1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static bool checkCompatibility(const InputFile *input) {
145   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
146   if (platformInfos.empty())
147     return true;
148 
149   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
150     return removeSimulator(info.target.Platform) ==
151            removeSimulator(config->platform());
152   });
153   if (it == platformInfos.end()) {
154     std::string platformNames;
155     raw_string_ostream os(platformNames);
156     interleave(
157         platformInfos, os,
158         [&](const PlatformInfo &info) {
159           os << getPlatformName(info.target.Platform);
160         },
161         "/");
162     error(toString(input) + " has platform " + platformNames +
163           Twine(", which is different from target platform ") +
164           getPlatformName(config->platform()));
165     return false;
166   }
167 
168   if (it->minimum > config->platformInfo.minimum)
169     warn(toString(input) + " has version " + it->minimum.getAsString() +
170          ", which is newer than target minimum of " +
171          config->platformInfo.minimum.getAsString());
172 
173   return true;
174 }
175 
176 // This cache mostly exists to store system libraries (and .tbds) as they're
177 // loaded, rather than the input archives, which are already cached at a higher
178 // level, and other files like the filelist that are only read once.
179 // Theoretically this caching could be more efficient by hoisting it, but that
180 // would require altering many callers to track the state.
181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
182 // Open a given file path and return it as a memory-mapped file.
183 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
184   CachedHashStringRef key(path);
185   auto entry = cachedReads.find(key);
186   if (entry != cachedReads.end())
187     return entry->second;
188 
189   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
190   if (std::error_code ec = mbOrErr.getError()) {
191     error("cannot open " + path + ": " + ec.message());
192     return None;
193   }
194 
195   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
196   MemoryBufferRef mbref = mb->getMemBufferRef();
197   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
198 
199   // If this is a regular non-fat file, return it.
200   const char *buf = mbref.getBufferStart();
201   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
202   if (mbref.getBufferSize() < sizeof(uint32_t) ||
203       read32be(&hdr->magic) != FAT_MAGIC) {
204     if (tar)
205       tar->append(relativeToRoot(path), mbref.getBuffer());
206     return cachedReads[key] = mbref;
207   }
208 
209   // Object files and archive files may be fat files, which contain multiple
210   // real files for different CPU ISAs. Here, we search for a file that matches
211   // with the current link target and returns it as a MemoryBufferRef.
212   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
213 
214   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
215     if (reinterpret_cast<const char *>(arch + i + 1) >
216         buf + mbref.getBufferSize()) {
217       error(path + ": fat_arch struct extends beyond end of file");
218       return None;
219     }
220 
221     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
222         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
223       continue;
224 
225     uint32_t offset = read32be(&arch[i].offset);
226     uint32_t size = read32be(&arch[i].size);
227     if (offset + size > mbref.getBufferSize())
228       error(path + ": slice extends beyond end of file");
229     if (tar)
230       tar->append(relativeToRoot(path), mbref.getBuffer());
231     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
232                                               path.copy(bAlloc));
233   }
234 
235   error("unable to find matching architecture in " + path);
236   return None;
237 }
238 
239 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
240     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
241 
242 // Some sections comprise of fixed-size records, so instead of splitting them at
243 // symbol boundaries, we split them based on size. Records are distinct from
244 // literals in that they may contain references to other sections, instead of
245 // being leaf nodes in the InputSection graph.
246 //
247 // Note that "record" is a term I came up with. In contrast, "literal" is a term
248 // used by the Mach-O format.
