1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59 
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75 
76 #include <type_traits>
77 
78 using namespace llvm;
79 using namespace llvm::MachO;
80 using namespace llvm::support::endian;
81 using namespace llvm::sys;
82 using namespace lld;
83 using namespace lld::macho;
84 
85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
86 std::string lld::toString(const InputFile *f) {
87   if (!f)
88     return "<internal>";
89 
90   // Multiple dylibs can be defined in one .tbd file.
91   if (auto dylibFile = dyn_cast<DylibFile>(f))
92     if (f->getName().endswith(".tbd"))
93       return (f->getName() + "(" + dylibFile->installName + ")").str();
94 
95   if (f->archiveName.empty())
96     return std::string(f->getName());
97   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
98 }
99 
100 std::string lld::toString(const Section &sec) {
101   return (toString(sec.file) + ":(" + sec.name + ")").str();
102 }
103 
104 SetVector<InputFile *> macho::inputFiles;
105 std::unique_ptr<TarWriter> macho::tar;
106 int InputFile::idCount = 0;
107 
108 static VersionTuple decodeVersion(uint32_t version) {
109   unsigned major = version >> 16;
110   unsigned minor = (version >> 8) & 0xffu;
111   unsigned subMinor = version & 0xffu;
112   return VersionTuple(major, minor, subMinor);
113 }
114 
115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
116   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
117     return {};
118 
119   const char *hdr = input->mb.getBufferStart();
120 
121   // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
122   std::vector<PlatformInfo> platformInfos;
123   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
124     PlatformInfo info;
125     info.target.Platform = static_cast<PlatformType>(cmd->platform);
126     info.minimum = decodeVersion(cmd->minos);
127     platformInfos.emplace_back(std::move(info));
128   }
129   for (auto *cmd : findCommands<version_min_command>(
130            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
131            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
132     PlatformInfo info;
133     switch (cmd->cmd) {
134     case LC_VERSION_MIN_MACOSX:
135       info.target.Platform = PLATFORM_MACOS;
136       break;
137     case LC_VERSION_MIN_IPHONEOS:
138       info.target.Platform = PLATFORM_IOS;
139       break;
140     case LC_VERSION_MIN_TVOS:
141       info.target.Platform = PLATFORM_TVOS;
142       break;
143     case LC_VERSION_MIN_WATCHOS:
144       info.target.Platform = PLATFORM_WATCHOS;
145       break;
146     }
147     info.minimum = decodeVersion(cmd->version);
148     platformInfos.emplace_back(std::move(info));
149   }
150 
151   return platformInfos;
152 }
153 
154 static bool checkCompatibility(const InputFile *input) {
155   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
156   if (platformInfos.empty())
157     return true;
158 
159   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
160     return removeSimulator(info.target.Platform) ==
161            removeSimulator(config->platform());
162   });
163   if (it == platformInfos.end()) {
164     std::string platformNames;
165     raw_string_ostream os(platformNames);
166     interleave(
167         platformInfos, os,
168         [&](const PlatformInfo &info) {
169           os << getPlatformName(info.target.Platform);
170         },
171         "/");
172     error(toString(input) + " has platform " + platformNames +
173           Twine(", which is different from target platform ") +
174           getPlatformName(config->platform()));
175     return false;
176   }
177 
178   if (it->minimum > config->platformInfo.minimum)
179     warn(toString(input) + " has version " + it->minimum.getAsString() +
180          ", which is newer than target minimum of " +
181          config->platformInfo.minimum.getAsString());
182 
183   return true;
184 }
185 
186 // This cache mostly exists to store system libraries (and .tbds) as they're
187 // loaded, rather than the input archives, which are already cached at a higher
188 // level, and other files like the filelist that are only read once.
189 // Theoretically this caching could be more efficient by hoisting it, but that
190 // would require altering many callers to track the state.
191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
192 // Open a given file path and return it as a memory-mapped file.
193 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
194   CachedHashStringRef key(path);
195   auto entry = cachedReads.find(key);
196   if (entry != cachedReads.end())
197     return entry->second;
198 
199   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
200   if (std::error_code ec = mbOrErr.getError()) {
201     error("cannot open " + path + ": " + ec.message());
202     return None;
203   }
204 
205   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
206   MemoryBufferRef mbref = mb->getMemBufferRef();
207   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
208 
209   // If this is a regular non-fat file, return it.
210   const char *buf = mbref.getBufferStart();
211   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
212   if (mbref.getBufferSize() < sizeof(uint32_t) ||
213       read32be(&hdr->magic) != FAT_MAGIC) {
214     if (tar)
215       tar->append(relativeToRoot(path), mbref.getBuffer());
216     return cachedReads[key] = mbref;
217   }
218 
219   llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
220 
221   // Object files and archive files may be fat files, which contain multiple
222   // real files for different CPU ISAs. Here, we search for a file that matches
223   // with the current link target and returns it as a MemoryBufferRef.
224   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
225 
226   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
227     if (reinterpret_cast<const char *>(arch + i + 1) >
228         buf + mbref.getBufferSize()) {
229       error(path + ": fat_arch struct extends beyond end of file");
230       return None;
231     }
232 
233     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
234         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
235       continue;
236 
237     uint32_t offset = read32be(&arch[i].offset);
238     uint32_t size = read32be(&arch[i].size);
239     if (offset + size > mbref.getBufferSize())
240       error(path + ": slice extends beyond end of file");
241     if (tar)
242       tar->append(relativeToRoot(path), mbref.getBuffer());
243     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
244                                               path.copy(bAlloc));
245   }
246 
247   error("unable to find matching architecture in " + path);
248   return None;
249 }
250 
251 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
252     : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
253 
254 // Some sections comprise of fixed-size records, so instead of splitting them at
255 // symbol boundaries, we split them based on size. Records are distinct from
256 // literals in that they may contain references to other sections, instead of
257 // being leaf nodes in the InputSection graph.
258 //
259 // Note that "record" is a term I came up with. In contrast, "literal" is a term
260 // used by the Mach-O format.
261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
262   if (name == section_names::compactUnwind) {
263     if (segname == segment_names::ld)
264       return target->wordSize == 8 ? 32 : 20;
265   }
266   if (!config->dedupLiterals)
267     return {};
268 
269   if (name == section_names::cfString && segname == segment_names::data)
270     return target->wordSize == 8 ? 32 : 16;
271 
272   if (config->icfLevel == ICFLevel::none)
273     return {};
274 
275   if (name == section_names::objcClassRefs && segname == segment_names::data)
276     return target->wordSize;
277   return {};
278 }
279 
280 static Error parseCallGraph(ArrayRef<uint8_t> data,
281                             std::vector<CallGraphEntry> &callGraph) {
282   TimeTraceScope timeScope("Parsing call graph section");
283   BinaryStreamReader reader(data, support::little);
284   while (!reader.empty()) {
285     uint32_t fromIndex, toIndex;
286     uint64_t count;
287     if (Error err = reader.readInteger(fromIndex))
288       return err;
289     if (Error err = reader.readInteger(toIndex))
290       return err;
291     if (Error err = reader.readInteger(count))
292       return err;
293     callGraph.emplace_back(fromIndex, toIndex, count);
294   }
295   return Error::success();
296 }
297 
298 // Parse the sequence of sections within a single LC_SEGMENT(_64).
299 // Split each section into subsections.
300 template <class SectionHeader>
301 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
302   sections.reserve(sectionHeaders.size());
303   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
304 
305   for (const SectionHeader &sec : sectionHeaders) {
306     StringRef name =
307         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
308     StringRef segname =
309         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
310     sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
311     if (sec.align >= 32) {
312       error("alignment " + std::to_string(sec.align) + " of section " + name +
313             " is too large");
314       continue;
315     }
316     Section &section = *sections.back();
317     uint32_t align = 1 << sec.align;
318     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
319                                                     : buf + sec.offset,
320                               static_cast<size_t>(sec.size)};
321 
322     auto splitRecords = [&](int recordSize) -> void {
323       if (data.empty())
324         return;
325       Subsections &subsections = section.subsections;
326       subsections.reserve(data.size() / recordSize);
327       for (uint64_t off = 0; off < data.size(); off += recordSize) {
328         auto *isec = make<ConcatInputSection>(
329             section, data.slice(off, recordSize), align);
330         subsections.push_back({off, isec});
331       }
332       section.doneSplitting = true;
333     };
334 
335     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
336         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
337       if (sec.nreloc && config->dedupLiterals)
338         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
339               sec.sectname +
340               ", so LLD cannot deduplicate literals. Try re-running without "
341               "--deduplicate-literals.");
342 
343       InputSection *isec;
344       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
345         isec = make<CStringInputSection>(section, data, align);
346         // FIXME: parallelize this?
347         cast<CStringInputSection>(isec)->splitIntoPieces();
348       } else {
349         isec = make<WordLiteralInputSection>(section, data, align);
350       }
351       section.subsections.push_back({0, isec});
352     } else if (auto recordSize = getRecordSize(segname, name)) {
353       splitRecords(*recordSize);
354     } else if (name == section_names::ehFrame &&
355                segname == segment_names::text) {
356       splitEhFrames(data, *sections.back());
357     } else if (segname == segment_names::llvm) {
358       if (config->callGraphProfileSort && name == section_names::cgProfile)
359         checkError(parseCallGraph(data, callGraph));
360       // ld64 does not appear to emit contents from sections within the __LLVM
361       // segment. Symbols within those sections point to bitcode metadata
362       // instead of actual symbols. Global symbols within those sections could
363       // have the same name without causing duplicate symbol errors. To avoid
364       // spurious duplicate symbol errors, we do not parse these sections.
