasCoalesced = false;
799       if (isZeroFill(isec->getFlags())) {
800         // Zero-fill sections have NULL data.data() non-zero data.size()
801         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
802         isec->data = {nullptr, symbolOffset};
803       } else {
804         nextIsec->data = isec->data.slice(symbolOffset);
805         isec->data = isec->data.slice(0, symbolOffset);
806       }
807 
808       // By construction, the symbol will be at offset zero in the new
809       // subsection.
810       symbols[symIndex] =
811           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
812       // TODO: ld64 appears to preserve the original alignment as well as each
813       // subsection's offset from the last aligned address. We should consider
814       // emulating that behavior.
815       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
816       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
817     }
818   }
819 
820   // Undefined symbols can trigger recursive fetch from Archives due to
821   // LazySymbols. Process defined symbols first so that the relative order
822   // between a defined symbol and an undefined symbol does not change the
823   // symbol resolution behavior. In addition, a set of interconnected symbols
824   // will all be resolved to the same file, instead of being resolved to
825   // different files.
826   for (unsigned i : undefineds) {
827     const NList &sym = nList[i];
828     StringRef name = strtab + sym.n_strx;
829     symbols[i] = parseNonSectionSymbol(sym, name);
830   }
831 }
832 
833 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
834                        StringRef sectName)
835     : InputFile(OpaqueKind, mb) {
836   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
837   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
838   sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
839                                    sectName.take_front(16),
840                                    /*flags=*/0, /*addr=*/0));
841   Section &section = *sections.back();
842   ConcatInputSection *isec = make<ConcatInputSection>(section, data);
843   isec->live = true;
844   section.subsections.push_back({0, isec});
845 }
846 
847 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
848                  bool lazy)
849     : InputFile(ObjKind, mb, lazy), modTime(modTime) {
850   this->archiveName = std::string(archiveName);
851   if (lazy) {
852     if (target->wordSize == 8)
853       parseLazy<LP64>();
854     else
855       parseLazy<ILP32>();
856   } else {
857     if (target->wordSize == 8)
858       parse<LP64>();
859     else
860       parse<ILP32>();
861   }
862 }
863 
864 template <class LP> void ObjFile::parse() {
865   using Header = typename LP::mach_header;
866   using SegmentCommand = typename LP::segment_command;
867   using SectionHeader = typename LP::section;
868   using NList = typename LP::nlist;
869 
870   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
871   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
872 
873   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
874   if (arch != config->arch()) {
875     auto msg = config->errorForArchMismatch
876                    ? static_cast<void (*)(const Twine &)>(error)
877                    : warn;
878     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
879         " which is incompatible with target architecture " +
880         getArchitectureName(config->arch()));
881     return;
882   }
883 
884   if (!checkCompatibility(this))
885     return;
886 
887   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
888     StringRef data{reinterpret_cast<const char *>(cmd + 1),
889                    cmd->cmdsize - sizeof(linker_option_command)};
890     parseLCLinkerOption(this, cmd->count, data);
891   }
892 
893   ArrayRef<SectionHeader> sectionHeaders;
894   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
895     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
896     sectionHeaders = ArrayRef<SectionHeader>{
897         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
898     parseSections(sectionHeaders);
899   }
900 
901   // TODO: Error on missing LC_SYMTAB?
902   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
903     auto *c = reinterpret_cast<const symtab_command *>(cmd);
904     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
905                           c->nsyms);
906     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
907     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
908     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
909   }
910 
911   // The relocations may refer to the symbols, so we parse them after we have
912   // parsed all the symbols.