249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
250   if (name == section_names::cfString) {
251     if (config->icfLevel != ICFLevel::none && segname == segment_names::data)
252       return target->wordSize == 8 ? 32 : 16;
253   } else if (name == section_names::compactUnwind) {
254     if (segname == segment_names::ld)
255       return target->wordSize == 8 ? 32 : 20;
256   }
257   return {};
258 }
259 
260 template <class Section>
261 void ObjFile::parseSections(ArrayRef<Section> sections) {
262   subsections.reserve(sections.size());
263   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
264 
265   for (const Section &sec : sections) {
266     StringRef name =
267         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
268     StringRef segname =
269         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
270     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
271                                                     : buf + sec.offset,
272                               static_cast<size_t>(sec.size)};
273     if (sec.align >= 32) {
274       error("alignment " + std::to_string(sec.align) + " of section " + name +
275             " is too large");
276       subsections.push_back({});
277       continue;
278     }
279     uint32_t align = 1 << sec.align;
280     uint32_t flags = sec.flags;
281 
282     auto splitRecords = [&](int recordSize) -> void {
283       subsections.push_back({});
284       if (data.empty())
285         return;
286 
287       SubsectionMap &subsecMap = subsections.back();
288       subsecMap.reserve(data.size() / recordSize);
289       auto *isec = make<ConcatInputSection>(
290           segname, name, this, data.slice(0, recordSize), align, flags);
291       subsecMap.push_back({0, isec});
292       for (uint64_t off = recordSize; off < data.size(); off += recordSize) {
293         // Copying requires less memory than constructing a fresh InputSection.
294         auto *copy = make<ConcatInputSection>(*isec);
295         copy->data = data.slice(off, recordSize);
296         subsecMap.push_back({off, copy});
297       }
298     };
299 
300     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
301         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
302       if (sec.nreloc && config->dedupLiterals)
303         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
304               sec.sectname +
305               ", so LLD cannot deduplicate literals. Try re-running without "
306               "--deduplicate-literals.");
307 
308       InputSection *isec;
309       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
310         isec =
311             make<CStringInputSection>(segname, name, this, data, align, flags);
312         // FIXME: parallelize this?
313         cast<CStringInputSection>(isec)->splitIntoPieces();
314       } else {
315         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
316                                              flags);
317       }
318       subsections.push_back({{0, isec}});
319     } else if (auto recordSize = getRecordSize(segname, name)) {
320       splitRecords(*recordSize);
321     } else if (segname == segment_names::llvm) {
322       // ld64 does not appear to emit contents from sections within the __LLVM
323       // segment. Symbols within those sections point to bitcode metadata
324       // instead of actual symbols. Global symbols within those sections could
325       // have the same name without causing duplicate symbol errors. Push an
326       // empty map to ensure indices line up for the remaining sections.
327       // TODO: Evaluate whether the bitcode metadata is needed.
328       subsections.push_back({});
329     } else {
330       auto *isec =
331           make<ConcatInputSection>(segname, name, this, data, align, flags);
332       if (isDebugSection(isec->getFlags()) &&
333           isec->getSegName() == segment_names::dwarf) {
334         // Instead of emitting DWARF sections, we emit STABS symbols to the
335         // object files that contain them. We filter them out early to avoid
336         // parsing their relocations unnecessarily. But we must still push an
337         // empty map to ensure the indices line up for the remaining sections.
338         subsections.push_back({});
339         debugSections.push_back(isec);
340       } else {
341         subsections.push_back({{0, isec}});
342       }
343     }
344   }
345 }
346 
347 // Find the subsection corresponding to the greatest section offset that is <=
348 // that of the given offset.
349 //
350 // offset: an offset relative to the start of the original InputSection (before
351 // any subsection splitting has occurred). It will be updated to represent the
352 // same location as an offset relative to the start of the containing
353 // subsection.
354 static InputSection *findContainingSubsection(SubsectionMap &map,
355                                               uint64_t *offset) {
356   auto it = std::prev(llvm::upper_bound(
357       map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
358         return value < subsecEntry.offset;
359       }));
360   *offset -= it->offset;
361   return it->isec;
362 }
363 
364 template <class Section>
365 static bool validateRelocationInfo(InputFile *file, const Section &sec,
366                                    relocation_info rel) {
367   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
368   bool valid = true;
369   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
370     valid = false;
371     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
372             std::to_string(rel.r_address) + " of " + sec.segname + "," +
373             sec.sectname + " in " + toString(file))
374         .str();
375   };
376 
377   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
378     error(message("must be extern"));
379   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
380     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
381                   "be PC-relative"));
382   if (isThreadLocalVariables(sec.flags) &&
383       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
384     error(message("not allowed in thread-local section, must be UNSIGNED"));
385   if (rel.r_length < 2 || rel.r_length > 3 ||
386       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
387     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
388     error(message("has width " + std::to_string(1 << rel.r_length) +
389                   " bytes, but must be " +
390                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
391                   " bytes"));
392   }
393   return valid;
394 }
395 
396 template <class Section>
397 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
398                                const Section &sec, SubsectionMap &subsecMap) {
399   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
400   ArrayRef<relocation_info> relInfos(
401       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
402 
403   auto subsecIt = subsecMap.rbegin();
404   for (size_t i = 0; i < relInfos.size(); i++) {
405     // Paired relocations serve as Mach-O's method for attaching a
406     // supplemental datum to a primary relocation record. ELF does not
407     // need them because the *_RELOC_RELA records contain the extra
408     // addend field, vs. *_RELOC_REL which omit the addend.
