1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59 
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75 
76 #include <type_traits>
77 
78 using namespace llvm;
79 using namespace llvm::MachO;
80 using namespace llvm::support::endian;
81 using namespace llvm::sys;
82 using namespace lld;
83 using namespace lld::macho;
84 
85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
86 std::string lld::toString(const InputFile *f) {
87   if (!f)
88     return "<internal>";
89 
90   // Multiple dylibs can be defined in one .tbd file.
91   if (auto dylibFile = dyn_cast<DylibFile>(f))
92     if (f->getName().endswith(".tbd"))
93       return (f->getName() + "(" + dylibFile->installName + ")").str();
94 
95   if (f->archiveName.empty())
96     return std::string(f->getName());
97   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
98 }
99 
100 std::string lld::toString(const Section &sec) {
101   return (toString(sec.file) + ":(" + sec.name + ")").str();
102 }
103 
104 SetVector<InputFile *> macho::inputFiles;
105 std::unique_ptr<TarWriter> macho::tar;
106 int InputFile::idCount = 0;
107 
108 static VersionTuple decodeVersion(uint32_t version) {
109   unsigned major = version >> 16;
110   unsigned minor = (version >> 8) & 0xffu;
111   unsigned subMinor = version & 0xffu;
112   return VersionTuple(major, minor, subMinor);
113 }
114 
115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
116   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
117     return {};
118 
119   const char *hdr = input->mb.getBufferStart();
120 
121   // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
122   std::vector<PlatformInfo> platformInfos;
123   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
124     PlatformInfo info;
125     info.target.Platform = static_cast<PlatformType>(cmd->platform);
126     info.minimum = decodeVersion(cmd->minos);
127     platformInfos.emplace_back(std::move(info));
128   }
129   for (auto *cmd : findCommands<version_min_command>(
130            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
131            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
132     PlatformInfo info;
133     switch (cmd->cmd) {
134     case LC_VERSION_MIN_MACOSX:
135       info.target.Platform = PLATFORM_MACOS;
136       break;
137     case LC_VERSION_MIN_IPHONEOS:
138       info.target.Platform = PLATFORM_IOS;
139       break;
140     case LC_VERSION_MIN_TVOS:
141       info.target.Platform = PLATFORM_TVOS;
142       break;
143     case LC_VERSION_MIN_WATCHOS:
144       info.target.Platform = PLATFORM_WATCHOS;
145       break;
146     }
147     info.minimum = decodeVersion(cmd->version);
148     platformInfos.emplace_back(std::move(info));
149   }
150 
151   return platformInfos;
152 }
153 
154 static bool checkCompatibility(const InputFile *input) {
155   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
156   if (platformInfos.empty())
157     return true;
158 
159   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
160     return removeSimulator(info.target.Platform) ==
161            removeSimulator(config->platform());
162   });
163   if (it == platformInfos.end()) {
164     std::string platformNames;
165     raw_string_ostream os(platformNames);
166     interleave(
167         platformInfos, os,
168         [&](const PlatformInfo &info) {
169           os << getPlatformName(info.target.Platform);
170         },
171         "/");
172     error(toString(input) + " has platform " + platformNames +
173           Twine(", which is different from target platform ") +
174           getPlatformName(config->platform()));
175     return false;
176   }
177 
178   if (it->minimum > config->platformInfo.minimum)
179     warn(toString(input) + " has version " + it->minimum.getAsString() +
180          ", which is newer than target minimum of " +
181          config->platformInfo.minimum.getAsString());
182 
183   return true;
184 }
185 
186 // This cache mostly exists to store system libraries (and .tbds) as they're
187 // loaded, rather than the input archives, which are already cached at a higher
188 // level, and other files like the filelist that are only read once.
189 // Theoretically this caching could be more efficient by hoisting it, but that
190 // would require altering many callers to track the state.
191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
192 // Open a given file path and return it as a memory-mapped file.
193 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
194   CachedHashStringRef key(path);
195   auto entry = cachedReads.find(key);
196   if (entry != cachedReads.end())
197     return entry->second;
198 
199   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
200   if (std::error_code ec = mbOrErr.getError()) {
201     error("cannot open " + path + ": " + ec.message());
202     return None;
203   }
204 
205   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
206   MemoryBufferRef mbref = mb->getMemBufferRef();
207   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
208 
209   // If this is a regular non-fat file, return it.
210   const char *buf = mbref.getBufferStart();
211   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
212   if (mbref.getBufferSize() < sizeof(uint32_t) ||
213       read32be(&hdr->magic) != FAT_MAGIC) {
214     if (tar)
215       tar->append(relativeToRoot(path), mbref.getBuffer());
216     return cachedReads[key] = mbref;
217   }
218 
219   llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
220 
221   // Object files and archive files may be fat files, which contain multiple
222   // real files for different CPU ISAs. Here, we search for a file that matches
223   // with the current link target and returns it as a MemoryBufferRef.
224   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
225 
226   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
227     if (reinterpret_cast<const char *>(arch + i + 1) >
228         buf + mbref.getBufferSize()) {
229       error(path + ": fat_arch struct extends beyond end of file");
230       return None;
231     }
232 
233     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
234         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
235       continue;
236 
237     uint32_t offset = read32be(&arch[i].offset);
238     uint32_t size = read32be(&arch[i].size);
239     if (offset + size > mbref.getBufferSize())
240       error(path + ": slice extends beyond end of file");
241     if (tar)
242       tar->append(relativeToRoot(path), mbref.getBuffer());
243     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
244                                               path.copy(bAlloc));
245   }
246 
247   error("unable to find matching architecture in " + path);
248   return None;
249 }
250 
251 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
252     : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
253 
254 // Some sections comprise of fixed-size records, so instead of splitting them at
255 // symbol boundaries, we split them based on size. Records are distinct from
256 // literals in that they may contain references to other sections, instead of
257 // being leaf nodes in the InputSection graph.
258 //
259 // Note that "record" is a term I came up with. In contrast, "literal" is a term
260 // used by the Mach-O format.
261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
262   if (name == section_names::compactUnwind) {
263     if (segname == segment_names::ld)
264       return target->wordSize == 8 ? 32 : 20;
265   }
266   if (config->icfLevel == ICFLevel::none)
267     return {};
268 
269   if (name == section_names::cfString && segname == segment_names::data)
270     return target->wordSize == 8 ? 32 : 16;
271   if (name == section_names::objcClassRefs && segname == segment_names::data)
272     return target->wordSize;
273   return {};
274 }
275 
276 static Error parseCallGraph(ArrayRef<uint8_t> data,
277                             std::vector<CallGraphEntry> &callGraph) {
278   TimeTraceScope timeScope("Parsing call graph section");
279   BinaryStreamReader reader(data, support::little);
280   while (!reader.empty()) {
281     uint32_t fromIndex, toIndex;
282     uint64_t count;
283     if (Error err = reader.readInteger(fromIndex))
284       return err;
285     if (Error err = reader.readInteger(toIndex))
286       return err;
287     if (Error err = reader.readInteger(count))
288       return err;
289     callGraph.emplace_back(fromIndex, toIndex, count);
290   }
291   return Error::success();
292 }
293 
294 // Parse the sequence of sections within a single LC_SEGMENT(_64).
295 // Split each section into subsections.
296 template <class SectionHeader>
297 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
298   sections.reserve(sectionHeaders.size());
299   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
300 
301   for (const SectionHeader &sec : sectionHeaders) {
302     StringRef name =
303         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
304     StringRef segname =
305         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
306     sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
307     if (sec.align >= 32) {
308       error("alignment " + std::to_string(sec.align) + " of section " + name +
309             " is too large");
310       continue;
311     }
312     Section &section = *sections.back();
313     uint32_t align = 1 << sec.align;
314     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
315                                                     : buf + sec.offset,
316                               static_cast<size_t>(sec.size)};
317 
318     auto splitRecords = [&](int recordSize) -> void {
319       if (data.empty())
320         return;
321       Subsections &subsections = section.subsections;
322       subsections.reserve(data.size() / recordSize);
323       for (uint64_t off = 0; off < data.size(); off += recordSize) {
324         auto *isec = make<ConcatInputSection>(
325             section, data.slice(off, recordSize), align);
326         subsections.push_back({off, isec});
327       }
328       section.doneSplitting = true;
329     };
330 
331     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
332         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
333       if (sec.nreloc && config->dedupLiterals)
334         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
335               sec.sectname +
336               ", so LLD cannot deduplicate literals. Try re-running without "
337               "--deduplicate-literals.");
338 
339       InputSection *isec;
340       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
341         isec = make<CStringInputSection>(section, data, align);
342         // FIXME: parallelize this?