913   for (size_t i = 0, n = sections.size(); i < n; ++i)
914     if (!sections[i]->subsections.empty())
915       parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
916 
917   parseDebugInfo();
918 
919   Section *ehFrameSection = nullptr;
920   Section *compactUnwindSection = nullptr;
921   for (Section *sec : sections) {
922     Section **s = StringSwitch<Section **>(sec->name)
923                       .Case(section_names::compactUnwind, &compactUnwindSection)
924                       .Case(section_names::ehFrame, &ehFrameSection)
925                       .Default(nullptr);
926     if (s)
927       *s = sec;
928   }
929   if (compactUnwindSection)
930     registerCompactUnwind(*compactUnwindSection);
931 }
932 
933 template <class LP> void ObjFile::parseLazy() {
934   using Header = typename LP::mach_header;
935   using NList = typename LP::nlist;
936 
937   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
938   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
939   const load_command *cmd = findCommand(hdr, LC_SYMTAB);
940   if (!cmd)
941     return;
942   auto *c = reinterpret_cast<const symtab_command *>(cmd);
943   ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
944                         c->nsyms);
945   const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
946   symbols.resize(nList.size());
947   for (auto it : llvm::enumerate(nList)) {
948     const NList &sym = it.value();
949     if ((sym.n_type & N_EXT) && !isUndef(sym)) {
950       // TODO: Bound checking
951       StringRef name = strtab + sym.n_strx;
952       symbols[it.index()] = symtab->addLazyObject(name, *this);
953       if (!lazy)
954         break;
955     }
956   }
957 }
958 
959 void ObjFile::parseDebugInfo() {
960   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
961   if (!dObj)
962     return;
963 
964   auto *ctx = make<DWARFContext>(
965       std::move(dObj), "",
966       [&](Error err) {
967         warn(toString(this) + ": " + toString(std::move(err)));
968       },
969       [&](Error warning) {
970         warn(toString(this) + ": " + toString(std::move(warning)));
971       });
972 
973   // TODO: Since object files can contain a lot of DWARF info, we should verify
974   // that we are parsing just the info we need
975   const DWARFContext::compile_unit_range &units = ctx->compile_units();
976   // FIXME: There can be more than one compile unit per object file. See
977   // PR48637.
978   auto it = units.begin();
979   compileUnit = it->get();
980 }
981 
982 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
983   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
984   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
985   if (!cmd)
986     return {};
987   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
988   return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
989           c->datasize / sizeof(data_in_code_entry)};
990 }
991 
992 // Create pointers from symbols to their associated compact unwind entries.
993 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
994   for (const Subsection &subsection : compactUnwindSection.subsections) {
995     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
996     // Hack!! Since each CUE contains a different function address, if ICF
997     // operated naively and compared the entire contents of each CUE, entries
998     // with identical unwind info but belonging to different functions would
999     // never be considered equivalent. To work around this problem, we slice
1000     // away the function address here. (Note that we do not adjust the offsets
1001     // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
1002     // to correctly handle these truncated input sections.
1003     isec->data = isec->data.slice(target->wordSize);
1004 
1005     ConcatInputSection *referentIsec;
1006     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1007       Reloc &r = *it;
1008       // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1009       if (r.offset != 0) {
1010         ++it;
1011         continue;
1012       }
1013       uint64_t add = r.addend;
1014       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1015         // Check whether the symbol defined in this file is the prevailing one.
1016         // Skip if it is e.g. a weak def that didn't prevail.
1017         if (sym->getFile() != this) {
1018           ++it;
1019           continue;
1020         }
1021         add += sym->value;
1022         referentIsec = cast<ConcatInputSection>(sym->isec);
1023       } else {
1024         referentIsec =
1025             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1026       }
1027       // Unwind info lives in __DATA, and finalization of __TEXT will occur
1028       // before finalization of __DATA. Moreover, the finalization of unwind
1029       // info depends on the exact addresses that it references. So it is safe
1030       // for compact unwind to reference addresses in __TEXT, but not addresses
1031       // in any other segment.
1032       if (referentIsec->getSegName() != segment_names::text)
1033         error(isec->getLocation(r.offset) + " references section " +
1034               referentIsec->getName() + " which is not in segment __TEXT");
1035       // The functionAddress relocations are typically section relocations.
1036       // However, unwind info operates on a per-symbol basis, so we search for
1037       // the function symbol here.
1038       Defined *d = findSymbolAtOffset(referentIsec, add);
1039       if (!d) {
1040         ++it;
1041         continue;
1042       }
1043       d->unwindEntry = isec;
1044       // Since we've sliced away the functionAddress, we should remove the
1045       // corresponding relocation too. Given that clang emits relocations in
1046       // reverse order of address, this relocation should be at the end of the
1047       // vector for most of our input object files, so this is typically an O(1)
1048       // operation.