409     //
410     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
411     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
412     // datum for each is a symbolic address. The result is the offset
413     // between two addresses.
414     //
415     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
416     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
417     // base symbolic address.
418     //
419     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
420     // addend into the instruction stream. On X86, a relocatable address
421     // field always occupies an entire contiguous sequence of byte(s),
422     // so there is no need to merge opcode bits with address
423     // bits. Therefore, it's easy and convenient to store addends in the
424     // instruction-stream bytes that would otherwise contain zeroes. By
425     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
426     // address bits so that bitwise arithmetic is necessary to extract
427     // and insert them. Storing addends in the instruction stream is
428     // possible, but inconvenient and more costly at link time.
429 
430     int64_t pairedAddend = 0;
431     relocation_info relInfo = relInfos[i];
432     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
433       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
434       relInfo = relInfos[++i];
435     }
436     assert(i < relInfos.size());
437     if (!validateRelocationInfo(this, sec, relInfo))
438       continue;
439     if (relInfo.r_address & R_SCATTERED)
440       fatal("TODO: Scattered relocations not supported");
441 
442     bool isSubtrahend =
443         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
444     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
445     assert(!(embeddedAddend && pairedAddend));
446     int64_t totalAddend = pairedAddend + embeddedAddend;
447     Reloc r;
448     r.type = relInfo.r_type;
449     r.pcrel = relInfo.r_pcrel;
450     r.length = relInfo.r_length;
451     r.offset = relInfo.r_address;
452     if (relInfo.r_extern) {
453       r.referent = symbols[relInfo.r_symbolnum];
454       r.addend = isSubtrahend ? 0 : totalAddend;
455     } else {
456       assert(!isSubtrahend);
457       const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
458       uint64_t referentOffset;
459       if (relInfo.r_pcrel) {
460         // The implicit addend for pcrel section relocations is the pcrel offset
461         // in terms of the addresses in the input file. Here we adjust it so
462         // that it describes the offset from the start of the referent section.
463         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
464         // have pcrel section relocations. We may want to factor this out into
465         // the arch-specific .cpp file.
466         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
467         referentOffset =
468             sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
469       } else {
470         // The addend for a non-pcrel relocation is its absolute address.
471         referentOffset = totalAddend - referentSec.addr;
472       }
473       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
474       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
475       r.addend = referentOffset;
476     }
477 
478     // Find the subsection that this relocation belongs to.
479     // Though not required by the Mach-O format, clang and gcc seem to emit
480     // relocations in order, so let's take advantage of it. However, ld64 emits
481     // unsorted relocations (in `-r` mode), so we have a fallback for that
482     // uncommon case.
483     InputSection *subsec;
484     while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
485       ++subsecIt;
486     if (subsecIt == subsecMap.rend() ||
487         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
488       subsec = findContainingSubsection(subsecMap, &r.offset);
489       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
490       // for the other relocations.
491       subsecIt = subsecMap.rend();
492     } else {
493       subsec = subsecIt->isec;
494       r.offset -= subsecIt->offset;
495     }
496     subsec->relocs.push_back(r);
497 
498     if (isSubtrahend) {
499       relocation_info minuendInfo = relInfos[++i];
500       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
501       // attached to the same address.