343         cast<CStringInputSection>(isec)->splitIntoPieces();
344       } else {
345         isec = make<WordLiteralInputSection>(section, data, align);
346       }
347       section.subsections.push_back({0, isec});
348     } else if (auto recordSize = getRecordSize(segname, name)) {
349       splitRecords(*recordSize);
350     } else if (name == section_names::ehFrame &&
351                segname == segment_names::text) {
352       splitEhFrames(data, *sections.back());
353     } else if (segname == segment_names::llvm) {
354       if (config->callGraphProfileSort && name == section_names::cgProfile)
355         checkError(parseCallGraph(data, callGraph));
356       // ld64 does not appear to emit contents from sections within the __LLVM
357       // segment. Symbols within those sections point to bitcode metadata
358       // instead of actual symbols. Global symbols within those sections could
359       // have the same name without causing duplicate symbol errors. To avoid
360       // spurious duplicate symbol errors, we do not parse these sections.
361       // TODO: Evaluate whether the bitcode metadata is needed.
362     } else {
363       if (name == section_names::addrSig)
364         addrSigSection = sections.back();
365 
366       auto *isec = make<ConcatInputSection>(section, data, align);
367       if (isDebugSection(isec->getFlags()) &&
368           isec->getSegName() == segment_names::dwarf) {
369         // Instead of emitting DWARF sections, we emit STABS symbols to the
370         // object files that contain them. We filter them out early to avoid
371         // parsing their relocations unnecessarily.
372         debugSections.push_back(isec);
373       } else {
374         section.subsections.push_back({0, isec});
375       }
376     }
377   }
378 }
379 
380 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
381   EhReader reader(this, data, /*dataOff=*/0, target->wordSize);
382   size_t off = 0;
383   while (off < reader.size()) {
384     uint64_t frameOff = off;
385     uint64_t length = reader.readLength(&off);
386     if (length == 0)
387       break;
388     uint64_t fullLength = length + (off - frameOff);
389     off += length;
390     // We hard-code an alignment of 1 here because we don't actually want our
391     // EH frames to be aligned to the section alignment. EH frame decoders don't
392     // expect this alignment. Moreover, each EH frame must start where the
393     // previous one ends, and where it ends is indicated by the length field.
394     // Unless we update the length field (troublesome), we should keep the
395     // alignment to 1.
396     // Note that we still want to preserve the alignment of the overall section,
397     // just not of the individual EH frames.
398     ehFrameSection.subsections.push_back(
399         {frameOff, make<ConcatInputSection>(ehFrameSection,
400                                             data.slice(frameOff, fullLength),
401                                             /*align=*/1)});
402   }
403   ehFrameSection.doneSplitting = true;
404 }
405 
406 template <class T>
407 static Section *findContainingSection(const std::vector<Section *> &sections,
408                                       T *offset) {
409   static_assert(std::is_same<uint64_t, T>::value ||
410                     std::is_same<uint32_t, T>::value,
411                 "unexpected type for offset");
412   auto it = std::prev(llvm::upper_bound(
413       sections, *offset,
414       [](uint64_t value, const Section *sec) { return value < sec->addr; }));
415   *offset -= (*it)->addr;
416   return *it;
417 }
418 
419 // Find the subsection corresponding to the greatest section offset that is <=
420 // that of the given offset.
421 //
422 // offset: an offset relative to the start of the original InputSection (before
423 // any subsection splitting has occurred). It will be updated to represent the
424 // same location as an offset relative to the start of the containing
425 // subsection.
426 template <class T>
427 static InputSection *findContainingSubsection(const Section &section,
428                                               T *offset) {
429   static_assert(std::is_same<uint64_t, T>::value ||
430                     std::is_same<uint32_t, T>::value,
431                 "unexpected type for offset");
432   auto it = std::prev(llvm::upper_bound(
433       section.subsections, *offset,
434       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
435   *offset -= it->offset;
436   return it->isec;
437 }
438 
439 // Find a symbol at offset `off` within `isec`.
440 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
441                                    uint64_t off) {
442   auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
443     return d->value < off;
444   });
445   // The offset should point at the exact address of a symbol (with no addend.)
446   if (it == isec->symbols.end() || (*it)->value != off) {
447     assert(isec->wasCoalesced);
448     return nullptr;
449   }
450   return *it;
451 }
452 
453 // Linker optimization hints mark a sequence of instructions used for
454 // synthesizing an address which that be transformed into a faster sequence. The
455 // transformations depend on conditions that are determined at link time, like
456 // the distance to the referenced symbol or its alignment.
457 //
458 // Each hint has a type and refers to 2 or 3 instructions. Each of those
459 // instructions must have a corresponding relocation. After addresses have been
460 // finalized and relocations have been performed, we check if the requirements
461 // hold, and perform the optimizations if they do.
462 //
463 // Similar linker relaxations exist for ELF as well, with the difference being
464 // that the explicit marking allows for the relaxation of non-consecutive
465 // relocations too.
466 //
467 // The specific types of hints are documented in Arch/ARM64.cpp
468 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) {
469   auto expectedArgCount = [](uint8_t type) {
470     switch (type) {
471     case LOH_ARM64_ADRP_ADRP:
472     case LOH_ARM64_ADRP_LDR:
473     case LOH_ARM64_ADRP_ADD:
474     case LOH_ARM64_ADRP_LDR_GOT:
475       return 2;
476     case LOH_ARM64_ADRP_ADD_LDR:
477     case LOH_ARM64_ADRP_ADD_STR:
478     case LOH_ARM64_ADRP_LDR_GOT_LDR:
479     case LOH_ARM64_ADRP_LDR_GOT_STR:
480       return 3;
481     }
482     return -1;
483   };
484 
485   // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case,
486   // there are data.size() / 4 LOHs. It's a huge overestimation though, as
487   // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate
488   // half as much.
489   optimizationHints.reserve(data.size() / 8);
490 
491   for (const uint8_t *p = data.begin(); p < data.end();) {
492     const ptrdiff_t inputOffset = p - data.begin();
493     unsigned int n = 0;
494     uint8_t type = decodeULEB128(p, &n, data.end());
495     p += n;
496 
497     // An entry of type 0 terminates the list.
498     if (type == 0)
499       break;
500 
501     int expectedCount = expectedArgCount(type);
502     if (LLVM_UNLIKELY(expectedCount == -1)) {
503       error("Linker optimization hint at offset " + Twine(inputOffset) +
504             " has unknown type " + Twine(type));
505       return;
506     }
507 
508     uint8_t argCount = decodeULEB128(p, &n, data.end());
509     p += n;
510 
511     if (LLVM_UNLIKELY(argCount != expectedCount)) {
512       error("Linker optimization hint at offset " + Twine(inputOffset) +
513             " has " + Twine(argCount) + " arguments instead of the expected " +
514             Twine(expectedCount));
515       return;
516     }
517 
518     uint64_t offset0 = decodeULEB128(p, &n, data.end());
519     p += n;
520 
521     int16_t delta[2];
522     for (int i = 0; i < argCount - 1; ++i) {
523       uint64_t address = decodeULEB128(p, &n, data.end());
524       p += n;
525       int64_t d = address - offset0;
526       if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() ||
527                         d < std::numeric_limits<int16_t>::min())) {
528         error("Linker optimization hint at offset " + Twine(inputOffset) +
529               " has addresses too far apart");
530         return;
531       }
532       delta[i] = d;
533     }
534 
535     optimizationHints.push_back({offset0, {delta[0], delta[1]}, type});
536   }
537 
538   // We sort the per-object vector of optimization hints so each section only
539   // needs to hold an ArrayRef to a contiguous range of hints.
540   llvm::sort(optimizationHints,
541              [](const OptimizationHint &a, const OptimizationHint &b) {
542                return a.offset0 < b.offset0;
543              });
544 
545   auto section = sections.begin();
546   auto subsection = (*section)->subsections.begin();
547   uint64_t subsectionBase = 0;
548   uint64_t subsectionEnd = 0;
549 
550   auto updateAddr = [&]() {
551     subsectionBase = (*section)->addr + subsection->offset;
552     subsectionEnd = subsectionBase + subsection->isec->getSize();
553   };
554 
555   auto advanceSubsection = [&]() {
556     if (section == sections.end())
557       return;
558     ++subsection;
559     if (subsection == (*section)->subsections.end()) {
560       ++section;
561       if (section == sections.end())
562         return;
563       subsection = (*section)->subsections.begin();
564     }
565   };
566 
567   updateAddr();
568   auto hintStart = optimizationHints.begin();
569   for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end;
570        ++hintEnd) {
571     if (hintEnd->offset0 >= subsectionEnd) {
572       subsection->isec->optimizationHints =
573           ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart);
574 
575       hintStart = hintEnd;
576       while (hintStart->offset0 >= subsectionEnd) {
577         advanceSubsection();
578         if (section == sections.end())
579           break;
580         updateAddr();
581       }
582     }
583 
584     hintEnd->offset0 -= subsectionBase;
585     for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1;
586          ++i) {
587       if (LLVM_UNLIKELY(
588               hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) ||
589               hintEnd->delta[i] >=
590                   static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) {
591         error("Linker optimization hint spans multiple sections");
592         return;
593       }
594     }
595   }
596   if (section != sections.end())
597     subsection->isec->optimizationHints = ArrayRef<OptimizationHint>(
598         &*hintStart, optimizationHints.end() - hintStart);
599 }
600 
601 template <class SectionHeader>
602 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
603                                    relocation_info rel) {
604   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
605   bool valid = true;
606   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
607     valid = false;
608     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
609             std::to_string(rel.r_address) + " of " + sec.segname + "," +
610             sec.sectname + " in " + toString(file))
611         .str();
612   };
613 
614   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
615     error(message("must be extern"));
616   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
617     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
618                   "be PC-relative"));
619   if (isThreadLocalVariables(sec.flags) &&
620       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
621     error(message("not allowed in thread-local section, must be UNSIGNED"));
622   if (rel.r_length < 2 || rel.r_length > 3 ||
623       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
624     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
625     error(message("has width " + std::to_string(1 << rel.r_length) +
626                   " bytes, but must be " +
627                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
628                   " bytes"));
629   }
630   return valid;
631 }
632 
633 template <class SectionHeader>
634 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
635                                const SectionHeader &sec, Section &section) {
636   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
637   ArrayRef<relocation_info> relInfos(
638       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
639 
640   Subsections &subsections = section.subsections;
641   auto subsecIt = subsections.rbegin();
642   for (size_t i = 0; i < relInfos.size(); i++) {
643     // Paired relocations serve as Mach-O's method for attaching a
644     // supplemental datum to a primary relocation record. ELF does not
645     // need them because the *_RELOC_RELA records contain the extra
646     // addend field, vs. *_RELOC_REL which omit the addend.