365       // TODO: Evaluate whether the bitcode metadata is needed.
366     } else {
367       if (name == section_names::addrSig)
368         addrSigSection = sections.back();
369 
370       auto *isec = make<ConcatInputSection>(section, data, align);
371       if (isDebugSection(isec->getFlags()) &&
372           isec->getSegName() == segment_names::dwarf) {
373         // Instead of emitting DWARF sections, we emit STABS symbols to the
374         // object files that contain them. We filter them out early to avoid
375         // parsing their relocations unnecessarily.
376         debugSections.push_back(isec);
377       } else {
378         section.subsections.push_back({0, isec});
379       }
380     }
381   }
382 }
383 
384 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
385   EhReader reader(this, data, /*dataOff=*/0, target->wordSize);
386   size_t off = 0;
387   while (off < reader.size()) {
388     uint64_t frameOff = off;
389     uint64_t length = reader.readLength(&off);
390     if (length == 0)
391       break;
392     uint64_t fullLength = length + (off - frameOff);
393     off += length;
394     // We hard-code an alignment of 1 here because we don't actually want our
395     // EH frames to be aligned to the section alignment. EH frame decoders don't
396     // expect this alignment. Moreover, each EH frame must start where the
397     // previous one ends, and where it ends is indicated by the length field.
398     // Unless we update the length field (troublesome), we should keep the
399     // alignment to 1.
400     // Note that we still want to preserve the alignment of the overall section,
401     // just not of the individual EH frames.
402     ehFrameSection.subsections.push_back(
403         {frameOff, make<ConcatInputSection>(ehFrameSection,
404                                             data.slice(frameOff, fullLength),
405                                             /*align=*/1)});
406   }
407   ehFrameSection.doneSplitting = true;
408 }
409 
410 template <class T>
411 static Section *findContainingSection(const std::vector<Section *> &sections,
412                                       T *offset) {
413   static_assert(std::is_same<uint64_t, T>::value ||
414                     std::is_same<uint32_t, T>::value,
415                 "unexpected type for offset");
416   auto it = std::prev(llvm::upper_bound(
417       sections, *offset,
418       [](uint64_t value, const Section *sec) { return value < sec->addr; }));
419   *offset -= (*it)->addr;
420   return *it;
421 }
422 
423 // Find the subsection corresponding to the greatest section offset that is <=
424 // that of the given offset.
425 //
426 // offset: an offset relative to the start of the original InputSection (before
427 // any subsection splitting has occurred). It will be updated to represent the
428 // same location as an offset relative to the start of the containing
429 // subsection.
430 template <class T>
431 static InputSection *findContainingSubsection(const Section &section,
432                                               T *offset) {
433   static_assert(std::is_same<uint64_t, T>::value ||
434                     std::is_same<uint32_t, T>::value,
435                 "unexpected type for offset");
436   auto it = std::prev(llvm::upper_bound(
437       section.subsections, *offset,
438       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
439   *offset -= it->offset;
440   return it->isec;
441 }
442 
443 // Find a symbol at offset `off` within `isec`.
444 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
445                                    uint64_t off) {
446   auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
447     return d->value < off;
448   });
449   // The offset should point at the exact address of a symbol (with no addend.)
450   if (it == isec->symbols.end() || (*it)->value != off) {
451     assert(isec->wasCoalesced);
452     return nullptr;
453   }
454   return *it;
455 }
456 
457 // Linker optimization hints mark a sequence of instructions used for
458 // synthesizing an address which that be transformed into a faster sequence. The
459 // transformations depend on conditions that are determined at link time, like
460 // the distance to the referenced symbol or its alignment.
461 //
462 // Each hint has a type and refers to 2 or 3 instructions. Each of those
463 // instructions must have a corresponding relocation. After addresses have been
464 // finalized and relocations have been performed, we check if the requirements
465 // hold, and perform the optimizations if they do.
466 //
467 // Similar linker relaxations exist for ELF as well, with the difference being
468 // that the explicit marking allows for the relaxation of non-consecutive
469 // relocations too.
470 //
471 // The specific types of hints are documented in Arch/ARM64.cpp
472 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) {
473   auto expectedArgCount = [](uint8_t type) {
474     switch (type) {
475     case LOH_ARM64_ADRP_ADRP:
476     case LOH_ARM64_ADRP_LDR:
477     case LOH_ARM64_ADRP_ADD:
478     case LOH_ARM64_ADRP_LDR_GOT:
479       return 2;
480     case LOH_ARM64_ADRP_ADD_LDR:
481     case LOH_ARM64_ADRP_ADD_STR:
482     case LOH_ARM64_ADRP_LDR_GOT_LDR:
483     case LOH_ARM64_ADRP_LDR_GOT_STR:
484       return 3;
485     }
486     return -1;
487   };
488 
489   // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case,
490   // there are data.size() / 4 LOHs. It's a huge overestimation though, as
491   // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate
492   // half as much.
493   optimizationHints.reserve(data.size() / 8);
494 
495   for (const uint8_t *p = data.begin(); p < data.end();) {
496     const ptrdiff_t inputOffset = p - data.begin();
497     unsigned int n = 0;
498     uint8_t type = decodeULEB128(p, &n, data.end());
499     p += n;
500 
501     // An entry of type 0 terminates the list.
502     if (type == 0)
503       break;
504 
505     int expectedCount = expectedArgCount(type);
506     if (LLVM_UNLIKELY(expectedCount == -1)) {
507       error("Linker optimization hint at offset " + Twine(inputOffset) +
508             " has unknown type " + Twine(type));
509       return;
510     }
511 
512     uint8_t argCount = decodeULEB128(p, &n, data.end());
513     p += n;
514 
515     if (LLVM_UNLIKELY(argCount != expectedCount)) {
516       error("Linker optimization hint at offset " + Twine(inputOffset) +
517             " has " + Twine(argCount) + " arguments instead of the expected " +
518             Twine(expectedCount));
519       return;
520     }
521 
522     uint64_t offset0 = decodeULEB128(p, &n, data.end());
523     p += n;
524 
525     int16_t delta[2];
526     for (int i = 0; i < argCount - 1; ++i) {
527       uint64_t address = decodeULEB128(p, &n, data.end());
528       p += n;
529       int64_t d = address - offset0;
530       if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() ||
531                         d < std::numeric_limits<int16_t>::min())) {
532         error("Linker optimization hint at offset " + Twine(inputOffset) +
533               " has addresses too far apart");
534         return;
535       }
536       delta[i] = d;
537     }
538 
539     optimizationHints.push_back({offset0, {delta[0], delta[1]}, type});
540   }
541 
542   // We sort the per-object vector of optimization hints so each section only
543   // needs to hold an ArrayRef to a contiguous range of hints.
544   llvm::sort(optimizationHints,
545              [](const OptimizationHint &a, const OptimizationHint &b) {
546                return a.offset0 < b.offset0;
547              });
548 
549   auto section = sections.begin();
550   auto subsection = (*section)->subsections.begin();
551   uint64_t subsectionBase = 0;
552   uint64_t subsectionEnd = 0;
553 
554   auto updateAddr = [&]() {
555     subsectionBase = (*section)->addr + subsection->offset;
556     subsectionEnd = subsectionBase + subsection->isec->getSize();
557   };
558 
559   auto advanceSubsection = [&]() {
560     if (section == sections.end())
561       return;
562     ++subsection;
563     while (subsection == (*section)->subsections.end()) {
564       ++section;
565       if (section == sections.end())
566         return;
567       subsection = (*section)->subsections.begin();
568     }
569   };
570 
571   updateAddr();
572   auto hintStart = optimizationHints.begin();
573   for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end;
574        ++hintEnd) {
575     if (hintEnd->offset0 >= subsectionEnd) {
576       subsection->isec->optimizationHints =
577           ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart);
578 
579       hintStart = hintEnd;
580       while (hintStart->offset0 >= subsectionEnd) {
581         advanceSubsection();
582         if (section == sections.end())
583           break;
584         updateAddr();
585         assert(hintStart->offset0 >= subsectionBase);
586       }
587     }
588 
589     hintEnd->offset0 -= subsectionBase;
590     for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1;
591          ++i) {
592       if (LLVM_UNLIKELY(
593               hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) ||
594               hintEnd->delta[i] >=
595                   static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) {
596         error("Linker optimization hint spans multiple sections");
597         return;
598       }
599     }
600   }
601   if (section != sections.end())
602     subsection->isec->optimizationHints = ArrayRef<OptimizationHint>(
603         &*hintStart, optimizationHints.end() - hintStart);
604 }
605 
606 template <class SectionHeader>
607 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
608                                    relocation_info rel) {
609   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
610   bool valid = true;
611   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
612     valid = false;
613     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
614             std::to_string(rel.r_address) + " of " + sec.segname + "," +
615             sec.sectname + " in " + toString(file))
616         .str();
617   };
618 
619   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
620     error(message("must be extern"));
621   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
622     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
623                   "be PC-relative"));
624   if (isThreadLocalVariables(sec.flags) &&
625       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
626     error(message("not allowed in thread-local section, must be UNSIGNED"));
627   if (rel.r_length < 2 || rel.r_length > 3 ||
628       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
629     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
630     error(message("has width " + std::to_string(1 << rel.r_length) +
631                   " bytes, but must be " +
632                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
633                   " bytes"));
634   }
635   return valid;
636 }
637 
638 template <class SectionHeader>
639 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
640                                const SectionHeader &sec, Section &section) {
641   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
642   ArrayRef<relocation_info> relInfos(
643       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
644 
645   Subsections &subsections = section.subsections;
646   auto subsecIt = subsections.rbegin();
647   for (size_t i = 0; i < relInfos.size(); i++) {
648     // Paired relocations serve as Mach-O's method for attaching a
649     // supplemental datum to a primary relocation record. ELF does not
650     // need them because the *_RELOC_RELA records contain the extra
651     // addend field, vs. *_RELOC_REL which omit the addend.