1049       it = isec->relocs.erase(it);
1050     }
1051   }
1052 }
1053 
1054 // The path can point to either a dylib or a .tbd file.
1055 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1056   Optional<MemoryBufferRef> mbref = readFile(path);
1057   if (!mbref) {
1058     error("could not read dylib file at " + path);
1059     return nullptr;
1060   }
1061   return loadDylib(*mbref, umbrella);
1062 }
1063 
1064 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1065 // the first document storing child pointers to the rest of them. When we are
1066 // processing a given TBD file, we store that top-level document in
1067 // currentTopLevelTapi. When processing re-exports, we search its children for
1068 // potentially matching documents in the same TBD file. Note that the children
1069 // themselves don't point to further documents, i.e. this is a two-level tree.
1070 //
1071 // Re-exports can either refer to on-disk files, or to documents within .tbd
1072 // files.
1073 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1074                             const InterfaceFile *currentTopLevelTapi) {
1075   // Search order:
1076   // 1. Install name basename in -F / -L directories.
1077   {
1078     StringRef stem = path::stem(path);
1079     SmallString<128> frameworkName;
1080     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1081     bool isFramework = path.endswith(frameworkName);
1082     if (isFramework) {
1083       for (StringRef dir : config->frameworkSearchPaths) {
1084         SmallString<128> candidate = dir;
1085         path::append(candidate, frameworkName);
1086         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1087           return loadDylib(*dylibPath, umbrella);
1088       }
1089     } else if (Optional<StringRef> dylibPath = findPathCombination(
1090                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1091       return loadDylib(*dylibPath, umbrella);
1092   }
1093 
1094   // 2. As absolute path.
1095   if (path::is_absolute(path, path::Style::posix))
1096     for (StringRef root : config->systemLibraryRoots)
1097       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1098         return loadDylib(*dylibPath, umbrella);
1099 
1100   // 3. As relative path.
1101 
1102   // TODO: Handle -dylib_file
1103 
1104   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1105   SmallString<128> newPath;
1106   if (config->outputType == MH_EXECUTE &&
1107       path.consume_front("@executable_path/")) {
1108     // ld64 allows overriding this with the undocumented flag -executable_path.
1109     // lld doesn't currently implement that flag.
1110     // FIXME: Consider using finalOutput instead of outputFile.
1111     path::append(newPath, path::parent_path(config->outputFile), path);
1112     path = newPath;
1113   } else if (path.consume_front("@loader_path/")) {
1114     fs::real_path(umbrella->getName(), newPath);
1115     path::remove_filename(newPath);
1116     path::append(newPath, path);
1117     path = newPath;
1118   } else if (path.startswith("@rpath/")) {
1119     for (StringRef rpath : umbrella->rpaths) {
1120       newPath.clear();
1121       if (rpath.consume_front("@loader_path/")) {
1122         fs::real_path(umbrella->getName(), newPath);
1123         path::remove_filename(newPath);
1124       }
1125       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1126       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1127         return loadDylib(*dylibPath, umbrella);
1128     }
1129   }
1130 
1131   // FIXME: Should this be further up?
1132   if (currentTopLevelTapi) {
1133     for (InterfaceFile &child :
1134          make_pointee_range(currentTopLevelTapi->documents())) {
1135       assert(child.documents().empty());
1136       if (path == child.getInstallName()) {
1137         auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1138                                     /*explicitlyLinked=*/false);
1139         file->parseReexports(child);
1140         return file;
1141       }
1142     }
1143   }
1144 
1145   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1146     return loadDylib(*dylibPath, umbrella);
1147 
1148   return nullptr;
1149 }
1150 
1151 // If a re-exported dylib is public (lives in /usr/lib or
1152 // /System/Library/Frameworks), then it is considered implicitly linked: we
1153 // should bind to its symbols directly instead of via the re-exporting umbrella
1154 // library.