647     //
648     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
649     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
650     // datum for each is a symbolic address. The result is the offset
651     // between two addresses.
652     //
653     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
654     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
655     // base symbolic address.
656     //
657     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
658     // addend into the instruction stream. On X86, a relocatable address
659     // field always occupies an entire contiguous sequence of byte(s),
660     // so there is no need to merge opcode bits with address
661     // bits. Therefore, it's easy and convenient to store addends in the
662     // instruction-stream bytes that would otherwise contain zeroes. By
663     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
664     // address bits so that bitwise arithmetic is necessary to extract
665     // and insert them. Storing addends in the instruction stream is
666     // possible, but inconvenient and more costly at link time.
667 
668     relocation_info relInfo = relInfos[i];
669     bool isSubtrahend =
670         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
671     int64_t pairedAddend = 0;
672     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
673       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
674       relInfo = relInfos[++i];
675     }
676     assert(i < relInfos.size());
677     if (!validateRelocationInfo(this, sec, relInfo))
678       continue;
679     if (relInfo.r_address & R_SCATTERED)
680       fatal("TODO: Scattered relocations not supported");
681 
682     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
683     assert(!(embeddedAddend && pairedAddend));
684     int64_t totalAddend = pairedAddend + embeddedAddend;
685     Reloc r;
686     r.type = relInfo.r_type;
687     r.pcrel = relInfo.r_pcrel;
688     r.length = relInfo.r_length;
689     r.offset = relInfo.r_address;
690     if (relInfo.r_extern) {
691       r.referent = symbols[relInfo.r_symbolnum];
692       r.addend = isSubtrahend ? 0 : totalAddend;
693     } else {
694       assert(!isSubtrahend);
695       const SectionHeader &referentSecHead =
696           sectionHeaders[relInfo.r_symbolnum - 1];
697       uint64_t referentOffset;
698       if (relInfo.r_pcrel) {
699         // The implicit addend for pcrel section relocations is the pcrel offset
700         // in terms of the addresses in the input file. Here we adjust it so
701         // that it describes the offset from the start of the referent section.
702         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
703         // have pcrel section relocations. We may want to factor this out into
704         // the arch-specific .cpp file.
705         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
706         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
707                          referentSecHead.addr;
708       } else {
709         // The addend for a non-pcrel relocation is its absolute address.
710         referentOffset = totalAddend - referentSecHead.addr;
711       }
712       r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
713                                             &referentOffset);
714       r.addend = referentOffset;
715     }
716 
717     // Find the subsection that this relocation belongs to.
718     // Though not required by the Mach-O format, clang and gcc seem to emit
719     // relocations in order, so let's take advantage of it. However, ld64 emits
720     // unsorted relocations (in `-r` mode), so we have a fallback for that
721     // uncommon case.
722     InputSection *subsec;
723     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
724       ++subsecIt;
725     if (subsecIt == subsections.rend() ||
726         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
727       subsec = findContainingSubsection(section, &r.offset);
728       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
729       // for the other relocations.
730       subsecIt = subsections.rend();
731     } else {
732       subsec = subsecIt->isec;
733       r.offset -= subsecIt->offset;
734     }
735     subsec->relocs.push_back(r);
736 
737     if (isSubtrahend) {
738       relocation_info minuendInfo = relInfos[++i];
739       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
740       // attached to the same address.
741       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
742              relInfo.r_address == minuendInfo.r_address);
743       Reloc p;
744       p.type = minuendInfo.r_type;
745       if (minuendInfo.r_extern) {
746         p.referent = symbols[minuendInfo.r_symbolnum];
747         p.addend = totalAddend;
748       } else {
749         uint64_t referentOffset =
750             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
751         p.referent = findContainingSubsection(
752             *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
753         p.addend = referentOffset;
754       }
755       subsec->relocs.push_back(p);
756     }
757   }
758 }
759 
760 template <class NList>
761 static macho::Symbol *createDefined(const NList &sym, StringRef name,
762                                     InputSection *isec, uint64_t value,
763                                     uint64_t size) {
764   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
765   // N_EXT: Global symbols. These go in the symbol table during the link,
766   //        and also in the export table of the output so that the dynamic
767   //        linker sees them.
768   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
769   //                 symbol table during the link so that duplicates are
770   //                 either reported (for non-weak symbols) or merged
771   //                 (for weak symbols), but they do not go in the export
772   //                 table of the output.
773   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
774   //         object files) may produce them. LLD does not yet support -r.
775   //         These are translation-unit scoped, identical to the `0` case.
776   // 0: Translation-unit scoped. These are not in the symbol table during
777   //    link, and not in the export table of the output either.
778   bool isWeakDefCanBeHidden =
779       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
780 
781   if (sym.n_type & N_EXT) {
782     bool isPrivateExtern = sym.n_type & N_PEXT;
783     // lld's behavior for merging symbols is slightly different from ld64:
784     // ld64 picks the winning symbol based on several criteria (see
785     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
786     // just merges metadata and keeps the contents of the first symbol
787     // with that name (see SymbolTable::addDefined). For:
788     // * inline function F in a TU built with -fvisibility-inlines-hidden
789     // * and inline function F in another TU built without that flag
790     // ld64 will pick the one from the file built without
791     // -fvisibility-inlines-hidden.
792     // lld will instead pick the one listed first on the link command line and
793     // give it visibility as if the function was built without
794     // -fvisibility-inlines-hidden.
795     // If both functions have the same contents, this will have the same
796     // behavior. If not, it won't, but the input had an ODR violation in
797     // that case.
798     //
799     // Similarly, merging a symbol
800     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
801     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
802     // should produce one
803     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
804     // with ld64's semantics, because it means the non-private-extern
805     // definition will continue to take priority if more private extern
806     // definitions are encountered. With lld's semantics there's no observable
807     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
808     // that's privateExtern -- neither makes it into the dynamic symbol table,
809     // unless the autohide symbol is explicitly exported.
810     // But if a symbol is both privateExtern and autohide then it can't
811     // be exported.
812     // So we nullify the autohide flag when privateExtern is present
813     // and promote the symbol to privateExtern when it is not already.
814     if (isWeakDefCanBeHidden && isPrivateExtern)
815       isWeakDefCanBeHidden = false;
816     else if (isWeakDefCanBeHidden)
817       isPrivateExtern = true;
818     return symtab->addDefined(
819         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
820         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
821         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
822         isWeakDefCanBeHidden);
823   }
824   assert(!isWeakDefCanBeHidden &&
825          "weak_def_can_be_hidden on already-hidden symbol?");
826   bool includeInSymtab =
827       !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec);
828   return make<Defined>(
829       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
830       /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
831       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
832       sym.n_desc & N_NO_DEAD_STRIP);
833 }
834 
835 // Absolute symbols are defined symbols that do not have an associated
836 // InputSection. They cannot be weak.
837 template <class NList>
838 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
839                                      StringRef name) {
840   if (sym.n_type & N_EXT) {
841     return symtab->addDefined(
842         name, file, nullptr, sym.n_value, /*size=*/0,
843         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
844         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
845         /*isWeakDefCanBeHidden=*/false);
846   }
847   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
848                        /*isWeakDef=*/false,
849                        /*isExternal=*/false, /*isPrivateExtern=*/false,
850                        /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
851                        /*isReferencedDynamically=*/false,
852                        sym.n_desc & N_NO_DEAD_STRIP);
853 }
854 
855 template <class NList>
856 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
857                                               StringRef name) {
858   uint8_t type = sym.n_type & N_TYPE;
859   switch (type) {
860   case N_UNDF:
861     return sym.n_value == 0
862                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
863                : symtab->addCommon(name, this, sym.n_value,
864                                    1 << GET_COMM_ALIGN(sym.n_desc),
865                                    sym.n_type & N_PEXT);
866   case N_ABS:
867     return createAbsolute(sym, this, name);
868   case N_PBUD:
869   case N_INDR:
870     error("TODO: support symbols of type " + std::to_string(type));
871     return nullptr;
872   case N_SECT:
873     llvm_unreachable(
874         "N_SECT symbols should not be passed to parseNonSectionSymbol");
875   default:
876     llvm_unreachable("invalid symbol type");
877   }
878 }
879 
880 template <class NList> static bool isUndef(const NList &sym) {
881   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
882 }
883 
884 template <class LP>
885 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
886                            ArrayRef<typename LP::nlist> nList,
887                            const char *strtab, bool subsectionsViaSymbols) {
888   using NList = typename LP::nlist;
889 
890   // Groups indices of the symbols by the sections that contain them.