652     //
653     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
654     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
655     // datum for each is a symbolic address. The result is the offset
656     // between two addresses.
657     //
658     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
659     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
660     // base symbolic address.
661     //
662     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
663     // addend into the instruction stream. On X86, a relocatable address
664     // field always occupies an entire contiguous sequence of byte(s),
665     // so there is no need to merge opcode bits with address
666     // bits. Therefore, it's easy and convenient to store addends in the
667     // instruction-stream bytes that would otherwise contain zeroes. By
668     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
669     // address bits so that bitwise arithmetic is necessary to extract
670     // and insert them. Storing addends in the instruction stream is
671     // possible, but inconvenient and more costly at link time.
672 
673     relocation_info relInfo = relInfos[i];
674     bool isSubtrahend =
675         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
676     int64_t pairedAddend = 0;
677     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
678       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
679       relInfo = relInfos[++i];
680     }
681     assert(i < relInfos.size());
682     if (!validateRelocationInfo(this, sec, relInfo))
683       continue;
684     if (relInfo.r_address & R_SCATTERED)
685       fatal("TODO: Scattered relocations not supported");
686 
687     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
688     assert(!(embeddedAddend && pairedAddend));
689     int64_t totalAddend = pairedAddend + embeddedAddend;
690     Reloc r;
691     r.type = relInfo.r_type;
692     r.pcrel = relInfo.r_pcrel;
693     r.length = relInfo.r_length;
694     r.offset = relInfo.r_address;
695     if (relInfo.r_extern) {
696       r.referent = symbols[relInfo.r_symbolnum];
697       r.addend = isSubtrahend ? 0 : totalAddend;
698     } else {
699       assert(!isSubtrahend);
700       const SectionHeader &referentSecHead =
701           sectionHeaders[relInfo.r_symbolnum - 1];
702       uint64_t referentOffset;
703       if (relInfo.r_pcrel) {
704         // The implicit addend for pcrel section relocations is the pcrel offset
705         // in terms of the addresses in the input file. Here we adjust it so
706         // that it describes the offset from the start of the referent section.
707         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
708         // have pcrel section relocations. We may want to factor this out into
709         // the arch-specific .cpp file.
710         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
711         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
712                          referentSecHead.addr;
713       } else {
714         // The addend for a non-pcrel relocation is its absolute address.
715         referentOffset = totalAddend - referentSecHead.addr;
716       }
717       r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
718                                             &referentOffset);
719       r.addend = referentOffset;
720     }
721 
722     // Find the subsection that this relocation belongs to.
723     // Though not required by the Mach-O format, clang and gcc seem to emit
724     // relocations in order, so let's take advantage of it. However, ld64 emits
725     // unsorted relocations (in `-r` mode), so we have a fallback for that
726     // uncommon case.
727     InputSection *subsec;
728     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
729       ++subsecIt;
730     if (subsecIt == subsections.rend() ||
731         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
732       subsec = findContainingSubsection(section, &r.offset);
733       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
734       // for the other relocations.
735       subsecIt = subsections.rend();
736     } else {
737       subsec = subsecIt->isec;
738       r.offset -= subsecIt->offset;
739     }
740     subsec->relocs.push_back(r);
741 
742     if (isSubtrahend) {
743       relocation_info minuendInfo = relInfos[++i];
744       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
745       // attached to the same address.
746       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
747              relInfo.r_address == minuendInfo.r_address);
748       Reloc p;
749       p.type = minuendInfo.r_type;
750       if (minuendInfo.r_extern) {
751         p.referent = symbols[minuendInfo.r_symbolnum];
752         p.addend = totalAddend;
753       } else {
754         uint64_t referentOffset =
755             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
756         p.referent = findContainingSubsection(
757             *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
758         p.addend = referentOffset;
759       }
760       subsec->relocs.push_back(p);
761     }
762   }
763 }
764 
765 template <class NList>
766 static macho::Symbol *createDefined(const NList &sym, StringRef name,
767                                     InputSection *isec, uint64_t value,
768                                     uint64_t size) {
769   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
770   // N_EXT: Global symbols. These go in the symbol table during the link,
771   //        and also in the export table of the output so that the dynamic
772   //        linker sees them.
773   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
774   //                 symbol table during the link so that duplicates are
775   //                 either reported (for non-weak symbols) or merged
776   //                 (for weak symbols), but they do not go in the export
777   //                 table of the output.
778   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
779   //         object files) may produce them. LLD does not yet support -r.
780   //         These are translation-unit scoped, identical to the `0` case.
781   // 0: Translation-unit scoped. These are not in the symbol table during
782   //    link, and not in the export table of the output either.
783   bool isWeakDefCanBeHidden =
784       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
785 
786   if (sym.n_type & N_EXT) {
787     bool isPrivateExtern = sym.n_type & N_PEXT;
788     // lld's behavior for merging symbols is slightly different from ld64:
789     // ld64 picks the winning symbol based on several criteria (see
790     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
791     // just merges metadata and keeps the contents of the first symbol
792     // with that name (see SymbolTable::addDefined). For:
793     // * inline function F in a TU built with -fvisibility-inlines-hidden
794     // * and inline function F in another TU built without that flag
795     // ld64 will pick the one from the file built without
796     // -fvisibility-inlines-hidden.
797     // lld will instead pick the one listed first on the link command line and
798     // give it visibility as if the function was built without
799     // -fvisibility-inlines-hidden.
800     // If both functions have the same contents, this will have the same
801     // behavior. If not, it won't, but the input had an ODR violation in
802     // that case.
803     //
804     // Similarly, merging a symbol
805     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
806     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
807     // should produce one
808     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
809     // with ld64's semantics, because it means the non-private-extern
810     // definition will continue to take priority if more private extern
811     // definitions are encountered. With lld's semantics there's no observable
812     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
813     // that's privateExtern -- neither makes it into the dynamic symbol table,
814     // unless the autohide symbol is explicitly exported.
815     // But if a symbol is both privateExtern and autohide then it can't
816     // be exported.
817     // So we nullify the autohide flag when privateExtern is present
818     // and promote the symbol to privateExtern when it is not already.
819     if (isWeakDefCanBeHidden && isPrivateExtern)
820       isWeakDefCanBeHidden = false;
821     else if (isWeakDefCanBeHidden)
822       isPrivateExtern = true;
823     return symtab->addDefined(
824         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
825         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
826         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
827         isWeakDefCanBeHidden);
828   }
829   assert(!isWeakDefCanBeHidden &&
830          "weak_def_can_be_hidden on already-hidden symbol?");
831   bool includeInSymtab =
832       !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec);
833   return make<Defined>(
834       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
835       /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
836       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
837       sym.n_desc & N_NO_DEAD_STRIP);
838 }
839 
840 // Absolute symbols are defined symbols that do not have an associated
841 // InputSection. They cannot be weak.
842 template <class NList>
843 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
844                                      StringRef name) {
845   if (sym.n_type & N_EXT) {
846     return symtab->addDefined(
847         name, file, nullptr, sym.n_value, /*size=*/0,
848         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
849         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
850         /*isWeakDefCanBeHidden=*/false);
851   }
852   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
853                        /*isWeakDef=*/false,
854                        /*isExternal=*/false, /*isPrivateExtern=*/false,
855                        /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
856                        /*isReferencedDynamically=*/false,
857                        sym.n_desc & N_NO_DEAD_STRIP);
858 }
859 
860 template <class NList>
861 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
862                                               StringRef name) {
863   uint8_t type = sym.n_type & N_TYPE;
864   switch (type) {
865   case N_UNDF:
866     return sym.n_value == 0
867                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
868                : symtab->addCommon(name, this, sym.n_value,
869                                    1 << GET_COMM_ALIGN(sym.n_desc),
870                                    sym.n_type & N_PEXT);
871   case N_ABS:
872     return createAbsolute(sym, this, name);
873   case N_PBUD:
874   case N_INDR:
875     error("TODO: support symbols of type " + std::to_string(type));
876     return nullptr;
877   case N_SECT:
878     llvm_unreachable(
879         "N_SECT symbols should not be passed to parseNonSectionSymbol");
880   default:
881     llvm_unreachable("invalid symbol type");
882   }
883 }
884 
885 template <class NList> static bool isUndef(const NList &sym) {
886   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
887 }
888 
889 template <class LP>
890 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
891                            ArrayRef<typename LP::nlist> nList,
892                            const char *strtab, bool subsectionsViaSymbols) {
893   using NList = typename LP::nlist;
894 
895   // Groups indices of the symbols by the sections that contain them.