502       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
503              relInfo.r_address == minuendInfo.r_address);
504       Reloc p;
505       p.type = minuendInfo.r_type;
506       if (minuendInfo.r_extern) {
507         p.referent = symbols[minuendInfo.r_symbolnum];
508         p.addend = totalAddend;
509       } else {
510         uint64_t referentOffset =
511             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
512         SubsectionMap &referentSubsecMap =
513             subsections[minuendInfo.r_symbolnum - 1];
514         p.referent =
515             findContainingSubsection(referentSubsecMap, &referentOffset);
516         p.addend = referentOffset;
517       }
518       subsec->relocs.push_back(p);
519     }
520   }
521 }
522 
523 template <class NList>
524 static macho::Symbol *createDefined(const NList &sym, StringRef name,
525                                     InputSection *isec, uint64_t value,
526                                     uint64_t size) {
527   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
528   // N_EXT: Global symbols. These go in the symbol table during the link,
529   //        and also in the export table of the output so that the dynamic
530   //        linker sees them.
531   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
532   //                 symbol table during the link so that duplicates are
533   //                 either reported (for non-weak symbols) or merged
534   //                 (for weak symbols), but they do not go in the export
535   //                 table of the output.
536   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
537   //         object files) may produce them. LLD does not yet support -r.
538   //         These are translation-unit scoped, identical to the `0` case.
539   // 0: Translation-unit scoped. These are not in the symbol table during
540   //    link, and not in the export table of the output either.
541   bool isWeakDefCanBeHidden =
542       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
543 
544   if (sym.n_type & N_EXT) {
545     bool isPrivateExtern = sym.n_type & N_PEXT;
546     // lld's behavior for merging symbols is slightly different from ld64:
547     // ld64 picks the winning symbol based on several criteria (see
548     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
549     // just merges metadata and keeps the contents of the first symbol
550     // with that name (see SymbolTable::addDefined). For:
551     // * inline function F in a TU built with -fvisibility-inlines-hidden
552     // * and inline function F in another TU built without that flag
553     // ld64 will pick the one from the file built without
554     // -fvisibility-inlines-hidden.
555     // lld will instead pick the one listed first on the link command line and
556     // give it visibility as if the function was built without
557     // -fvisibility-inlines-hidden.
558     // If both functions have the same contents, this will have the same
559     // behavior. If not, it won't, but the input had an ODR violation in
560     // that case.
561     //
562     // Similarly, merging a symbol
563     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
564     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
565     // should produce one
566     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
567     // with ld64's semantics, because it means the non-private-extern
568     // definition will continue to take priority if more private extern
569     // definitions are encountered. With lld's semantics there's no observable
570     // difference between a symbol that's isWeakDefCanBeHidden or one that's
571     // privateExtern -- neither makes it into the dynamic symbol table. So just
572     // promote isWeakDefCanBeHidden to isPrivateExtern here.
573     if (isWeakDefCanBeHidden)
574       isPrivateExtern = true;
575 
576     return symtab->addDefined(
577         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
578         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
579         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
580   }
581   assert(!isWeakDefCanBeHidden &&
582          "weak_def_can_be_hidden on already-hidden symbol?");
583   return make<Defined>(
584       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
585       /*isExternal=*/false, /*isPrivateExtern=*/false,
586       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
587       sym.n_desc & N_NO_DEAD_STRIP);
588 }
589 
590 // Absolute symbols are defined symbols that do not have an associated
591 // InputSection. They cannot be weak.
592 template <class NList>
593 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
594                                      StringRef name) {
595   if (sym.n_type & N_EXT) {
596     return symtab->addDefined(
597         name, file, nullptr, sym.n_value, /*size=*/0,
598         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
599         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
600   }
601   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
602                        /*isWeakDef=*/false,
603                        /*isExternal=*/false, /*isPrivateExtern=*/false,
604                        sym.n_desc & N_ARM_THUMB_DEF,
605                        /*isReferencedDynamically=*/false,
606                        sym.n_desc & N_NO_DEAD_STRIP);
607 }
608 
609 template <class NList>
610 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
611                                               StringRef name) {
612   uint8_t type = sym.n_type & N_TYPE;
613   switch (type) {
614   case N_UNDF:
615     return sym.n_value == 0
616                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
617                : symtab->addCommon(name, this, sym.n_value,
618                                    1 << GET_COMM_ALIGN(sym.n_desc),
619                                    sym.n_type & N_PEXT);
620   case N_ABS:
621     return createAbsolute(sym, this, name);
622   case N_PBUD:
623   case N_INDR:
624     error("TODO: support symbols of type " + std::to_string(type));
625     return nullptr;
626   case N_SECT:
627     llvm_unreachable(
628         "N_SECT symbols should not be passed to parseNonSectionSymbol");
629   default:
630     llvm_unreachable("invalid symbol type");
631   }
632 }
633 
634 template <class NList> static bool isUndef(const NList &sym) {
635   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
636 }
637 
638 template <class LP>
639 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
640                            ArrayRef<typename LP::nlist> nList,
641                            const char *strtab, bool subsectionsViaSymbols) {
642   using NList = typename LP::nlist;
643 
644   // Groups indices of the symbols by the sections that contain them.