891   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
892   symbols.resize(nList.size());
893   SmallVector<unsigned, 32> undefineds;
894   for (uint32_t i = 0; i < nList.size(); ++i) {
895     const NList &sym = nList[i];
896 
897     // Ignore debug symbols for now.
898     // FIXME: may need special handling.
899     if (sym.n_type & N_STAB)
900       continue;
901 
902     StringRef name = strtab + sym.n_strx;
903     if ((sym.n_type & N_TYPE) == N_SECT) {
904       Subsections &subsections = sections[sym.n_sect - 1]->subsections;
905       // parseSections() may have chosen not to parse this section.
906       if (subsections.empty())
907         continue;
908       symbolsBySection[sym.n_sect - 1].push_back(i);
909     } else if (isUndef(sym)) {
910       undefineds.push_back(i);
911     } else {
912       symbols[i] = parseNonSectionSymbol(sym, name);
913     }
914   }
915 
916   for (size_t i = 0; i < sections.size(); ++i) {
917     Subsections &subsections = sections[i]->subsections;
918     if (subsections.empty())
919       continue;
920     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
921     uint64_t sectionAddr = sectionHeaders[i].addr;
922     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
923 
924     // Some sections have already been split into subsections during
925     // parseSections(), so we simply need to match Symbols to the corresponding
926     // subsection here.
927     if (sections[i]->doneSplitting) {
928       for (size_t j = 0; j < symbolIndices.size(); ++j) {
929         uint32_t symIndex = symbolIndices[j];
930         const NList &sym = nList[symIndex];
931         StringRef name = strtab + sym.n_strx;
932         uint64_t symbolOffset = sym.n_value - sectionAddr;
933         InputSection *isec =
934             findContainingSubsection(*sections[i], &symbolOffset);
935         if (symbolOffset != 0) {
936           error(toString(*sections[i]) + ":  symbol " + name +
937                 " at misaligned offset");
938           continue;
939         }
940         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
941       }
942       continue;
943     }
944     sections[i]->doneSplitting = true;
945 
946     // Calculate symbol sizes and create subsections by splitting the sections
947     // along symbol boundaries.
948     // We populate subsections by repeatedly splitting the last (highest
949     // address) subsection.
950     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
951       return nList[lhs].n_value < nList[rhs].n_value;
952     });
953     for (size_t j = 0; j < symbolIndices.size(); ++j) {
954       uint32_t symIndex = symbolIndices[j];
955       const NList &sym = nList[symIndex];
956       StringRef name = strtab + sym.n_strx;
957       Subsection &subsec = subsections.back();
958       InputSection *isec = subsec.isec;
959 
960       uint64_t subsecAddr = sectionAddr + subsec.offset;
961       size_t symbolOffset = sym.n_value - subsecAddr;
962       uint64_t symbolSize =
963           j + 1 < symbolIndices.size()
964               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
965               : isec->data.size() - symbolOffset;
966       // There are 4 cases where we do not need to create a new subsection:
967       //   1. If the input file does not use subsections-via-symbols.
968       //   2. Multiple symbols at the same address only induce one subsection.
969       //      (The symbolOffset == 0 check covers both this case as well as
970       //      the first loop iteration.)
971       //   3. Alternative entry points do not induce new subsections.
972       //   4. If we have a literal section (e.g. __cstring and __literal4).
973       if (!subsectionsViaSymbols || symbolOffset == 0 ||
974           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
975         symbols[symIndex] =
976             createDefined(sym, name, isec, symbolOffset, symbolSize);
977         continue;
978       }
979       auto *concatIsec = cast<ConcatInputSection>(isec);
980 
981       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
982       nextIsec->wasCoalesced = false;
983       if (isZeroFill(isec->getFlags())) {
984         // Zero-fill sections have NULL data.data() non-zero data.size()
985         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
986         isec->data = {nullptr, symbolOffset};
987       } else {
988         nextIsec->data = isec->data.slice(symbolOffset);
989         isec->data = isec->data.slice(0, symbolOffset);
990       }
991 
992       // By construction, the symbol will be at offset zero in the new
993       // subsection.
994       symbols[symIndex] =
995           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
996       // TODO: ld64 appears to preserve the original alignment as well as each
997       // subsection's offset from the last aligned address. We should consider
998       // emulating that behavior.
999       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
1000       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
1001     }
1002   }
1003 
1004   // Undefined symbols can trigger recursive fetch from Archives due to
1005   // LazySymbols. Process defined symbols first so that the relative order
1006   // between a defined symbol and an undefined symbol does not change the
1007   // symbol resolution behavior. In addition, a set of interconnected symbols
1008   // will all be resolved to the same file, instead of being resolved to
1009   // different files.
1010   for (unsigned i : undefineds) {
1011     const NList &sym = nList[i];
1012     StringRef name = strtab + sym.n_strx;
1013     symbols[i] = parseNonSectionSymbol(sym, name);
1014   }
1015 }
1016 
1017 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
1018                        StringRef sectName)
1019     : InputFile(OpaqueKind, mb) {
1020   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1021   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
1022   sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
1023                                    sectName.take_front(16),
1024                                    /*flags=*/0, /*addr=*/0));
1025   Section &section = *sections.back();
1026   ConcatInputSection *isec = make<ConcatInputSection>(section, data);
1027   isec->live = true;
1028   section.subsections.push_back({0, isec});
1029 }
1030 
1031 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
1032                  bool lazy)
1033     : InputFile(ObjKind, mb, lazy), modTime(modTime) {
1034   this->archiveName = std::string(archiveName);
1035   if (lazy) {
1036     if (target->wordSize == 8)
1037       parseLazy<LP64>();
1038     else
1039       parseLazy<ILP32>();
1040   } else {
1041     if (target->wordSize == 8)
1042       parse<LP64>();
1043     else
1044       parse<ILP32>();
1045   }
1046 }
1047 
1048 template <class LP> void ObjFile::parse() {
1049   using Header = typename LP::mach_header;
1050   using SegmentCommand = typename LP::segment_command;
1051   using SectionHeader = typename LP::section;
1052   using NList = typename LP::nlist;
1053 
1054   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1055   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1056 
1057   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
1058   if (arch != config->arch()) {
1059     auto msg = config->errorForArchMismatch
1060                    ? static_cast<void (*)(const Twine &)>(error)
1061                    : warn;
1062     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
1063         " which is incompatible with target architecture " +
1064         getArchitectureName(config->arch()));
1065     return;
1066   }
1067 
1068   if (!checkCompatibility(this))
1069     return;
1070 
1071   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
1072     StringRef data{reinterpret_cast<const char *>(cmd + 1),
1073                    cmd->cmdsize - sizeof(linker_option_command)};
1074     parseLCLinkerOption(this, cmd->count, data);
1075   }
1076 
1077   ArrayRef<SectionHeader> sectionHeaders;
1078   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1079     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1080     sectionHeaders = ArrayRef<SectionHeader>{
1081         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1082     parseSections(sectionHeaders);
1083   }
1084 
1085   // TODO: Error on missing LC_SYMTAB?
1086   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1087     auto *c = reinterpret_cast<const symtab_command *>(cmd);
1088     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1089                           c->nsyms);
1090     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1091     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1092     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1093   }
1094 
1095   // The relocations may refer to the symbols, so we parse them after we have
1096   // parsed all the symbols.