896   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
897   symbols.resize(nList.size());
898   SmallVector<unsigned, 32> undefineds;
899   for (uint32_t i = 0; i < nList.size(); ++i) {
900     const NList &sym = nList[i];
901 
902     // Ignore debug symbols for now.
903     // FIXME: may need special handling.
904     if (sym.n_type & N_STAB)
905       continue;
906 
907     if ((sym.n_type & N_TYPE) == N_SECT) {
908       Subsections &subsections = sections[sym.n_sect - 1]->subsections;
909       // parseSections() may have chosen not to parse this section.
910       if (subsections.empty())
911         continue;
912       symbolsBySection[sym.n_sect - 1].push_back(i);
913     } else if (isUndef(sym)) {
914       undefineds.push_back(i);
915     } else {
916       symbols[i] = parseNonSectionSymbol(sym, StringRef(strtab + sym.n_strx));
917     }
918   }
919 
920   for (size_t i = 0; i < sections.size(); ++i) {
921     Subsections &subsections = sections[i]->subsections;
922     if (subsections.empty())
923       continue;
924     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
925     uint64_t sectionAddr = sectionHeaders[i].addr;
926     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
927 
928     // Some sections have already been split into subsections during
929     // parseSections(), so we simply need to match Symbols to the corresponding
930     // subsection here.
931     if (sections[i]->doneSplitting) {
932       for (size_t j = 0; j < symbolIndices.size(); ++j) {
933         uint32_t symIndex = symbolIndices[j];
934         const NList &sym = nList[symIndex];
935         StringRef name = strtab + sym.n_strx;
936         uint64_t symbolOffset = sym.n_value - sectionAddr;
937         InputSection *isec =
938             findContainingSubsection(*sections[i], &symbolOffset);
939         if (symbolOffset != 0) {
940           error(toString(*sections[i]) + ":  symbol " + name +
941                 " at misaligned offset");
942           continue;
943         }
944         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
945       }
946       continue;
947     }
948     sections[i]->doneSplitting = true;
949 
950     // Calculate symbol sizes and create subsections by splitting the sections
951     // along symbol boundaries.
952     // We populate subsections by repeatedly splitting the last (highest
953     // address) subsection.
954     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
955       return nList[lhs].n_value < nList[rhs].n_value;
956     });
957     for (size_t j = 0; j < symbolIndices.size(); ++j) {
958       uint32_t symIndex = symbolIndices[j];
959       const NList &sym = nList[symIndex];
960       StringRef name = strtab + sym.n_strx;
961       Subsection &subsec = subsections.back();
962       InputSection *isec = subsec.isec;
963 
964       uint64_t subsecAddr = sectionAddr + subsec.offset;
965       size_t symbolOffset = sym.n_value - subsecAddr;
966       uint64_t symbolSize =
967           j + 1 < symbolIndices.size()
968               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
969               : isec->data.size() - symbolOffset;
970       // There are 4 cases where we do not need to create a new subsection:
971       //   1. If the input file does not use subsections-via-symbols.
972       //   2. Multiple symbols at the same address only induce one subsection.
973       //      (The symbolOffset == 0 check covers both this case as well as
974       //      the first loop iteration.)
975       //   3. Alternative entry points do not induce new subsections.
976       //   4. If we have a literal section (e.g. __cstring and __literal4).
977       if (!subsectionsViaSymbols || symbolOffset == 0 ||
978           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
979         symbols[symIndex] =
980             createDefined(sym, name, isec, symbolOffset, symbolSize);
981         continue;
982       }
983       auto *concatIsec = cast<ConcatInputSection>(isec);
984 
985       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
986       nextIsec->wasCoalesced = false;
987       if (isZeroFill(isec->getFlags())) {
988         // Zero-fill sections have NULL data.data() non-zero data.size()
989         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
990         isec->data = {nullptr, symbolOffset};
991       } else {
992         nextIsec->data = isec->data.slice(symbolOffset);
993         isec->data = isec->data.slice(0, symbolOffset);
994       }
995 
996       // By construction, the symbol will be at offset zero in the new
997       // subsection.
998       symbols[symIndex] =
999           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
1000       // TODO: ld64 appears to preserve the original alignment as well as each
1001       // subsection's offset from the last aligned address. We should consider
1002       // emulating that behavior.
1003       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
1004       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
1005     }
1006   }
1007 
1008   // Undefined symbols can trigger recursive fetch from Archives due to
1009   // LazySymbols. Process defined symbols first so that the relative order
1010   // between a defined symbol and an undefined symbol does not change the
1011   // symbol resolution behavior. In addition, a set of interconnected symbols
1012   // will all be resolved to the same file, instead of being resolved to
1013   // different files.
1014   for (unsigned i : undefineds) {
1015     const NList &sym = nList[i];
1016     StringRef name = strtab + sym.n_strx;
1017     symbols[i] = parseNonSectionSymbol(sym, name);
1018   }
1019 }
1020 
1021 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
1022                        StringRef sectName)
1023     : InputFile(OpaqueKind, mb) {
1024   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1025   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
1026   sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
1027                                    sectName.take_front(16),
1028                                    /*flags=*/0, /*addr=*/0));
1029   Section &section = *sections.back();
1030   ConcatInputSection *isec = make<ConcatInputSection>(section, data);
1031   isec->live = true;
1032   section.subsections.push_back({0, isec});
1033 }
1034 
1035 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
1036                  bool lazy)
1037     : InputFile(ObjKind, mb, lazy), modTime(modTime) {
1038   this->archiveName = std::string(archiveName);
1039   if (lazy) {
1040     if (target->wordSize == 8)
1041       parseLazy<LP64>();
1042     else
1043       parseLazy<ILP32>();
1044   } else {
1045     if (target->wordSize == 8)
1046       parse<LP64>();
1047     else
1048       parse<ILP32>();
1049   }
1050 }
1051 
1052 template <class LP> void ObjFile::parse() {
1053   using Header = typename LP::mach_header;
1054   using SegmentCommand = typename LP::segment_command;
1055   using SectionHeader = typename LP::section;
1056   using NList = typename LP::nlist;
1057 
1058   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1059   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1060 
1061   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
1062   if (arch != config->arch()) {
1063     auto msg = config->errorForArchMismatch
1064                    ? static_cast<void (*)(const Twine &)>(error)
1065                    : warn;
1066     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
1067         " which is incompatible with target architecture " +
1068         getArchitectureName(config->arch()));
1069     return;
1070   }
1071 
1072   if (!checkCompatibility(this))
1073     return;
1074 
1075   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
1076     StringRef data{reinterpret_cast<const char *>(cmd + 1),
1077                    cmd->cmdsize - sizeof(linker_option_command)};
1078     parseLCLinkerOption(this, cmd->count, data);
1079   }
1080 
1081   ArrayRef<SectionHeader> sectionHeaders;
1082   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1083     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1084     sectionHeaders = ArrayRef<SectionHeader>{
1085         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1086     parseSections(sectionHeaders);
1087   }
1088 
1089   // TODO: Error on missing LC_SYMTAB?
1090   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1091     auto *c = reinterpret_cast<const symtab_command *>(cmd);
1092     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1093                           c->nsyms);
1094     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1095     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1096     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1097   }
1098 
1099   // The relocations may refer to the symbols, so we parse them after we have
1100   // parsed all the symbols.
1101   for (size_t i = 0, n = sections.size(); i < n; ++i)
1102     if (!sections[i]->subsections.empty())
1103       parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1104 
1105   if (!config->ignoreOptimizationHints)
1106     if (auto *cmd = findCommand<linkedit_data_command>(
1107             hdr, LC_LINKER_OPTIMIZATION_HINT))
1108       parseOptimizationHints({buf + cmd->dataoff, cmd->datasize});
1109 
1110   parseDebugInfo();
1111 
1112   Section *ehFrameSection = nullptr;
1113   Section *compactUnwindSection = nullptr;
1114   for (Section *sec : sections) {
1115     Section **s = StringSwitch<Section **>(sec->name)
1116                       .Case(section_names::compactUnwind, &compactUnwindSection)
1117                       .Case(section_names::ehFrame, &ehFrameSection)
1118                       .Default(nullptr);
1119     if (s)
1120       *s = sec;
1121   }
1122   if (compactUnwindSection)
1123     registerCompactUnwind(*compactUnwindSection);
1124   if (ehFrameSection)
1125     registerEhFrames(*ehFrameSection);
1126 }
1127 
1128 template <class LP> void ObjFile::parseLazy() {
1129   using Header = typename LP::mach_header;
1130   using NList = typename LP::nlist;
1131 
1132   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1133   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1134   const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1135   if (!cmd)
1136     return;
1137   auto *c = reinterpret_cast<const symtab_command *>(cmd);
1138   ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1139                         c->nsyms);
1140   const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1141   symbols.resize(nList.size());
1142   for (auto it : llvm::enumerate(nList)) {
1143     const NList &sym = it.value();
1144     if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1145       // TODO: Bound checking
1146       StringRef name = strtab + sym.n_strx;
1147       symbols[it.index()] = symtab->addLazyObject(name, *this);
1148       if (!lazy)
1149         break;
1150     }
1151   }
1152 }
1153 
1154 void ObjFile::parseDebugInfo() {
1155   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1156   if (!dObj)
1157     return;
1158 
1159   // We do not re-use the context from getDwarf() here as that function
1160   // constructs an expensive DWARFCache object.