1155 static bool isImplicitlyLinked(StringRef path) {
1156   if (!config->implicitDylibs)
1157     return false;
1158 
1159   if (path::parent_path(path) == "/usr/lib")
1160     return true;
1161 
1162   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1163   if (path.consume_front("/System/Library/Frameworks/")) {
1164     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1165     return path::filename(path) == frameworkName;
1166   }
1167 
1168   return false;
1169 }
1170 
1171 static void loadReexport(StringRef path, DylibFile *umbrella,
1172                          const InterfaceFile *currentTopLevelTapi) {
1173   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1174   if (!reexport)
1175     error("unable to locate re-export with install name " + path);
1176 }
1177 
1178 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1179                      bool isBundleLoader, bool explicitlyLinked)
1180     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1181       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1182   assert(!isBundleLoader || !umbrella);
1183   if (umbrella == nullptr)
1184     umbrella = this;
1185   this->umbrella = umbrella;
1186 
1187   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1188   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1189 
1190   // Initialize installName.
1191   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1192     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1193     currentVersion = read32le(&c->dylib.current_version);
1194     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1195     installName =
1196         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1197   } else if (!isBundleLoader) {
1198     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1199     // so it's OK.
1200     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1201     return;
1202   }
1203 
1204   if (config->printEachFile)
1205     message(toString(this));
1206   inputFiles.insert(this);
1207 
1208   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1209 
1210   if (!checkCompatibility(this))
1211     return;
1212 
1213   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1214 
1215   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1216     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1217     rpaths.push_back(rpath);
1218   }
1219 
1220   // Initialize symbols.
1221   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1222   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1223     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1224     struct TrieEntry {
1225       StringRef name;
1226       uint64_t flags;
1227     };
1228 
1229     std::vector<TrieEntry> entries;
1230     // Find all the $ld$* symbols to process first.
1231     parseTrie(buf + c->export_off, c->export_size,
1232               [&](const Twine &name, uint64_t flags) {
1233                 StringRef savedName = saver().save(name);
1234                 if (handleLDSymbol(savedName))
1235                   return;
1236                 entries.push_back({savedName, flags});
1237               });
1238 
1239     // Process the "normal" symbols.
1240     for (TrieEntry &entry : entries) {
1241       if (exportingFile->hiddenSymbols.contains(
1242               CachedHashStringRef(entry.name)))
1243         continue;
1244 
1245       bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1246       bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1247 
1248       symbols.push_back(
1249           symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1250     }
1251 
1252   } else {
1253     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1254     return;
1255   }
1256 }
1257 
1258 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1259   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1260   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1261                      target->headerSize;
1262   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1263     auto *cmd = reinterpret_cast<const load_command *>(p);
1264     p += cmd->cmdsize;
1265 
1266     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1267         cmd->cmd == LC_REEXPORT_DYLIB) {
1268       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1269       StringRef reexportPath =
1270           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1271       loadReexport(reexportPath, exportingFile, nullptr);
1272     }
1273 
1274     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1275     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1276     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1277     if (config->namespaceKind == NamespaceKind::flat &&
1278         cmd->cmd == LC_LOAD_DYLIB) {
1279       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1280       StringRef dylibPath =
1281           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1282       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1283       if (!dylib)
1284         error(Twine("unable to locate library '") + dylibPath +
1285               "' loaded from '" + toString(this) + "' for -flat_namespace");
1286     }
1287   }
1288 }
1289 
1290 // Some versions of Xcode ship with .tbd files that don't have the right
1291 // platform settings.
1292 constexpr std::array<StringRef, 3> skipPlatformChecks{
1293     "/usr/lib/system/libsystem_kernel.dylib",
1294     "/usr/lib/system/libsystem_platform.dylib",
1295     "/usr/lib/system/libsystem_pthread.dylib"};
1296 
1297 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1298                                          bool explicitlyLinked) {
1299   // Catalyst outputs can link against implicitly linked macOS-only libraries.
1300   if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1301     return false;
1302   return is_contained(interface.targets(),
1303                       MachO::Target(config->arch(), PLATFORM_MACOS));
1304 }
1305 
1306 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1307                      bool isBundleLoader, bool explicitlyLinked)
1308     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1309       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1310   // FIXME: Add test for the missing TBD code path.