1097   for (size_t i = 0, n = sections.size(); i < n; ++i)
1098     if (!sections[i]->subsections.empty())
1099       parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1100 
1101   if (!config->ignoreOptimizationHints)
1102     if (auto *cmd = findCommand<linkedit_data_command>(
1103             hdr, LC_LINKER_OPTIMIZATION_HINT))
1104       parseOptimizationHints({buf + cmd->dataoff, cmd->datasize});
1105 
1106   parseDebugInfo();
1107 
1108   Section *ehFrameSection = nullptr;
1109   Section *compactUnwindSection = nullptr;
1110   for (Section *sec : sections) {
1111     Section **s = StringSwitch<Section **>(sec->name)
1112                       .Case(section_names::compactUnwind, &compactUnwindSection)
1113                       .Case(section_names::ehFrame, &ehFrameSection)
1114                       .Default(nullptr);
1115     if (s)
1116       *s = sec;
1117   }
1118   if (compactUnwindSection)
1119     registerCompactUnwind(*compactUnwindSection);
1120   if (ehFrameSection)
1121     registerEhFrames(*ehFrameSection);
1122 }
1123 
1124 template <class LP> void ObjFile::parseLazy() {
1125   using Header = typename LP::mach_header;
1126   using NList = typename LP::nlist;
1127 
1128   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1129   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1130   const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1131   if (!cmd)
1132     return;
1133   auto *c = reinterpret_cast<const symtab_command *>(cmd);
1134   ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1135                         c->nsyms);
1136   const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1137   symbols.resize(nList.size());
1138   for (auto it : llvm::enumerate(nList)) {
1139     const NList &sym = it.value();
1140     if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1141       // TODO: Bound checking
1142       StringRef name = strtab + sym.n_strx;
1143       symbols[it.index()] = symtab->addLazyObject(name, *this);
1144       if (!lazy)
1145         break;
1146     }
1147   }
1148 }
1149 
1150 void ObjFile::parseDebugInfo() {
1151   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1152   if (!dObj)
1153     return;
1154 
1155   // We do not re-use the context from getDwarf() here as that function
1156   // constructs an expensive DWARFCache object.
1157   auto *ctx = make<DWARFContext>(
1158       std::move(dObj), "",
1159       [&](Error err) {
1160         warn(toString(this) + ": " + toString(std::move(err)));
1161       },
1162       [&](Error warning) {
1163         warn(toString(this) + ": " + toString(std::move(warning)));
1164       });
1165 
1166   // TODO: Since object files can contain a lot of DWARF info, we should verify
1167   // that we are parsing just the info we need
1168   const DWARFContext::compile_unit_range &units = ctx->compile_units();
1169   // FIXME: There can be more than one compile unit per object file. See
1170   // PR48637.
1171   auto it = units.begin();
1172   compileUnit = it != units.end() ? it->get() : nullptr;
1173 }
1174 
1175 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1176   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1177   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1178   if (!cmd)
1179     return {};
1180   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1181   return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1182           c->datasize / sizeof(data_in_code_entry)};
1183 }
1184 
1185 // Create pointers from symbols to their associated compact unwind entries.
1186 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1187   for (const Subsection &subsection : compactUnwindSection.subsections) {
1188     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1189     // Hack!! Since each CUE contains a different function address, if ICF
1190     // operated naively and compared the entire contents of each CUE, entries
1191     // with identical unwind info but belonging to different functions would
1192     // never be considered equivalent. To work around this problem, we slice
1193     // away the function address here. (Note that we do not adjust the offsets
1194     // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
1195     // to correctly handle these truncated input sections.
1196     isec->data = isec->data.slice(target->wordSize);
1197     uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1198     // llvm-mc omits CU entries for functions that need DWARF encoding, but
1199     // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1200     // CU entries from the DWARF info during the output phase.
1201     if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding)
1202       continue;
1203 
1204     ConcatInputSection *referentIsec;
1205     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1206       Reloc &r = *it;
1207       // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1208       if (r.offset != 0) {
1209         ++it;
1210         continue;
1211       }
1212       uint64_t add = r.addend;
1213       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1214         // Check whether the symbol defined in this file is the prevailing one.
1215         // Skip if it is e.g. a weak def that didn't prevail.
1216         if (sym->getFile() != this) {
1217           ++it;
1218           continue;
1219         }
1220         add += sym->value;
1221         referentIsec = cast<ConcatInputSection>(sym->isec);
1222       } else {
1223         referentIsec =
1224             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1225       }
1226       // Unwind info lives in __DATA, and finalization of __TEXT will occur
1227       // before finalization of __DATA. Moreover, the finalization of unwind
1228       // info depends on the exact addresses that it references. So it is safe
1229       // for compact unwind to reference addresses in __TEXT, but not addresses
1230       // in any other segment.
1231       if (referentIsec->getSegName() != segment_names::text)
1232         error(isec->getLocation(r.offset) + " references section " +
1233               referentIsec->getName() + " which is not in segment __TEXT");
1234       // The functionAddress relocations are typically section relocations.
1235       // However, unwind info operates on a per-symbol basis, so we search for
1236       // the function symbol here.
1237       Defined *d = findSymbolAtOffset(referentIsec, add);
1238       if (!d) {
1239         ++it;
1240         continue;
1241       }
1242       d->unwindEntry = isec;
1243       // Now that the symbol points to the unwind entry, we can remove the reloc
1244       // that points from the unwind entry back to the symbol.
1245       //
1246       // First, the symbol keeps the unwind entry alive (and not vice versa), so
1247       // this keeps dead-stripping simple.
1248       //
1249       // Moreover, it reduces the work that ICF needs to do to figure out if
1250       // functions with unwind info are foldable.
1251       //
1252       // However, this does make it possible for ICF to fold CUEs that point to
1253       // distinct functions (if the CUEs are otherwise identical).
1254       // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1255       // each one can hold a distinct functionAddress value.
1256       //
1257       // Given that clang emits relocations in reverse order of address, this
1258       // relocation should be at the end of the vector for most of our input
1259       // object files, so this erase() is typically an O(1) operation.
1260       it = isec->relocs.erase(it);
1261     }
1262   }
1263 }
1264 
1265 struct CIE {
1266   macho::Symbol *personalitySymbol = nullptr;
1267   bool fdesHaveLsda = false;
1268   bool fdesHaveAug = false;
1269 };
1270 
1271 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1272                     size_t off) {
1273   // Handling the full generality of possible DWARF encodings would be a major
1274   // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1275   // DWARF and handle just that.
1276   constexpr uint8_t expectedPersonalityEnc =
1277       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1278   constexpr uint8_t expectedPointerEnc =
1279       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr;
1280 
1281   CIE cie;
1282   uint8_t version = reader.readByte(&off);
1283   if (version != 1 && version != 3)
1284     fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1285   StringRef aug = reader.readString(&off);
1286   reader.skipLeb128(&off); // skip code alignment
1287   reader.skipLeb128(&off); // skip data alignment
1288   reader.skipLeb128(&off); // skip return address register
1289   reader.skipLeb128(&off); // skip aug data length
1290   uint64_t personalityAddrOff = 0;
1291   for (char c : aug) {
1292     switch (c) {
1293     case 'z':
1294       cie.fdesHaveAug = true;
1295       break;
1296     case 'P': {
1297       uint8_t personalityEnc = reader.readByte(&off);
1298       if (personalityEnc != expectedPersonalityEnc)
1299         reader.failOn(off, "unexpected personality encoding 0x" +
1300                                Twine::utohexstr(personalityEnc));
1301       personalityAddrOff = off;
1302       off += 4;
1303       break;
1304     }
1305     case 'L': {
1306       cie.fdesHaveLsda = true;
1307       uint8_t lsdaEnc = reader.readByte(&off);
1308       if (lsdaEnc != expectedPointerEnc)
1309         reader.failOn(off, "unexpected LSDA encoding 0x" +
1310                                Twine::utohexstr(lsdaEnc));
1311       break;
1312     }
1313     case 'R': {
1314       uint8_t pointerEnc = reader.readByte(&off);
1315       if (pointerEnc != expectedPointerEnc)
1316         reader.failOn(off, "unexpected pointer encoding 0x" +
1317                                Twine::utohexstr(pointerEnc));
1318       break;
1319     }
1320     default:
1321       break;
1322     }
1323   }
1324   if (personalityAddrOff != 0) {
1325     auto personalityRelocIt =
1326         llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1327           return r.offset == personalityAddrOff;
1328         });
1329     if (personalityRelocIt == isec->relocs.end())
1330       reader.failOn(off, "Failed to locate relocation for personality symbol");
1331     cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1332   }
1333   return cie;
1334 }
1335 
1336 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1337 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1338 // This function recovers the target address from the subtractors, essentially
1339 // performing the inverse operation of EhRelocator.
1340 //
1341 // Concretely, we expect our relocations to write the value of `PC -
1342 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1343 // points to a symbol plus an addend.
1344 //
1345 // It is important that the minuend relocation point to a symbol within the
1346 // same section as the fixup value, since sections may get moved around.
1347 //
1348 // For example, for arm64, llvm-mc emits relocations for the target function
1349 // address like so:
1350 //
1351 //   ltmp:
1352 //     <CIE start>
1353 //     ...
1354 //     <CIE end>
1355 //     ... multiple FDEs ...
1356 //     <FDE start>
1357 //     <target function address - (ltmp + pcrel offset)>
1358 //     ...
1359 //
1360 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1361 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1362 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1363 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1364 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1365 //
1366 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1367 // to `PC`.
1368 template <bool Invert = false>
1369 Defined *
1370 targetSymFromCanonicalSubtractor(const InputSection *isec,
1371                                  std::vector<macho::Reloc>::iterator relocIt) {
1372   macho::Reloc &subtrahend = *relocIt;
1373   macho::Reloc &minuend = *std::next(relocIt);
1374   assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1375   assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1376   // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1377   // addend.