1161   auto *ctx = make<DWARFContext>(
1162       std::move(dObj), "",
1163       [&](Error err) {
1164         warn(toString(this) + ": " + toString(std::move(err)));
1165       },
1166       [&](Error warning) {
1167         warn(toString(this) + ": " + toString(std::move(warning)));
1168       });
1169 
1170   // TODO: Since object files can contain a lot of DWARF info, we should verify
1171   // that we are parsing just the info we need
1172   const DWARFContext::compile_unit_range &units = ctx->compile_units();
1173   // FIXME: There can be more than one compile unit per object file. See
1174   // PR48637.
1175   auto it = units.begin();
1176   compileUnit = it != units.end() ? it->get() : nullptr;
1177 }
1178 
1179 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1180   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1181   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1182   if (!cmd)
1183     return {};
1184   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1185   return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1186           c->datasize / sizeof(data_in_code_entry)};
1187 }
1188 
1189 // Create pointers from symbols to their associated compact unwind entries.
1190 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1191   for (const Subsection &subsection : compactUnwindSection.subsections) {
1192     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1193     // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1194     // their addends in its data. Thus if ICF operated naively and compared the
1195     // entire contents of each CUE, entries with identical unwind info but e.g.
1196     // belonging to different functions would never be considered equivalent. To
1197     // work around this problem, we remove some parts of the data containing the
1198     // embedded addends. In particular, we remove the function address and LSDA
1199     // pointers.  Since these locations are at the start and end of the entry,
1200     // we can do this using a simple, efficient slice rather than performing a
1201     // copy.  We are not losing any information here because the embedded
1202     // addends have already been parsed in the corresponding Reloc structs.
1203     //
1204     // Removing these pointers would not be safe if they were pointers to
1205     // absolute symbols. In that case, there would be no corresponding
1206     // relocation. However, (AFAIK) MC cannot emit references to absolute
1207     // symbols for either the function address or the LSDA. However, it *can* do
1208     // so for the personality pointer, so we are not slicing that field away.
1209     //
1210     // Note that we do not adjust the offsets of the corresponding relocations;
1211     // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1212     // truncated input sections.
1213     isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1214     uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1215     // llvm-mc omits CU entries for functions that need DWARF encoding, but
1216     // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1217     // CU entries from the DWARF info during the output phase.
1218     if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding)
1219       continue;
1220 
1221     ConcatInputSection *referentIsec;
1222     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1223       Reloc &r = *it;
1224       // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1225       if (r.offset != 0) {
1226         ++it;
1227         continue;
1228       }
1229       uint64_t add = r.addend;
1230       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1231         // Check whether the symbol defined in this file is the prevailing one.
1232         // Skip if it is e.g. a weak def that didn't prevail.
1233         if (sym->getFile() != this) {
1234           ++it;
1235           continue;
1236         }
1237         add += sym->value;
1238         referentIsec = cast<ConcatInputSection>(sym->isec);
1239       } else {
1240         referentIsec =
1241             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1242       }
1243       // Unwind info lives in __DATA, and finalization of __TEXT will occur
1244       // before finalization of __DATA. Moreover, the finalization of unwind
1245       // info depends on the exact addresses that it references. So it is safe
1246       // for compact unwind to reference addresses in __TEXT, but not addresses
1247       // in any other segment.
1248       if (referentIsec->getSegName() != segment_names::text)
1249         error(isec->getLocation(r.offset) + " references section " +
1250               referentIsec->getName() + " which is not in segment __TEXT");
1251       // The functionAddress relocations are typically section relocations.
1252       // However, unwind info operates on a per-symbol basis, so we search for
1253       // the function symbol here.
1254       Defined *d = findSymbolAtOffset(referentIsec, add);
1255       if (!d) {
1256         ++it;
1257         continue;
1258       }
1259       d->unwindEntry = isec;
1260       // Now that the symbol points to the unwind entry, we can remove the reloc
1261       // that points from the unwind entry back to the symbol.
1262       //
1263       // First, the symbol keeps the unwind entry alive (and not vice versa), so
1264       // this keeps dead-stripping simple.
1265       //
1266       // Moreover, it reduces the work that ICF needs to do to figure out if
1267       // functions with unwind info are foldable.
1268       //
1269       // However, this does make it possible for ICF to fold CUEs that point to
1270       // distinct functions (if the CUEs are otherwise identical).
1271       // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1272       // each one can hold a distinct functionAddress value.
1273       //
1274       // Given that clang emits relocations in reverse order of address, this
1275       // relocation should be at the end of the vector for most of our input
1276       // object files, so this erase() is typically an O(1) operation.
1277       it = isec->relocs.erase(it);
1278     }
1279   }
1280 }
1281 
1282 struct CIE {
1283   macho::Symbol *personalitySymbol = nullptr;
1284   bool fdesHaveLsda = false;
1285   bool fdesHaveAug = false;
1286 };
1287 
1288 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1289                     size_t off) {
1290   // Handling the full generality of possible DWARF encodings would be a major
1291   // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1292   // DWARF and handle just that.
1293   constexpr uint8_t expectedPersonalityEnc =
1294       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1295   constexpr uint8_t expectedPointerEnc =
1296       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr;
1297 
1298   CIE cie;
1299   uint8_t version = reader.readByte(&off);
1300   if (version != 1 && version != 3)
1301     fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1302   StringRef aug = reader.readString(&off);
1303   reader.skipLeb128(&off); // skip code alignment
1304   reader.skipLeb128(&off); // skip data alignment
1305   reader.skipLeb128(&off); // skip return address register
1306   reader.skipLeb128(&off); // skip aug data length
1307   uint64_t personalityAddrOff = 0;
1308   for (char c : aug) {
1309     switch (c) {
1310     case 'z':
1311       cie.fdesHaveAug = true;
1312       break;
1313     case 'P': {
1314       uint8_t personalityEnc = reader.readByte(&off);
1315       if (personalityEnc != expectedPersonalityEnc)
1316         reader.failOn(off, "unexpected personality encoding 0x" +
1317                                Twine::utohexstr(personalityEnc));
1318       personalityAddrOff = off;
1319       off += 4;
1320       break;
1321     }
1322     case 'L': {
1323       cie.fdesHaveLsda = true;
1324       uint8_t lsdaEnc = reader.readByte(&off);
1325       if (lsdaEnc != expectedPointerEnc)
1326         reader.failOn(off, "unexpected LSDA encoding 0x" +
1327                                Twine::utohexstr(lsdaEnc));
1328       break;
1329     }
1330     case 'R': {
1331       uint8_t pointerEnc = reader.readByte(&off);
1332       if (pointerEnc != expectedPointerEnc)
1333         reader.failOn(off, "unexpected pointer encoding 0x" +
1334                                Twine::utohexstr(pointerEnc));
1335       break;
1336     }
1337     default:
1338       break;
1339     }
1340   }
1341   if (personalityAddrOff != 0) {
1342     auto personalityRelocIt =
1343         llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1344           return r.offset == personalityAddrOff;
1345         });
1346     if (personalityRelocIt == isec->relocs.end())
1347       reader.failOn(off, "Failed to locate relocation for personality symbol");
1348     cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1349   }
1350   return cie;
1351 }
1352 
1353 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1354 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1355 // This function recovers the target address from the subtractors, essentially
1356 // performing the inverse operation of EhRelocator.
1357 //
1358 // Concretely, we expect our relocations to write the value of `PC -
1359 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1360 // points to a symbol plus an addend.
1361 //
1362 // It is important that the minuend relocation point to a symbol within the
1363 // same section as the fixup value, since sections may get moved around.
1364 //
1365 // For example, for arm64, llvm-mc emits relocations for the target function
1366 // address like so:
1367 //
1368 //   ltmp:
1369 //     <CIE start>
1370 //     ...
1371 //     <CIE end>
1372 //     ... multiple FDEs ...
1373 //     <FDE start>
1374 //     <target function address - (ltmp + pcrel offset)>
1375 //     ...
1376 //
1377 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1378 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1379 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1380 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1381 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1382 //
1383 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1384 // to `PC`.
1385 template <bool Invert = false>
1386 Defined *
1387 targetSymFromCanonicalSubtractor(const InputSection *isec,
1388                                  std::vector<macho::Reloc>::iterator relocIt) {
1389   macho::Reloc &subtrahend = *relocIt;
1390   macho::Reloc &minuend = *std::next(relocIt);
1391   assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1392   assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1393   // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1394   // addend.