1311 
1312   if (umbrella == nullptr)
1313     umbrella = this;
1314   this->umbrella = umbrella;
1315 
1316   installName = saver().save(interface.getInstallName());
1317   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1318   currentVersion = interface.getCurrentVersion().rawValue();
1319 
1320   if (config->printEachFile)
1321     message(toString(this));
1322   inputFiles.insert(this);
1323 
1324   if (!is_contained(skipPlatformChecks, installName) &&
1325       !is_contained(interface.targets(), config->platformInfo.target) &&
1326       !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1327     error(toString(this) + " is incompatible with " +
1328           std::string(config->platformInfo.target));
1329     return;
1330   }
1331 
1332   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1333 
1334   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1335   auto addSymbol = [&](const Twine &name) -> void {
1336     StringRef savedName = saver().save(name);
1337     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1338       return;
1339 
1340     symbols.push_back(symtab->addDylib(savedName, exportingFile,
1341                                        /*isWeakDef=*/false,
1342                                        /*isTlv=*/false));
1343   };
1344 
1345   std::vector<const llvm::MachO::Symbol *> normalSymbols;
1346   normalSymbols.reserve(interface.symbolsCount());
1347   for (const auto *symbol : interface.symbols()) {
1348     if (!symbol->getArchitectures().has(config->arch()))
1349       continue;
1350     if (handleLDSymbol(symbol->getName()))
1351       continue;
1352 
1353     switch (symbol->getKind()) {
1354     case SymbolKind::GlobalSymbol:               // Fallthrough
1355     case SymbolKind::ObjectiveCClass:            // Fallthrough
1356     case SymbolKind::ObjectiveCClassEHType:      // Fallthrough
1357     case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1358       normalSymbols.push_back(symbol);
1359     }
1360   }
1361 
1362   // TODO(compnerd) filter out symbols based on the target platform
1363   // TODO: handle weak defs, thread locals
1364   for (const auto *symbol : normalSymbols) {
1365     switch (symbol->getKind()) {
1366     case SymbolKind::GlobalSymbol:
1367       addSymbol(symbol->getName());
1368       break;
1369     case SymbolKind::ObjectiveCClass:
1370       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1371       // want to emulate that.
1372       addSymbol(objc::klass + symbol->getName());
1373       addSymbol(objc::metaclass + symbol->getName());
1374       break;
1375     case SymbolKind::ObjectiveCClassEHType:
1376       addSymbol(objc::ehtype + symbol->getName());
1377       break;
1378     case SymbolKind::ObjectiveCInstanceVariable:
1379       addSymbol(objc::ivar + symbol->getName());
1380       break;
1381     }
1382   }
1383 }
1384 
1385 void DylibFile::parseReexports(const InterfaceFile &interface) {
1386   const InterfaceFile *topLevel =
1387       interface.getParent() == nullptr ? &interface : interface.getParent();
1388   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1389     InterfaceFile::const_target_range targets = intfRef.targets();
1390     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1391         is_contained(targets, config->platformInfo.target))
1392       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1393   }
1394 }
1395 
1396 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1397 // name, compatibility version or hide/add symbols) for specific target
1398 // versions.
1399 bool DylibFile::handleLDSymbol(StringRef originalName) {
1400   if (!originalName.startswith("$ld$"))
1401     return false;
1402 
1403   StringRef action;
1404   StringRef name;
1405   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1406   if (action == "previous")
1407     handleLDPreviousSymbol(name, originalName);
1408   else if (action == "install_name")
1409     handleLDInstallNameSymbol(name, originalName);
1410   else if (action == "hide")
1411     handleLDHideSymbol(name, originalName);
1412   return true;
1413 }
1414 
1415 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1416   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1417   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1418   StringRef installName;
1419   StringRef compatVersion;
1420   StringRef platformStr;
1421   StringRef startVersion;
1422   StringRef endVersion;
1423   StringRef symbolName;
1424   StringRef rest;
1425 
1426   std::tie(installName, name) = name.split('$');
1427   std::tie(compatVersion, name) = name.split('$');
1428   std::tie(platformStr, name) = name.split('$');
1429   std::tie(startVersion, name) = name.split('$');
1430   std::tie(endVersion, name) = name.split('$');
1431   std::tie(symbolName, rest) = name.split('$');
1432   // TODO: ld64 contains some logic for non-empty symbolName as well.