1378   auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1379   Defined *target =
1380       cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1381   if (!pcSym) {
1382     auto *targetIsec =
1383         cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1384     target = findSymbolAtOffset(targetIsec, minuend.addend);
1385   }
1386   if (Invert)
1387     std::swap(pcSym, target);
1388   if (pcSym->isec == isec) {
1389     if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1390       fatal("invalid FDE relocation in __eh_frame");
1391   } else {
1392     // Ensure the pcReloc points to a symbol within the current EH frame.
1393     // HACK: we should really verify that the original relocation's semantics
1394     // are preserved. In particular, we should have
1395     // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1396     // have an easy way to access the offsets from this point in the code; some
1397     // refactoring is needed for that.
1398     macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1399     pcReloc.referent = isec->symbols[0];
1400     assert(isec->symbols[0]->value == 0);
1401     minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1402   }
1403   return target;
1404 }
1405 
1406 Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1407                              uint64_t addr) {
1408   Section *sec = findContainingSection(sections, &addr);
1409   auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1410   return findSymbolAtOffset(isec, addr);
1411 }
1412 
1413 // For symbols that don't have compact unwind info, associate them with the more
1414 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1415 //
1416 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1417 // description of its format.
1418 //
1419 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1420 // are relocations which are implicitly encoded as offsets in the section data.
1421 // We convert them into explicit Reloc structs so that the EH frames can be
1422 // handled just like a regular ConcatInputSection later in our output phase.
1423 //
1424 // We also need to handle the case where our input object file has explicit
1425 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1426 // look for the "abs-ified" relocation if an explicit relocation is absent.
1427 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1428   DenseMap<const InputSection *, CIE> cieMap;
1429   for (const Subsection &subsec : ehFrameSection.subsections) {
1430     auto *isec = cast<ConcatInputSection>(subsec.isec);
1431     uint64_t isecOff = subsec.offset;
1432 
1433     // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1434     // that all EH frames have an associated symbol so that we can generate
1435     // subtractor relocs that reference them.
1436     if (isec->symbols.size() == 0)
1437       isec->symbols.push_back(make<Defined>(
1438           "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0,
1439           /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
1440           /*includeInSymtab=*/false, /*isThumb=*/false,
1441           /*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
1442     else if (isec->symbols[0]->value != 0)
1443       fatal("found symbol at unexpected offset in __eh_frame");
1444 
1445     EhReader reader(this, isec->data, subsec.offset, target->wordSize);
1446     size_t dataOff = 0; // Offset from the start of the EH frame.
1447     reader.skipValidLength(&dataOff); // readLength() already validated this.
1448     // cieOffOff is the offset from the start of the EH frame to the cieOff
1449     // value, which is itself an offset from the current PC to a CIE.
1450     const size_t cieOffOff = dataOff;
1451 
1452     EhRelocator ehRelocator(isec);
1453     auto cieOffRelocIt = llvm::find_if(
1454         isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1455     InputSection *cieIsec = nullptr;
1456     if (cieOffRelocIt != isec->relocs.end()) {
1457       // We already have an explicit relocation for the CIE offset.
1458       cieIsec =
1459           targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1460               ->isec;
1461       dataOff += sizeof(uint32_t);
1462     } else {
1463       // If we haven't found a relocation, then the CIE offset is most likely
1464       // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1465       // and generate a Reloc struct.
1466       uint32_t cieMinuend = reader.readU32(&dataOff);
1467       if (cieMinuend == 0)
1468         cieIsec = isec;
1469       else {
1470         uint32_t cieOff = isecOff + dataOff - cieMinuend;
1471         cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1472         if (cieIsec == nullptr)
1473           fatal("failed to find CIE");
1474       }
1475       if (cieIsec != isec)
1476         ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1477                                       /*length=*/2);
1478     }
1479     if (cieIsec == isec) {
1480       cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1481       continue;
1482     }
1483 
1484     // Offset of the function address within the EH frame.
1485     const size_t funcAddrOff = dataOff;
1486     uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr +
1487                         isecOff + funcAddrOff;
1488     uint32_t funcLength = reader.readPointer(&dataOff);
1489     size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1490     assert(cieMap.count(cieIsec));
1491     const CIE &cie = cieMap[cieIsec];
1492     Optional<uint64_t> lsdaAddrOpt;
1493     if (cie.fdesHaveAug) {
1494       reader.skipLeb128(&dataOff);
1495       lsdaAddrOff = dataOff;
1496       if (cie.fdesHaveLsda) {
1497         uint64_t lsdaOff = reader.readPointer(&dataOff);
1498         if (lsdaOff != 0) // FIXME possible to test this?
1499           lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1500       }
1501     }
1502 
1503     auto funcAddrRelocIt = isec->relocs.end();
1504     auto lsdaAddrRelocIt = isec->relocs.end();
1505     for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1506       if (it->offset == funcAddrOff)
1507         funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1508       else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1509         lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1510     }
1511 
1512     Defined *funcSym;
1513     if (funcAddrRelocIt != isec->relocs.end()) {
1514       funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1515     } else {
1516       funcSym = findSymbolAtAddress(sections, funcAddr);
1517       ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1518     }
1519     // The symbol has been coalesced, or already has a compact unwind entry.
1520     if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1521       // We must prune unused FDEs for correctness, so we cannot rely on
1522       // -dead_strip being enabled.
1523       isec->live = false;
1524       continue;
1525     }
1526 
1527     InputSection *lsdaIsec = nullptr;
1528     if (lsdaAddrRelocIt != isec->relocs.end()) {
1529       lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1530     } else if (lsdaAddrOpt) {
1531       uint64_t lsdaAddr = *lsdaAddrOpt;
1532       Section *sec = findContainingSection(sections, &lsdaAddr);
1533       lsdaIsec =
1534           cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1535       ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1536     }
1537 
1538     fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1539     funcSym->unwindEntry = isec;
1540     ehRelocator.commit();
1541   }
1542 }
1543 
1544 std::string ObjFile::sourceFile() const {
1545   SmallString<261> dir(compileUnit->getCompilationDir());
1546   StringRef sep = sys::path::get_separator();
1547   // We don't use `path::append` here because we want an empty `dir` to result
1548   // in an absolute path. `append` would give us a relative path for that case.
1549   if (!dir.endswith(sep))
1550     dir += sep;
1551   return (dir + compileUnit->getUnitDIE().getShortName()).str();
1552 }
1553 
1554 lld::DWARFCache *ObjFile::getDwarf() {
1555   llvm::call_once(initDwarf, [this]() {
1556     auto dwObj = DwarfObject::create(this);
1557     if (!dwObj)
1558       return;
1559     dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1560         std::move(dwObj), "",
1561         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1562         [&](Error warning) {
1563           warn(getName() + ": " + toString(std::move(warning)));
1564         }));
1565   });
1566 
1567   return dwarfCache.get();
1568 }
1569 // The path can point to either a dylib or a .tbd file.
1570 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1571   Optional<MemoryBufferRef> mbref = readFile(path);
1572   if (!mbref) {
1573     error("could not read dylib file at " + path);
1574     return nullptr;
1575   }
1576   return loadDylib(*mbref, umbrella);
1577 }
1578 
1579 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1580 // the first document storing child pointers to the rest of them. When we are
1581 // processing a given TBD file, we store that top-level document in
1582 // currentTopLevelTapi. When processing re-exports, we search its children for
1583 // potentially matching documents in the same TBD file. Note that the children
1584 // themselves don't point to further documents, i.e. this is a two-level tree.
1585 //
1586 // Re-exports can either refer to on-disk files, or to documents within .tbd
1587 // files.
1588 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1589                             const InterfaceFile *currentTopLevelTapi) {
1590   // Search order:
1591   // 1. Install name basename in -F / -L directories.
1592   {
1593     StringRef stem = path::stem(path);
1594     SmallString<128> frameworkName;
1595     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1596     bool isFramework = path.endswith(frameworkName);
1597     if (isFramework) {
1598       for (StringRef dir : config->frameworkSearchPaths) {
1599         SmallString<128> candidate = dir;
1600         path::append(candidate, frameworkName);
1601         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1602           return loadDylib(*dylibPath, umbrella);
1603       }
1604     } else if (Optional<StringRef> dylibPath = findPathCombination(
1605                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1606       return loadDylib(*dylibPath, umbrella);
1607   }
1608 
1609   // 2. As absolute path.
1610   if (path::is_absolute(path, path::Style::posix))
1611     for (StringRef root : config->systemLibraryRoots)
1612       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1613         return loadDylib(*dylibPath, umbrella);
1614 
1615   // 3. As relative path.
1616 
1617   // TODO: Handle -dylib_file
1618 
1619   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1620   SmallString<128> newPath;
1621   if (config->outputType == MH_EXECUTE &&
1622       path.consume_front("@executable_path/")) {
1623     // ld64 allows overriding this with the undocumented flag -executable_path.
1624     // lld doesn't currently implement that flag.
1625     // FIXME: Consider using finalOutput instead of outputFile.