1395   auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1396   Defined *target =
1397       cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1398   if (!pcSym) {
1399     auto *targetIsec =
1400         cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1401     target = findSymbolAtOffset(targetIsec, minuend.addend);
1402   }
1403   if (Invert)
1404     std::swap(pcSym, target);
1405   if (pcSym->isec == isec) {
1406     if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1407       fatal("invalid FDE relocation in __eh_frame");
1408   } else {
1409     // Ensure the pcReloc points to a symbol within the current EH frame.
1410     // HACK: we should really verify that the original relocation's semantics
1411     // are preserved. In particular, we should have
1412     // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1413     // have an easy way to access the offsets from this point in the code; some
1414     // refactoring is needed for that.
1415     macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1416     pcReloc.referent = isec->symbols[0];
1417     assert(isec->symbols[0]->value == 0);
1418     minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1419   }
1420   return target;
1421 }
1422 
1423 Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1424                              uint64_t addr) {
1425   Section *sec = findContainingSection(sections, &addr);
1426   auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1427   return findSymbolAtOffset(isec, addr);
1428 }
1429 
1430 // For symbols that don't have compact unwind info, associate them with the more
1431 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1432 //
1433 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1434 // description of its format.
1435 //
1436 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1437 // are relocations which are implicitly encoded as offsets in the section data.
1438 // We convert them into explicit Reloc structs so that the EH frames can be
1439 // handled just like a regular ConcatInputSection later in our output phase.
1440 //
1441 // We also need to handle the case where our input object file has explicit
1442 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1443 // look for the "abs-ified" relocation if an explicit relocation is absent.
1444 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1445   DenseMap<const InputSection *, CIE> cieMap;
1446   for (const Subsection &subsec : ehFrameSection.subsections) {
1447     auto *isec = cast<ConcatInputSection>(subsec.isec);
1448     uint64_t isecOff = subsec.offset;
1449 
1450     // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1451     // that all EH frames have an associated symbol so that we can generate
1452     // subtractor relocs that reference them.
1453     if (isec->symbols.size() == 0)
1454       isec->symbols.push_back(make<Defined>(
1455           "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0,
1456           /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
1457           /*includeInSymtab=*/false, /*isThumb=*/false,
1458           /*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
1459     else if (isec->symbols[0]->value != 0)
1460       fatal("found symbol at unexpected offset in __eh_frame");
1461 
1462     EhReader reader(this, isec->data, subsec.offset, target->wordSize);
1463     size_t dataOff = 0; // Offset from the start of the EH frame.
1464     reader.skipValidLength(&dataOff); // readLength() already validated this.
1465     // cieOffOff is the offset from the start of the EH frame to the cieOff
1466     // value, which is itself an offset from the current PC to a CIE.
1467     const size_t cieOffOff = dataOff;
1468 
1469     EhRelocator ehRelocator(isec);
1470     auto cieOffRelocIt = llvm::find_if(
1471         isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1472     InputSection *cieIsec = nullptr;
1473     if (cieOffRelocIt != isec->relocs.end()) {
1474       // We already have an explicit relocation for the CIE offset.
1475       cieIsec =
1476           targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1477               ->isec;
1478       dataOff += sizeof(uint32_t);
1479     } else {
1480       // If we haven't found a relocation, then the CIE offset is most likely
1481       // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1482       // and generate a Reloc struct.
1483       uint32_t cieMinuend = reader.readU32(&dataOff);
1484       if (cieMinuend == 0)
1485         cieIsec = isec;
1486       else {
1487         uint32_t cieOff = isecOff + dataOff - cieMinuend;
1488         cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1489         if (cieIsec == nullptr)
1490           fatal("failed to find CIE");
1491       }
1492       if (cieIsec != isec)
1493         ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1494                                       /*length=*/2);
1495     }
1496     if (cieIsec == isec) {
1497       cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1498       continue;
1499     }
1500 
1501     // Offset of the function address within the EH frame.
1502     const size_t funcAddrOff = dataOff;
1503     uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr +
1504                         isecOff + funcAddrOff;
1505     uint32_t funcLength = reader.readPointer(&dataOff);
1506     size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1507     assert(cieMap.count(cieIsec));
1508     const CIE &cie = cieMap[cieIsec];
1509     Optional<uint64_t> lsdaAddrOpt;
1510     if (cie.fdesHaveAug) {
1511       reader.skipLeb128(&dataOff);
1512       lsdaAddrOff = dataOff;
1513       if (cie.fdesHaveLsda) {
1514         uint64_t lsdaOff = reader.readPointer(&dataOff);
1515         if (lsdaOff != 0) // FIXME possible to test this?
1516           lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1517       }
1518     }
1519 
1520     auto funcAddrRelocIt = isec->relocs.end();
1521     auto lsdaAddrRelocIt = isec->relocs.end();
1522     for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1523       if (it->offset == funcAddrOff)
1524         funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1525       else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1526         lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1527     }
1528 
1529     Defined *funcSym;
1530     if (funcAddrRelocIt != isec->relocs.end()) {
1531       funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1532       // Canonicalize the symbol. If there are multiple symbols at the same
1533       // address, we want both `registerEhFrame` and `registerCompactUnwind`
1534       // to register the unwind entry under same symbol.
1535       // This is not particularly efficient, but we should run into this case
1536       // infrequently (only when handling the output of `ld -r`).
1537       funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
1538                                    funcSym->value);
1539     } else {
1540       funcSym = findSymbolAtAddress(sections, funcAddr);
1541       ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1542     }
1543     // The symbol has been coalesced, or already has a compact unwind entry.
1544     if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1545       // We must prune unused FDEs for correctness, so we cannot rely on
1546       // -dead_strip being enabled.
1547       isec->live = false;
1548       continue;
1549     }
1550 
1551     InputSection *lsdaIsec = nullptr;
1552     if (lsdaAddrRelocIt != isec->relocs.end()) {
1553       lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1554     } else if (lsdaAddrOpt) {
1555       uint64_t lsdaAddr = *lsdaAddrOpt;
1556       Section *sec = findContainingSection(sections, &lsdaAddr);
1557       lsdaIsec =
1558           cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1559       ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1560     }
1561 
1562     fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1563     funcSym->unwindEntry = isec;
1564     ehRelocator.commit();
1565   }
1566 }
1567 
1568 std::string ObjFile::sourceFile() const {
1569   SmallString<261> dir(compileUnit->getCompilationDir());
1570   StringRef sep = sys::path::get_separator();
1571   // We don't use `path::append` here because we want an empty `dir` to result
1572   // in an absolute path. `append` would give us a relative path for that case.
1573   if (!dir.endswith(sep))
1574     dir += sep;
1575   return (dir + compileUnit->getUnitDIE().getShortName()).str();
1576 }
1577 
1578 lld::DWARFCache *ObjFile::getDwarf() {
1579   llvm::call_once(initDwarf, [this]() {
1580     auto dwObj = DwarfObject::create(this);
1581     if (!dwObj)
1582       return;
1583     dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1584         std::move(dwObj), "",
1585         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1586         [&](Error warning) {
1587           warn(getName() + ": " + toString(std::move(warning)));
1588         }));
1589   });
1590 
1591   return dwarfCache.get();
1592 }
1593 // The path can point to either a dylib or a .tbd file.
1594 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1595   Optional<MemoryBufferRef> mbref = readFile(path);
1596   if (!mbref) {
1597     error("could not read dylib file at " + path);
1598     return nullptr;
1599   }
1600   return loadDylib(*mbref, umbrella);
1601 }
1602 
1603 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1604 // the first document storing child pointers to the rest of them. When we are
1605 // processing a given TBD file, we store that top-level document in
1606 // currentTopLevelTapi. When processing re-exports, we search its children for
1607 // potentially matching documents in the same TBD file. Note that the children
1608 // themselves don't point to further documents, i.e. this is a two-level tree.
1609 //
1610 // Re-exports can either refer to on-disk files, or to documents within .tbd
1611 // files.
1612 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1613                             const InterfaceFile *currentTopLevelTapi) {
1614   // Search order:
1615   // 1. Install name basename in -F / -L directories.
1616   {
1617     StringRef stem = path::stem(path);
1618     SmallString<128> frameworkName;
1619     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1620     bool isFramework = path.endswith(frameworkName);
1621     if (isFramework) {
1622       for (StringRef dir : config->frameworkSearchPaths) {
1623         SmallString<128> candidate = dir;
1624         path::append(candidate, frameworkName);
1625         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1626           return loadDylib(*dylibPath, umbrella);
1627       }
1628     } else if (Optional<StringRef> dylibPath = findPathCombination(
1629                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1630       return loadDylib(*dylibPath, umbrella);
1631   }
1632 
1633   // 2. As absolute path.
1634   if (path::is_absolute(path, path::Style::posix))
1635     for (StringRef root : config->systemLibraryRoots)
1636       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1637         return loadDylib(*dylibPath, umbrella);
1638 
1639   // 3. As relative path.
1640 
1641   // TODO: Handle -dylib_file
1642 
1643   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1644   SmallString<128> newPath;
1645   if (config->outputType == MH_EXECUTE &&
1646       path.consume_front("@executable_path/")) {
1647     // ld64 allows overriding this with the undocumented flag -executable_path.
1648     // lld doesn't currently implement that flag.
1649     // FIXME: Consider using finalOutput instead of outputFile.