1433   if (!symbolName.empty())
1434     return;
1435   unsigned platform;
1436   if (platformStr.getAsInteger(10, platform) ||
1437       platform != static_cast<unsigned>(config->platform()))
1438     return;
1439 
1440   VersionTuple start;
1441   if (start.tryParse(startVersion)) {
1442     warn("failed to parse start version, symbol '" + originalName +
1443          "' ignored");
1444     return;
1445   }
1446   VersionTuple end;
1447   if (end.tryParse(endVersion)) {
1448     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1449     return;
1450   }
1451   if (config->platformInfo.minimum < start ||
1452       config->platformInfo.minimum >= end)
1453     return;
1454 
1455   this->installName = saver().save(installName);
1456 
1457   if (!compatVersion.empty()) {
1458     VersionTuple cVersion;
1459     if (cVersion.tryParse(compatVersion)) {
1460       warn("failed to parse compatibility version, symbol '" + originalName +
1461            "' ignored");
1462       return;
1463     }
1464     compatibilityVersion = encodeVersion(cVersion);
1465   }
1466 }
1467 
1468 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1469                                           StringRef originalName) {
1470   // originalName: $ld$ install_name $ os<version> $ install_name
1471   StringRef condition, installName;
1472   std::tie(condition, installName) = name.split('$');
1473   VersionTuple version;
1474   if (!condition.consume_front("os") || version.tryParse(condition))
1475     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1476   else if (version == config->platformInfo.minimum)
1477     this->installName = saver().save(installName);
1478 }
1479 
1480 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
1481   StringRef symbolName;
1482   bool shouldHide = true;
1483   if (name.startswith("os")) {
1484     // If it's hidden based on versions.
1485     name = name.drop_front(2);
1486     StringRef minVersion;
1487     std::tie(minVersion, symbolName) = name.split('$');
1488     VersionTuple versionTup;
1489     if (versionTup.tryParse(minVersion)) {
1490       warn("Failed to parse hidden version, symbol `" + originalName +
1491            "` ignored.");
1492       return;
1493     }
1494     shouldHide = versionTup == config->platformInfo.minimum;
1495   } else {
1496     symbolName = name;
1497   }
1498 
1499   if (shouldHide)
1500     exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
1501 }
1502 
1503 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1504   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1505     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1506 }
1507 
1508 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1509     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1510 
1511 void ArchiveFile::addLazySymbols() {
1512   for (const object::Archive::Symbol &sym : file->symbols())
1513     symtab->addLazyArchive(sym.getName(), this, sym);
1514 }
1515 
1516 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1517                                                uint32_t modTime,
1518                                                StringRef archiveName,
1519                                                uint64_t offsetInArchive) {
1520   if (config->zeroModTime)
1521     modTime = 0;
1522 
1523   switch (identify_magic(mb.getBuffer())) {
1524   case file_magic::macho_object:
1525     return make<ObjFile>(mb, modTime, archiveName);
1526   case file_magic::bitcode:
1527     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1528   default:
1529     return createStringError(inconvertibleErrorCode(),
1530                              mb.getBufferIdentifier() +
1531                                  " has unhandled file type");
1532   }
1533 }
1534 
1535 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1536   if (!seen.insert(c.getChildOffset()).second)
1537     return Error::success();
1538 
1539   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1540   if (!mb)
1541     return mb.takeError();
1542 
1543   // Thin archives refer to .o files, so --reproduce needs the .o files too.
1544   if (tar && c.getParent()->isThin())
1545     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1546 
1547   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1548   if (!modTime)
1549     return modTime.takeError();
1550 
1551   Expected<InputFile *> file =
1552       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1553 
1554   if (!file)
1555     return file.takeError();
1556 
1557   inputFiles.insert(*file);
1558   printArchiveMemberLoad(reason, *file);
1559   return Error::success();
1560 }
1561 
1562 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1563   object::Archive::Child c =
1564       CHECK(sym.getMember(), toString(this) +
1565                                  ": could not get the member defining symbol " +
1566                                  toMachOString(sym));
1567 
1568   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1569   // and become invalid after that call. Copy it to the stack so we can refer
1570   // to it later.