645   std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
646   symbols.resize(nList.size());
647   SmallVector<unsigned, 32> undefineds;
648   for (uint32_t i = 0; i < nList.size(); ++i) {
649     const NList &sym = nList[i];
650 
651     // Ignore debug symbols for now.
652     // FIXME: may need special handling.
653     if (sym.n_type & N_STAB)
654       continue;
655 
656     StringRef name = strtab + sym.n_strx;
657     if ((sym.n_type & N_TYPE) == N_SECT) {
658       SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
659       // parseSections() may have chosen not to parse this section.
660       if (subsecMap.empty())
661         continue;
662       symbolsBySection[sym.n_sect - 1].push_back(i);
663     } else if (isUndef(sym)) {
664       undefineds.push_back(i);
665     } else {
666       symbols[i] = parseNonSectionSymbol(sym, name);
667     }
668   }
669 
670   for (size_t i = 0; i < subsections.size(); ++i) {
671     SubsectionMap &subsecMap = subsections[i];
672     if (subsecMap.empty())
673       continue;
674 
675     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
676     uint64_t sectionAddr = sectionHeaders[i].addr;
677     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
678 
679     InputSection *lastIsec = subsecMap.back().isec;
680     // Record-based sections have already been split into subsections during
681     // parseSections(), so we simply need to match Symbols to the corresponding
682     // subsection here.
683     if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) {
684       for (size_t j = 0; j < symbolIndices.size(); ++j) {
685         uint32_t symIndex = symbolIndices[j];
686         const NList &sym = nList[symIndex];
687         StringRef name = strtab + sym.n_strx;
688         uint64_t symbolOffset = sym.n_value - sectionAddr;
689         InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
690         if (symbolOffset != 0) {
691           error(toString(lastIsec) + ":  symbol " + name +
692                 " at misaligned offset");
693           continue;
694         }
695         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
696       }
697       continue;
698     }
699 
700     // Calculate symbol sizes and create subsections by splitting the sections
701     // along symbol boundaries.
702     // We populate subsecMap by repeatedly splitting the last (highest address)
703     // subsection.
704     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
705       return nList[lhs].n_value < nList[rhs].n_value;
706     });
707     SubsectionEntry subsecEntry = subsecMap.back();
708     for (size_t j = 0; j < symbolIndices.size(); ++j) {
709       uint32_t symIndex = symbolIndices[j];
710       const NList &sym = nList[symIndex];
711       StringRef name = strtab + sym.n_strx;
712       InputSection *isec = subsecEntry.isec;
713 
714       uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
715       size_t symbolOffset = sym.n_value - subsecAddr;
716       uint64_t symbolSize =
717           j + 1 < symbolIndices.size()
718               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
719               : isec->data.size() - symbolOffset;
720       // There are 4 cases where we do not need to create a new subsection:
721       //   1. If the input file does not use subsections-via-symbols.
722       //   2. Multiple symbols at the same address only induce one subsection.
723       //      (The symbolOffset == 0 check covers both this case as well as
724       //      the first loop iteration.)
725       //   3. Alternative entry points do not induce new subsections.
726       //   4. If we have a literal section (e.g. __cstring and __literal4).