1650     path::append(newPath, path::parent_path(config->outputFile), path);
1651     path = newPath;
1652   } else if (path.consume_front("@loader_path/")) {
1653     fs::real_path(umbrella->getName(), newPath);
1654     path::remove_filename(newPath);
1655     path::append(newPath, path);
1656     path = newPath;
1657   } else if (path.startswith("@rpath/")) {
1658     for (StringRef rpath : umbrella->rpaths) {
1659       newPath.clear();
1660       if (rpath.consume_front("@loader_path/")) {
1661         fs::real_path(umbrella->getName(), newPath);
1662         path::remove_filename(newPath);
1663       }
1664       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1665       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1666         return loadDylib(*dylibPath, umbrella);
1667     }
1668   }
1669 
1670   // FIXME: Should this be further up?
1671   if (currentTopLevelTapi) {
1672     for (InterfaceFile &child :
1673          make_pointee_range(currentTopLevelTapi->documents())) {
1674       assert(child.documents().empty());
1675       if (path == child.getInstallName()) {
1676         auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1677                                     /*explicitlyLinked=*/false);
1678         file->parseReexports(child);
1679         return file;
1680       }
1681     }
1682   }
1683 
1684   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1685     return loadDylib(*dylibPath, umbrella);
1686 
1687   return nullptr;
1688 }
1689 
1690 // If a re-exported dylib is public (lives in /usr/lib or
1691 // /System/Library/Frameworks), then it is considered implicitly linked: we
1692 // should bind to its symbols directly instead of via the re-exporting umbrella
1693 // library.
1694 static bool isImplicitlyLinked(StringRef path) {
1695   if (!config->implicitDylibs)
1696     return false;
1697 
1698   if (path::parent_path(path) == "/usr/lib")
1699     return true;
1700 
1701   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1702   if (path.consume_front("/System/Library/Frameworks/")) {
1703     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1704     return path::filename(path) == frameworkName;
1705   }
1706 
1707   return false;
1708 }
1709 
1710 static void loadReexport(StringRef path, DylibFile *umbrella,
1711                          const InterfaceFile *currentTopLevelTapi) {
1712   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1713   if (!reexport)
1714     error("unable to locate re-export with install name " + path);
1715 }
1716 
1717 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1718                      bool isBundleLoader, bool explicitlyLinked)
1719     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1720       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1721   assert(!isBundleLoader || !umbrella);
1722   if (umbrella == nullptr)
1723     umbrella = this;
1724   this->umbrella = umbrella;
1725 
1726   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1727 
1728   // Initialize installName.
1729   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1730     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1731     currentVersion = read32le(&c->dylib.current_version);
1732     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1733     installName =
1734         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1735   } else if (!isBundleLoader) {
1736     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1737     // so it's OK.
1738     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1739     return;
1740   }
1741 
1742   if (config->printEachFile)
1743     message(toString(this));
1744   inputFiles.insert(this);
1745 
1746   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1747 
1748   if (!checkCompatibility(this))
1749     return;
1750 
1751   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1752 
1753   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1754     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1755     rpaths.push_back(rpath);
1756   }
1757 
1758   // Initialize symbols.
1759   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1760 
1761   const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1762   const auto *exportsTrie =
1763       findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1764   if (dyldInfo && exportsTrie) {
1765     // It's unclear what should happen in this case. Maybe we should only error
1766     // out if the two load commands refer to different data?
1767     error("dylib " + toString(this) +
1768           " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1769     return;
1770   } else if (dyldInfo) {
1771     parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1772   } else if (exportsTrie) {
1773     parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1774   } else {
1775     error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1776           toString(this));
1777     return;
1778   }
1779 }
1780 
1781 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1782   struct TrieEntry {
1783     StringRef name;
1784     uint64_t flags;
1785   };
1786 
1787   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1788   std::vector<TrieEntry> entries;
1789   // Find all the $ld$* symbols to process first.
1790   parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1791     StringRef savedName = saver().save(name);
1792     if (handleLDSymbol(savedName))
1793       return;
1794     entries.push_back({savedName, flags});
1795   });
1796 
1797   // Process the "normal" symbols.
1798   for (TrieEntry &entry : entries) {
1799     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1800       continue;
1801 
1802     bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1803     bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1804 
1805     symbols.push_back(
1806         symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1807   }
1808 }
1809 
1810 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1811   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1812   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1813                      target->headerSize;
1814   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1815     auto *cmd = reinterpret_cast<const load_command *>(p);
1816     p += cmd->cmdsize;
1817 
1818     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1819         cmd->cmd == LC_REEXPORT_DYLIB) {
1820       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1821       StringRef reexportPath =
1822           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1823       loadReexport(reexportPath, exportingFile, nullptr);
1824     }
1825 
1826     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1827     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1828     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1829     if (config->namespaceKind == NamespaceKind::flat &&
1830         cmd->cmd == LC_LOAD_DYLIB) {
1831       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1832       StringRef dylibPath =
1833           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1834       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1835       if (!dylib)
1836         error(Twine("unable to locate library '") + dylibPath +
1837               "' loaded from '" + toString(this) + "' for -flat_namespace");
1838     }
1839   }
1840 }
1841 
1842 // Some versions of Xcode ship with .tbd files that don't have the right
1843 // platform settings.
1844 constexpr std::array<StringRef, 3> skipPlatformChecks{
1845     "/usr/lib/system/libsystem_kernel.dylib",
1846     "/usr/lib/system/libsystem_platform.dylib",
1847     "/usr/lib/system/libsystem_pthread.dylib"};
1848 
1849 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1850                                          bool explicitlyLinked) {
1851   // Catalyst outputs can link against implicitly linked macOS-only libraries.
1852   if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1853     return false;
1854   return is_contained(interface.targets(),
1855                       MachO::Target(config->arch(), PLATFORM_MACOS));
1856 }
1857 
1858 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1859                      bool isBundleLoader, bool explicitlyLinked)
1860     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1861       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1862   // FIXME: Add test for the missing TBD code path.
1863 
1864   if (umbrella == nullptr)
1865     umbrella = this;
1866   this->umbrella = umbrella;
1867 
1868   installName = saver().save(interface.getInstallName());
1869   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1870   currentVersion = interface.getCurrentVersion().rawValue();
1871 
1872   if (config->printEachFile)
1873     message(toString(this));
1874   inputFiles.insert(this);
1875 
1876   if (!is_contained(skipPlatformChecks, installName) &&
1877       !is_contained(interface.targets(), config->platformInfo.target) &&
1878       !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1879     error(toString(this) + " is incompatible with " +
1880           std::string(config->platformInfo.target));
1881     return;
1882   }
1883 
1884   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1885 
1886   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1887   auto addSymbol = [&](const Twine &name) -> void {
1888     StringRef savedName = saver().save(name);
1889     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1890       return;
1891 
1892     symbols.push_back(symtab->addDylib(savedName, exportingFile,
1893                                        /*isWeakDef=*/false,
1894                                        /*isTlv=*/false));
1895   };
1896 
1897   std::vector<const llvm::MachO::Symbol *> normalSymbols;
1898   normalSymbols.reserve(interface.symbolsCount());
1899   for (const auto *symbol : interface.symbols()) {
1900     if (!symbol->getArchitectures().has(config->arch()))
1901       continue;
1902     if (handleLDSymbol(symbol->getName()))
1903       continue;
1904 
1905     switch (symbol->getKind()) {
1906     case SymbolKind::GlobalSymbol:               // Fallthrough
1907     case SymbolKind::ObjectiveCClass:            // Fallthrough
1908     case SymbolKind::ObjectiveCClassEHType:      // Fallthrough
1909     case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1910       normalSymbols.push_back(symbol);
1911     }
1912   }
1913 
1914   // TODO(compnerd) filter out symbols based on the target platform
1915   // TODO: handle weak defs, thread locals
1916   for (const auto *symbol : normalSymbols) {
1917     switch (symbol->getKind()) {
1918     case SymbolKind::GlobalSymbol:
1919       addSymbol(symbol->getName());
1920       break;
1921     case SymbolKind::ObjectiveCClass:
1922       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1923       // want to emulate that.
1924       addSymbol(objc::klass + symbol->getName());
1925       addSymbol(objc::metaclass + symbol->getName());
1926       break;
1927     case SymbolKind::ObjectiveCClassEHType:
1928       addSymbol(objc::ehtype + symbol->getName());
1929       break;
1930     case SymbolKind::ObjectiveCInstanceVariable:
1931       addSymbol(objc::ivar + symbol->getName());
1932       break;
1933     }
1934   }
1935 }
1936 
1937 void DylibFile::parseReexports(const InterfaceFile &interface) {
1938   const InterfaceFile *topLevel =
1939       interface.getParent() == nullptr ? &interface : interface.getParent();
1940   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1941     InterfaceFile::const_target_range targets = intfRef.targets();
1942     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1943         is_contained(targets, config->platformInfo.target))
1944       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1945   }
1946 }
1947 
1948 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1949 // name, compatibility version or hide/add symbols) for specific target
1950 // versions.