1571   const object::Archive::Symbol symCopy = sym;
1572 
1573   // ld64 doesn't demangle sym here even with -demangle.
1574   // Match that: intentionally don't call toMachOString().
1575   if (Error e = fetch(c, symCopy.getName()))
1576     error(toString(this) + ": could not get the member defining symbol " +
1577           toMachOString(symCopy) + ": " + toString(std::move(e)));
1578 }
1579 
1580 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1581                                           BitcodeFile &file) {
1582   StringRef name = saver().save(objSym.getName());
1583 
1584   if (objSym.isUndefined())
1585     return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
1586 
1587   // TODO: Write a test demonstrating why computing isPrivateExtern before
1588   // LTO compilation is important.
1589   bool isPrivateExtern = false;
1590   switch (objSym.getVisibility()) {
1591   case GlobalValue::HiddenVisibility:
1592     isPrivateExtern = true;
1593     break;
1594   case GlobalValue::ProtectedVisibility:
1595     error(name + " has protected visibility, which is not supported by Mach-O");
1596     break;
1597   case GlobalValue::DefaultVisibility:
1598     break;
1599   }
1600   isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable();
1601 
1602   if (objSym.isCommon())
1603     return symtab->addCommon(name, &file, objSym.getCommonSize(),
1604                              objSym.getCommonAlignment(), isPrivateExtern);
1605 
1606   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1607                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1608                             /*isThumb=*/false,
1609                             /*isReferencedDynamically=*/false,
1610                             /*noDeadStrip=*/false,
1611                             /*isWeakDefCanBeHidden=*/false);
1612 }
1613 
1614 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1615                          uint64_t offsetInArchive, bool lazy)
1616     : InputFile(BitcodeKind, mb, lazy) {
1617   this->archiveName = std::string(archiveName);
1618   std::string path = mb.getBufferIdentifier().str();
1619   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1620   // name. If two members with the same name are provided, this causes a
1621   // collision and ThinLTO can't proceed.
1622   // So, we append the archive name to disambiguate two members with the same
1623   // name from multiple different archives, and offset within the archive to
1624   // disambiguate two members of the same name from a single archive.
1625   MemoryBufferRef mbref(mb.getBuffer(),
1626                         saver().save(archiveName.empty()
1627                                          ? path
1628                                          : archiveName +
1629                                                sys::path::filename(path) +
1630                                                utostr(offsetInArchive)));
1631 
1632   obj = check(lto::InputFile::create(mbref));
1633   if (lazy)
1634     parseLazy();
1635   else
1636     parse();
1637 }
1638 
1639 void BitcodeFile::parse() {
1640   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1641   // "winning" symbol will then be marked as Prevailing at LTO compilation
1642   // time.
1643   symbols.clear();
1644   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1645     symbols.push_back(createBitcodeSymbol(objSym, *this));
1646 }
1647 
1648 void BitcodeFile::parseLazy() {
1649   symbols.resize(obj->symbols().size());
1650   for (auto it : llvm::enumerate(obj->symbols())) {
1651     const lto::InputFile::Symbol &objSym = it.value();
1652     if (!objSym.isUndefined()) {
1653       symbols[it.index()] =
1654           symtab->addLazyObject(saver().save(objSym.getName()), *this);
1655       if (!lazy)
1656         break;
1657     }
1658   }
1659 }
1660 
1661 void macho::extract(InputFile &file, StringRef reason) {
1662   assert(file.lazy);
1663   file.lazy = false;
1664   printArchiveMemberLoad(reason, &file);
1665   if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
1666     bitcode->parse();
1667   } else {
1668     auto &f = cast<ObjFile>(file);
1669     if (target->wordSize == 8)
1670       f.parse<LP64>();
1671     else
1672       f.parse<ILP32>();
1673   }
1674 }
1675 
1676 template void ObjFile::parse<LP64>();
1677