727       if (!subsectionsViaSymbols || symbolOffset == 0 ||
728           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
729         symbols[symIndex] =
730             createDefined(sym, name, isec, symbolOffset, symbolSize);
731         continue;
732       }
733       auto *concatIsec = cast<ConcatInputSection>(isec);
734 
735       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
736       nextIsec->wasCoalesced = false;
737       if (isZeroFill(isec->getFlags())) {
738         // Zero-fill sections have NULL data.data() non-zero data.size()
739         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
740         isec->data = {nullptr, symbolOffset};
741       } else {
742         nextIsec->data = isec->data.slice(symbolOffset);
743         isec->data = isec->data.slice(0, symbolOffset);
744       }
745 
746       // By construction, the symbol will be at offset zero in the new
747       // subsection.
748       symbols[symIndex] =
749           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
750       // TODO: ld64 appears to preserve the original alignment as well as each
751       // subsection's offset from the last aligned address. We should consider
752       // emulating that behavior.
753       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
754       subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
755       subsecEntry = subsecMap.back();
756     }
757   }
758 
759   // Undefined symbols can trigger recursive fetch from Archives due to
760   // LazySymbols. Process defined symbols first so that the relative order
761   // between a defined symbol and an undefined symbol does not change the
762   // symbol resolution behavior. In addition, a set of interconnected symbols
763   // will all be resolved to the same file, instead of being resolved to
764   // different files.
765   for (unsigned i : undefineds) {
766     const NList &sym = nList[i];
767     StringRef name = strtab + sym.n_strx;
768     symbols[i] = parseNonSectionSymbol(sym, name);
769   }
770 }
771 
772 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
773                        StringRef sectName)
774     : InputFile(OpaqueKind, mb) {
775   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
776   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
777   ConcatInputSection *isec =
778       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
779                                /*file=*/this, data);
780   isec->live = true;
781   subsections.push_back({{0, isec}});
782 }
783 
784 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
785     : InputFile(ObjKind, mb), modTime(modTime) {
786   this->archiveName = std::string(archiveName);
787   if (target->wordSize == 8)
788     parse<LP64>();
789   else
790     parse<ILP32>();
791 }
792 
793 template <class LP> void ObjFile::parse() {
794   using Header = typename LP::mach_header;
795   using SegmentCommand = typename LP::segment_command;
796   using Section = typename LP::section;
797   using NList = typename LP::nlist;
798 
799   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
800   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
801 
802   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
803   if (arch != config->arch()) {
804     auto msg = config->errorForArchMismatch
805                    ? static_cast<void (*)(const Twine &)>(error)
806                    : warn;
807     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
808         " which is incompatible with target architecture " +
809         getArchitectureName(config->arch()));
810     return;
811   }
812 
813   if (!checkCompatibility(this))
814     return;
815 
816   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
817     StringRef data{reinterpret_cast<const char *>(cmd + 1),
818                    cmd->cmdsize - sizeof(linker_option_command)};
819     parseLCLinkerOption(this, cmd->count, data);
820   }
821 
822   ArrayRef<Section> sectionHeaders;
823   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
824     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
825     sectionHeaders =
826         ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
827     parseSections(sectionHeaders);
828   }
829 
830   // TODO: Error on missing LC_SYMTAB?
831   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
832     auto *c = reinterpret_cast<const symtab_command *>(cmd);
833     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
834                           c->nsyms);
835     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
836     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
837     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
838   }
839 
840   // The relocations may refer to the symbols, so we parse them after we have
841   // parsed all the symbols.
842   for (size_t i = 0, n = subsections.size(); i < n; ++i)
843     if (!subsections[i].empty())
844       parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
845 
846   parseDebugInfo();
847   if (config->emitDataInCodeInfo)
848     parseDataInCode();
849   registerCompactUnwind();
850 }
851 
852 void ObjFile::parseDebugInfo() {
853   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
854   if (!dObj)
855     return;
856 
857   auto *ctx = make<DWARFContext>(
858       std::move(dObj), "",
859       [&](Error err) {
860         warn(toString(this) + ": " + toString(std::move(err)));
861       },
862       [&](Error warning) {
863         warn(toString(this) + ": " + toString(std::move(warning)));
864       });
865 
866   // TODO: Since object files can contain a lot of DWARF info, we should verify
867   // that we are parsing just the info we need
868   const DWARFContext::compile_unit_range &units = ctx->compile_units();
869   // FIXME: There can be more than one compile unit per object file. See
870   // PR48637.