1951 bool DylibFile::handleLDSymbol(StringRef originalName) {
1952   if (!originalName.startswith("$ld$"))
1953     return false;
1954 
1955   StringRef action;
1956   StringRef name;
1957   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1958   if (action == "previous")
1959     handleLDPreviousSymbol(name, originalName);
1960   else if (action == "install_name")
1961     handleLDInstallNameSymbol(name, originalName);
1962   else if (action == "hide")
1963     handleLDHideSymbol(name, originalName);
1964   return true;
1965 }
1966 
1967 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1968   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1969   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1970   StringRef installName;
1971   StringRef compatVersion;
1972   StringRef platformStr;
1973   StringRef startVersion;
1974   StringRef endVersion;
1975   StringRef symbolName;
1976   StringRef rest;
1977 
1978   std::tie(installName, name) = name.split('$');
1979   std::tie(compatVersion, name) = name.split('$');
1980   std::tie(platformStr, name) = name.split('$');
1981   std::tie(startVersion, name) = name.split('$');
1982   std::tie(endVersion, name) = name.split('$');
1983   std::tie(symbolName, rest) = name.split('$');
1984   // TODO: ld64 contains some logic for non-empty symbolName as well.
1985   if (!symbolName.empty())
1986     return;
1987   unsigned platform;
1988   if (platformStr.getAsInteger(10, platform) ||
1989       platform != static_cast<unsigned>(config->platform()))
1990     return;
1991 
1992   VersionTuple start;
1993   if (start.tryParse(startVersion)) {
1994     warn("failed to parse start version, symbol '" + originalName +
1995          "' ignored");
1996     return;
1997   }
1998   VersionTuple end;
1999   if (end.tryParse(endVersion)) {
2000     warn("failed to parse end version, symbol '" + originalName + "' ignored");
2001     return;
2002   }
2003   if (config->platformInfo.minimum < start ||
2004       config->platformInfo.minimum >= end)
2005     return;
2006 
2007   this->installName = saver().save(installName);
2008 
2009   if (!compatVersion.empty()) {
2010     VersionTuple cVersion;
2011     if (cVersion.tryParse(compatVersion)) {
2012       warn("failed to parse compatibility version, symbol '" + originalName +
2013            "' ignored");
2014       return;
2015     }
2016     compatibilityVersion = encodeVersion(cVersion);
2017   }
2018 }
2019 
2020 void DylibFile::handleLDInstallNameSymbol(StringRef name,
2021                                           StringRef originalName) {
2022   // originalName: $ld$ install_name $ os<version> $ install_name
2023   StringRef condition, installName;
2024   std::tie(condition, installName) = name.split('$');
2025   VersionTuple version;
2026   if (!condition.consume_front("os") || version.tryParse(condition))
2027     warn("failed to parse os version, symbol '" + originalName + "' ignored");
2028   else if (version == config->platformInfo.minimum)
2029     this->installName = saver().save(installName);
2030 }
2031 
2032 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2033   StringRef symbolName;
2034   bool shouldHide = true;
2035   if (name.startswith("os")) {
2036     // If it's hidden based on versions.
2037     name = name.drop_front(2);
2038     StringRef minVersion;
2039     std::tie(minVersion, symbolName) = name.split('$');
2040     VersionTuple versionTup;
2041     if (versionTup.tryParse(minVersion)) {
2042       warn("Failed to parse hidden version, symbol `" + originalName +
2043            "` ignored.");
2044       return;
2045     }
2046     shouldHide = versionTup == config->platformInfo.minimum;
2047   } else {
2048     symbolName = name;
2049   }
2050 
2051   if (shouldHide)
2052     exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2053 }
2054 
2055 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2056   if (config->applicationExtension && !dylibIsAppExtensionSafe)
2057     warn("using '-application_extension' with unsafe dylib: " + toString(this));
2058 }
2059 
2060 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
2061     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
2062 
2063 void ArchiveFile::addLazySymbols() {
2064   for (const object::Archive::Symbol &sym : file->symbols())
2065     symtab->addLazyArchive(sym.getName(), this, sym);
2066 }
2067 
2068 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
2069                                                uint32_t modTime,
2070                                                StringRef archiveName,
2071                                                uint64_t offsetInArchive) {
2072   if (config->zeroModTime)
2073     modTime = 0;
2074 
2075   switch (identify_magic(mb.getBuffer())) {
2076   case file_magic::macho_object:
2077     return make<ObjFile>(mb, modTime, archiveName);
2078   case file_magic::bitcode:
2079     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
2080   default:
2081     return createStringError(inconvertibleErrorCode(),
2082                              mb.getBufferIdentifier() +
2083                                  " has unhandled file type");
2084   }
2085 }
2086 
2087 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2088   if (!seen.insert(c.getChildOffset()).second)
2089     return Error::success();
2090 
2091   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2092   if (!mb)
2093     return mb.takeError();
2094 
2095   // Thin archives refer to .o files, so --reproduce needs the .o files too.
2096   if (tar && c.getParent()->isThin())
2097     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2098 
2099   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2100   if (!modTime)
2101     return modTime.takeError();
2102 
2103   Expected<InputFile *> file =
2104       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
2105 
2106   if (!file)
2107     return file.takeError();
2108 
2109   inputFiles.insert(*file);
2110   printArchiveMemberLoad(reason, *file);
2111   return Error::success();
2112 }
2113 
2114 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2115   object::Archive::Child c =
2116       CHECK(sym.getMember(), toString(this) +
2117                                  ": could not get the member defining symbol " +
2118                                  toMachOString(sym));
2119 
2120   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2121   // and become invalid after that call. Copy it to the stack so we can refer
2122   // to it later.
2123   const object::Archive::Symbol symCopy = sym;
2124 
2125   // ld64 doesn't demangle sym here even with -demangle.
2126   // Match that: intentionally don't call toMachOString().
2127   if (Error e = fetch(c, symCopy.getName()))
2128     error(toString(this) + ": could not get the member defining symbol " +
2129           toMachOString(symCopy) + ": " + toString(std::move(e)));
2130 }
2131 
2132 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2133                                           BitcodeFile &file) {
2134   StringRef name = saver().save(objSym.getName());
2135 
2136   if (objSym.isUndefined())
2137     return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2138 
2139   // TODO: Write a test demonstrating why computing isPrivateExtern before
2140   // LTO compilation is important.
2141   bool isPrivateExtern = false;
2142   switch (objSym.getVisibility()) {
2143   case GlobalValue::HiddenVisibility:
2144     isPrivateExtern = true;
2145     break;
2146   case GlobalValue::ProtectedVisibility:
2147     error(name + " has protected visibility, which is not supported by Mach-O");
2148     break;
2149   case GlobalValue::DefaultVisibility:
2150     break;
2151   }
2152   isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable();
2153 
2154   if (objSym.isCommon())
2155     return symtab->addCommon(name, &file, objSym.getCommonSize(),
2156                              objSym.getCommonAlignment(), isPrivateExtern);
2157 
2158   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2159                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
2160                             /*isThumb=*/false,
2161                             /*isReferencedDynamically=*/false,
2162                             /*noDeadStrip=*/false,
2163                             /*isWeakDefCanBeHidden=*/false);
2164 }
2165 
2166 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2167                          uint64_t offsetInArchive, bool lazy)
2168     : InputFile(BitcodeKind, mb, lazy) {
2169   this->archiveName = std::string(archiveName);
2170   std::string path = mb.getBufferIdentifier().str();
2171   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2172   // name. If two members with the same name are provided, this causes a
2173   // collision and ThinLTO can't proceed.
2174   // So, we append the archive name to disambiguate two members with the same
2175   // name from multiple different archives, and offset within the archive to
2176   // disambiguate two members of the same name from a single archive.
2177   MemoryBufferRef mbref(mb.getBuffer(),
2178                         saver().save(archiveName.empty()
2179                                          ? path
2180                                          : archiveName +
2181                                                sys::path::filename(path) +
2182                                                utostr(offsetInArchive)));
2183 
2184   obj = check(lto::InputFile::create(mbref));
2185   if (lazy)
2186     parseLazy();
2187   else
2188     parse();
2189 }
2190 
2191 void BitcodeFile::parse() {
2192   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2193   // "winning" symbol will then be marked as Prevailing at LTO compilation
2194   // time.
2195   symbols.clear();
2196   for (const lto::InputFile::Symbol &objSym : obj->symbols())
2197     symbols.push_back(createBitcodeSymbol(objSym, *this));
2198 }
2199 
2200 void BitcodeFile::parseLazy() {
2201   symbols.resize(obj->symbols().size());
2202   for (auto it : llvm::enumerate(obj->symbols())) {
2203     const lto::InputFile::Symbol &objSym = it.value();
2204     if (!objSym.isUndefined()) {
2205       symbols[it.index()] =
2206           symtab->addLazyObject(saver().save(objSym.getName()), *this);
2207       if (!lazy)
2208         break;
2209     }
2210   }
2211 }
2212 
2213 void macho::extract(InputFile &file, StringRef reason) {
2214   assert(file.lazy);
2215   file.lazy = false;
2216   printArchiveMemberLoad(reason, &file);
2217   if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2218     bitcode->parse();
2219   } else {
2220     auto &f = cast<ObjFile>(file);
2221     if (target->wordSize == 8)
2222       f.parse<LP64>();
2223     else
2224       f.parse<ILP32>();
2225   }
2226 }
2227 
2228 template void ObjFile::parse<LP64>();
2229