1626     path::append(newPath, path::parent_path(config->outputFile), path);
1627     path = newPath;
1628   } else if (path.consume_front("@loader_path/")) {
1629     fs::real_path(umbrella->getName(), newPath);
1630     path::remove_filename(newPath);
1631     path::append(newPath, path);
1632     path = newPath;
1633   } else if (path.startswith("@rpath/")) {
1634     for (StringRef rpath : umbrella->rpaths) {
1635       newPath.clear();
1636       if (rpath.consume_front("@loader_path/")) {
1637         fs::real_path(umbrella->getName(), newPath);
1638         path::remove_filename(newPath);
1639       }
1640       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1641       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1642         return loadDylib(*dylibPath, umbrella);
1643     }
1644   }
1645 
1646   // FIXME: Should this be further up?
1647   if (currentTopLevelTapi) {
1648     for (InterfaceFile &child :
1649          make_pointee_range(currentTopLevelTapi->documents())) {
1650       assert(child.documents().empty());
1651       if (path == child.getInstallName()) {
1652         auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1653                                     /*explicitlyLinked=*/false);
1654         file->parseReexports(child);
1655         return file;
1656       }
1657     }
1658   }
1659 
1660   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1661     return loadDylib(*dylibPath, umbrella);
1662 
1663   return nullptr;
1664 }
1665 
1666 // If a re-exported dylib is public (lives in /usr/lib or
1667 // /System/Library/Frameworks), then it is considered implicitly linked: we
1668 // should bind to its symbols directly instead of via the re-exporting umbrella
1669 // library.
1670 static bool isImplicitlyLinked(StringRef path) {
1671   if (!config->implicitDylibs)
1672     return false;
1673 
1674   if (path::parent_path(path) == "/usr/lib")
1675     return true;
1676 
1677   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1678   if (path.consume_front("/System/Library/Frameworks/")) {
1679     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1680     return path::filename(path) == frameworkName;
1681   }
1682 
1683   return false;
1684 }
1685 
1686 static void loadReexport(StringRef path, DylibFile *umbrella,
1687                          const InterfaceFile *currentTopLevelTapi) {
1688   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1689   if (!reexport)
1690     error("unable to locate re-export with install name " + path);
1691 }
1692 
1693 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1694                      bool isBundleLoader, bool explicitlyLinked)
1695     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1696       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1697   assert(!isBundleLoader || !umbrella);
1698   if (umbrella == nullptr)
1699     umbrella = this;
1700   this->umbrella = umbrella;
1701 
1702   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1703 
1704   // Initialize installName.
1705   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1706     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1707     currentVersion = read32le(&c->dylib.current_version);
1708     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1709     installName =
1710         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1711   } else if (!isBundleLoader) {
1712     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1713     // so it's OK.
1714     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1715     return;
1716   }
1717 
1718   if (config->printEachFile)
1719     message(toString(this));
1720   inputFiles.insert(this);
1721 
1722   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1723 
1724   if (!checkCompatibility(this))
1725     return;
1726 
1727   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1728 
1729   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1730     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1731     rpaths.push_back(rpath);
1732   }
1733 
1734   // Initialize symbols.
1735   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1736 
1737   const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1738   const auto *exportsTrie =
1739       findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1740   if (dyldInfo && exportsTrie) {
1741     // It's unclear what should happen in this case. Maybe we should only error
1742     // out if the two load commands refer to different data?
1743     error("dylib " + toString(this) +
1744           " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1745     return;
1746   } else if (dyldInfo) {
1747     parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1748   } else if (exportsTrie) {
1749     parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1750   } else {
1751     error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1752           toString(this));
1753     return;
1754   }
1755 }
1756 
1757 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1758   struct TrieEntry {
1759     StringRef name;
1760     uint64_t flags;
1761   };
1762 
1763   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1764   std::vector<TrieEntry> entries;
1765   // Find all the $ld$* symbols to process first.
1766   parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1767     StringRef savedName = saver().save(name);
1768     if (handleLDSymbol(savedName))
1769       return;
1770     entries.push_back({savedName, flags});
1771   });
1772 
1773   // Process the "normal" symbols.
1774   for (TrieEntry &entry : entries) {
1775     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1776       continue;
1777 
1778     bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1779     bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1780 
1781     symbols.push_back(
1782         symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1783   }
1784 }
1785 
1786 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1787   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1788   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1789                      target->headerSize;
1790   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1791     auto *cmd = reinterpret_cast<const load_command *>(p);
1792     p += cmd->cmdsize;
1793 
1794     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1795         cmd->cmd == LC_REEXPORT_DYLIB) {
1796       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1797       StringRef reexportPath =
1798           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1799       loadReexport(reexportPath, exportingFile, nullptr);
1800     }
1801 
1802     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1803     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1804     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1805     if (config->namespaceKind == NamespaceKind::flat &&
1806         cmd->cmd == LC_LOAD_DYLIB) {
1807       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1808       StringRef dylibPath =
1809           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1810       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1811       if (!dylib)
1812         error(Twine("unable to locate library '") + dylibPath +
1813               "' loaded from '" + toString(this) + "' for -flat_namespace");
1814     }
1815   }
1816 }
1817 
1818 // Some versions of Xcode ship with .tbd files that don't have the right
1819 // platform settings.
1820 constexpr std::array<StringRef, 3> skipPlatformChecks{
1821     "/usr/lib/system/libsystem_kernel.dylib",
1822     "/usr/lib/system/libsystem_platform.dylib",
1823     "/usr/lib/system/libsystem_pthread.dylib"};
1824 
1825 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1826                                          bool explicitlyLinked) {
1827   // Catalyst outputs can link against implicitly linked macOS-only libraries.
1828   if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1829     return false;
1830   return is_contained(interface.targets(),
1831                       MachO::Target(config->arch(), PLATFORM_MACOS));
1832 }
1833 
1834 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1835                      bool isBundleLoader, bool explicitlyLinked)
1836     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1837       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1838   // FIXME: Add test for the missing TBD code path.
1839 
1840   if (umbrella == nullptr)
1841     umbrella = this;
1842   this->umbrella = umbrella;
1843 
1844   installName = saver().save(interface.getInstallName());
1845   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1846   currentVersion = interface.getCurrentVersion().rawValue();
1847 
1848   if (config->printEachFile)
1849     message(toString(this));
1850   inputFiles.insert(this);
1851 
1852   if (!is_contained(skipPlatformChecks, installName) &&
1853       !is_contained(interface.targets(), config->platformInfo.target) &&
1854       !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1855     error(toString(this) + " is incompatible with " +
1856           std::string(config->platformInfo.target));
1857     return;
1858   }
1859 
1860   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1861 
1862   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1863   auto addSymbol = [&](const Twine &name) -> void {
1864     StringRef savedName = saver().save(name);
1865     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1866       return;
1867 
1868     symbols.push_back(symtab->addDylib(savedName, exportingFile,
1869                                        /*isWeakDef=*/false,
1870                                        /*isTlv=*/false));
1871   };
1872 
1873   std::vector<const llvm::MachO::Symbol *> normalSymbols;
1874   normalSymbols.reserve(interface.symbolsCount());
1875   for (const auto *symbol : interface.symbols()) {
1876     if (!symbol->getArchitectures().has(config->arch()))
1877       continue;
1878     if (handleLDSymbol(symbol->getName()))
1879       continue;
1880 
1881     switch (symbol->getKind()) {
1882     case SymbolKind::GlobalSymbol:               // Fallthrough
1883     case SymbolKind::ObjectiveCClass:            // Fallthrough
1884     case SymbolKind::ObjectiveCClassEHType:      // Fallthrough
1885     case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1886       normalSymbols.push_back(symbol);
1887     }
1888   }
1889 
1890   // TODO(compnerd) filter out symbols based on the target platform
1891   // TODO: handle weak defs, thread locals
1892   for (const auto *symbol : normalSymbols) {
1893     switch (symbol->getKind()) {
1894     case SymbolKind::GlobalSymbol:
1895       addSymbol(symbol->getName());
1896       break;
1897     case SymbolKind::ObjectiveCClass:
1898       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1899       // want to emulate that.
1900       addSymbol(objc::klass + symbol->getName());
1901       addSymbol(objc::metaclass + symbol->getName());
1902       break;
1903     case SymbolKind::ObjectiveCClassEHType:
1904       addSymbol(objc::ehtype + symbol->getName());
1905       break;
1906     case SymbolKind::ObjectiveCInstanceVariable:
1907       addSymbol(objc::ivar + symbol->getName());
1908       break;
1909     }
1910   }
1911 }
1912 
1913 void DylibFile::parseReexports(const InterfaceFile &interface) {
1914   const InterfaceFile *topLevel =
1915       interface.getParent() == nullptr ? &interface : interface.getParent();
1916   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1917     InterfaceFile::const_target_range targets = intfRef.targets();
1918     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1919         is_contained(targets, config->platformInfo.target))
1920       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1921   }
1922 }
1923 
1924 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1925 // name, compatibility version or hide/add symbols) for specific target
1926 // versions.
1927 bool DylibFile::handleLDSymbol(StringRef originalName) {
1928   if (!originalName.startswith("$ld$"))
1929     return false;
1930 
1931   StringRef action;
1932   StringRef name;
1933   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1934   if (action == "previous")
1935     handleLDPreviousSymbol(name, originalName);
1936   else if (action == "install_name")
1937     handleLDInstallNameSymbol(name, originalName);
1938   else if (action == "hide")
1939     handleLDHideSymbol(name, originalName);
1940   return true;
1941 }
1942 
1943 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1944   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1945   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1946   StringRef installName;
1947   StringRef compatVersion;
1948   StringRef platformStr;
1949   StringRef startVersion;
1950   StringRef endVersion;
1951   StringRef symbolName;
1952   StringRef rest;
1953 
1954   std::tie(installName, name) = name.split('$');
1955   std::tie(compatVersion, name) = name.split('$');
1956   std::tie(platformStr, name) = name.split('$');
1957   std::tie(startVersion, name) = name.split('$');
1958   std::tie(endVersion, name) = name.split('$');
1959   std::tie(symbolName, rest) = name.split('$');
1960   // TODO: ld64 contains some logic for non-empty symbolName as well.
1961   if (!symbolName.empty())
1962     return;
1963   unsigned platform;
1964   if (platformStr.getAsInteger(10, platform) ||
1965       platform != static_cast<unsigned>(config->platform()))
1966     return;
1967 
1968   VersionTuple start;
1969   if (start.tryParse(startVersion)) {
1970     warn("failed to parse start version, symbol '" + originalName +
1971          "' ignored");
1972     return;
1973   }
1974   VersionTuple end;
1975   if (end.tryParse(endVersion)) {
1976     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1977     return;
1978   }
1979   if (config->platformInfo.minimum < start ||
1980       config->platformInfo.minimum >= end)
1981     return;
1982 
1983   this->installName = saver().save(installName);
1984 
1985   if (!compatVersion.empty()) {
1986     VersionTuple cVersion;
1987     if (cVersion.tryParse(compatVersion)) {
1988       warn("failed to parse compatibility version, symbol '" + originalName +
1989            "' ignored");
1990       return;
1991     }
1992     compatibilityVersion = encodeVersion(cVersion);
1993   }
1994 }
1995 
1996 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1997                                           StringRef originalName) {
1998   // originalName: $ld$ install_name $ os<version> $ install_name
1999   StringRef condition, installName;
2000   std::tie(condition, installName) = name.split('$');
2001   VersionTuple version;
2002   if (!condition.consume_front("os") || version.tryParse(condition))
2003     warn("failed to parse os version, symbol '" + originalName + "' ignored");
2004   else if (version == config->platformInfo.minimum)
2005     this->installName = saver().save(installName);
2006 }
2007 
2008 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2009   StringRef symbolName;
2010   bool shouldHide = true;
2011   if (name.startswith("os")) {
2012     // If it's hidden based on versions.
2013     name = name.drop_front(2);
2014     StringRef minVersion;
2015     std::tie(minVersion, symbolName) = name.split('$');
2016     VersionTuple versionTup;
2017     if (versionTup.tryParse(minVersion)) {
2018       warn("Failed to parse hidden version, symbol `" + originalName +
2019            "` ignored.");
2020       return;
2021     }
2022     shouldHide = versionTup == config->platformInfo.minimum;
2023   } else {
2024     symbolName = name;
2025   }
2026 
2027   if (shouldHide)
2028     exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2029 }
2030 
2031 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2032   if (config->applicationExtension && !dylibIsAppExtensionSafe)
2033     warn("using '-application_extension' with unsafe dylib: " + toString(this));
2034 }
2035 
2036 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
2037     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
2038 
2039 void ArchiveFile::addLazySymbols() {
2040   for (const object::Archive::Symbol &sym : file->symbols())
2041     symtab->addLazyArchive(sym.getName(), this, sym);
2042 }
2043 
2044 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
2045                                                uint32_t modTime,
2046                                                StringRef archiveName,
2047                                                uint64_t offsetInArchive) {
2048   if (config->zeroModTime)
2049     modTime = 0;
2050 
2051   switch (identify_magic(mb.getBuffer())) {
2052   case file_magic::macho_object:
2053     return make<ObjFile>(mb, modTime, archiveName);
2054   case file_magic::bitcode:
2055     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
2056   default:
2057     return createStringError(inconvertibleErrorCode(),
2058                              mb.getBufferIdentifier() +
2059                                  " has unhandled file type");
2060   }
2061 }
2062 
2063 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2064   if (!seen.insert(c.getChildOffset()).second)
2065     return Error::success();
2066 
2067   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2068   if (!mb)
2069     return mb.takeError();
2070 
2071   // Thin archives refer to .o files, so --reproduce needs the .o files too.
2072   if (tar && c.getParent()->isThin())
2073     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2074 
2075   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2076   if (!modTime)
2077     return modTime.takeError();
2078 
2079   Expected<InputFile *> file =
2080       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
2081 
2082   if (!file)
2083     return file.takeError();
2084 
2085   inputFiles.insert(*file);
2086   printArchiveMemberLoad(reason, *file);
2087   return Error::success();
2088 }
2089 
2090 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2091   object::Archive::Child c =
2092       CHECK(sym.getMember(), toString(this) +
2093                                  ": could not get the member defining symbol " +
2094                                  toMachOString(sym));
2095 
2096   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2097   // and become invalid after that call. Copy it to the stack so we can refer
2098   // to it later.
2099   const object::Archive::Symbol symCopy = sym;
2100 
2101   // ld64 doesn't demangle sym here even with -demangle.
2102   // Match that: intentionally don't call toMachOString().
2103   if (Error e = fetch(c, symCopy.getName()))
2104     error(toString(this) + ": could not get the member defining symbol " +
2105           toMachOString(symCopy) + ": " + toString(std::move(e)));
2106 }
2107 
2108 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2109                                           BitcodeFile &file) {
2110   StringRef name = saver().save(objSym.getName());
2111 
2112   if (objSym.isUndefined())
2113     return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2114 
2115   // TODO: Write a test demonstrating why computing isPrivateExtern before
2116   // LTO compilation is important.
2117   bool isPrivateExtern = false;
2118   switch (objSym.getVisibility()) {
2119   case GlobalValue::HiddenVisibility:
2120     isPrivateExtern = true;
2121     break;
2122   case GlobalValue::ProtectedVisibility:
2123     error(name + " has protected visibility, which is not supported by Mach-O");
2124     break;
2125   case GlobalValue::DefaultVisibility:
2126     break;
2127   }
2128   isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable();
2129 
2130   if (objSym.isCommon())
2131     return symtab->addCommon(name, &file, objSym.getCommonSize(),
2132                              objSym.getCommonAlignment(), isPrivateExtern);
2133 
2134   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2135                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
2136                             /*isThumb=*/false,
2137                             /*isReferencedDynamically=*/false,
2138                             /*noDeadStrip=*/false,
2139                             /*isWeakDefCanBeHidden=*/false);
2140 }
2141 
2142 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2143                          uint64_t offsetInArchive, bool lazy)
2144     : InputFile(BitcodeKind, mb, lazy) {
2145   this->archiveName = std::string(archiveName);
2146   std::string path = mb.getBufferIdentifier().str();
2147   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2148   // name. If two members with the same name are provided, this causes a
2149   // collision and ThinLTO can't proceed.
2150   // So, we append the archive name to disambiguate two members with the same
2151   // name from multiple different archives, and offset within the archive to
2152   // disambiguate two members of the same name from a single archive.
2153   MemoryBufferRef mbref(mb.getBuffer(),
2154                         saver().save(archiveName.empty()
2155                                          ? path
2156                                          : archiveName +
2157                                                sys::path::filename(path) +
2158                                                utostr(offsetInArchive)));
2159 
2160   obj = check(lto::InputFile::create(mbref));
2161   if (lazy)
2162     parseLazy();
2163   else
2164     parse();
2165 }
2166 
2167 void BitcodeFile::parse() {
2168   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2169   // "winning" symbol will then be marked as Prevailing at LTO compilation
2170   // time.
2171   symbols.clear();
2172   for (const lto::InputFile::Symbol &objSym : obj->symbols())
2173     symbols.push_back(createBitcodeSymbol(objSym, *this));
2174 }
2175 
2176 void BitcodeFile::parseLazy() {
2177   symbols.resize(obj->symbols().size());
2178   for (auto it : llvm::enumerate(obj->symbols())) {
2179     const lto::InputFile::Symbol &objSym = it.value();
2180     if (!objSym.isUndefined()) {
2181       symbols[it.index()] =
2182           symtab->addLazyObject(saver().save(objSym.getName()), *this);
2183       if (!lazy)
2184         break;
2185     }
2186   }
2187 }
2188 
2189 void macho::extract(InputFile &file, StringRef reason) {
2190   assert(file.lazy);
2191   file.lazy = false;
2192   printArchiveMemberLoad(reason, &file);
2193   if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2194     bitcode->parse();
2195   } else {
2196     auto &f = cast<ObjFile>(file);
2197     if (target->wordSize == 8)
2198       f.parse<LP64>();
2199     else
2200       f.parse<ILP32>();
2201   }
2202 }
2203 
2204 template void ObjFile::parse<LP64>();
2205