871   auto it = units.begin();
872   compileUnit = it->get();
873 }
874 
875 void ObjFile::parseDataInCode() {
876   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
877   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
878   if (!cmd)
879     return;
880   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
881   dataInCodeEntries = {
882       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
883       c->datasize / sizeof(data_in_code_entry)};
884   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
885                                          const data_in_code_entry &rhs) {
886     return lhs.offset < rhs.offset;
887   }));
888 }
889 
890 // Create pointers from symbols to their associated compact unwind entries.
891 void ObjFile::registerCompactUnwind() {
892   // First, locate the __compact_unwind section.
893   SubsectionMap *cuSubsecMap = nullptr;
894   for (SubsectionMap &map : subsections) {
895     if (map.empty())
896       continue;
897     if (map[0].isec->getSegName() != segment_names::ld)
898       continue;
899     cuSubsecMap = &map;
900     break;
901   }
902   if (!cuSubsecMap)
903     return;
904 
905   for (SubsectionEntry &entry : *cuSubsecMap) {
906     ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec);
907     ConcatInputSection *referentIsec;
908     for (const Reloc &r : isec->relocs) {
909       if (r.offset != 0)
910         continue;
911       uint64_t add = r.addend;
912       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
913         add += sym->value;
914         referentIsec = cast<ConcatInputSection>(sym->isec);
915       } else {
916         referentIsec =
917             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
918       }
919       if (referentIsec->getSegName() != segment_names::text)
920         error("compact unwind references address in " + toString(referentIsec) +
921               " which is not in segment __TEXT");
922       // The functionAddress relocations are typically section relocations.
923       // However, unwind info operates on a per-symbol basis, so we search for
924       // the function symbol here.
925       auto it = llvm::lower_bound(
926           referentIsec->symbols, add,
927           [](Defined *d, uint64_t add) { return d->value < add; });
928       // The relocation should point at the exact address of a symbol (with no
929       // addend).
930       if (it == referentIsec->symbols.end() || (*it)->value != add) {
931         assert(referentIsec->wasCoalesced);
932         continue;
933       }
934       (*it)->compactUnwind = isec;
935     }
936   }
937 }
938 
939 // The path can point to either a dylib or a .tbd file.
940 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
941   Optional<MemoryBufferRef> mbref = readFile(path);
942   if (!mbref) {
943     error("could not read dylib file at " + path);
944     return nullptr;
945   }
946   return loadDylib(*mbref, umbrella);
947 }
948 
949 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
950 // the first document storing child pointers to the rest of them. When we are
951 // processing a given TBD file, we store that top-level document in
952 // currentTopLevelTapi. When processing re-exports, we search its children for
953 // potentially matching documents in the same TBD file. Note that the children
954 // themselves don't point to further documents, i.e. this is a two-level tree.
955 //
956 // Re-exports can either refer to on-disk files, or to documents within .tbd
957 // files.
958 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
959                             const InterfaceFile *currentTopLevelTapi) {
960   // Search order:
961   // 1. Install name basename in -F / -L directories.
962   {
963     StringRef stem = path::stem(path);
964     SmallString<128> frameworkName;
965     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
966     bool isFramework = path.endswith(frameworkName);
967     if (isFramework) {
968       for (StringRef dir : config->frameworkSearchPaths) {
969         SmallString<128> candidate = dir;
970         path::append(candidate, frameworkName);
971         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
972           return loadDylib(*dylibPath, umbrella);
973       }
974     } else if (Optional<StringRef> dylibPath = findPathCombination(
975                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
976       return loadDylib(*dylibPath, umbrella);
977   }
978 
979   // 2. As absolute path.
980   if (path::is_absolute(path, path::Style::posix))
981     for (StringRef root : config->systemLibraryRoots)
982       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
983         return loadDylib(*dylibPath, umbrella);
984 
985   // 3. As relative path.
986 
987   // TODO: Handle -dylib_file
988 
989   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
990   SmallString<128> newPath;
991   if (config->outputType == MH_EXECUTE &&
992       path.consume_front("@executable_path/")) {
993     // ld64 allows overriding this with the undocumented flag -executable_path.
994     // lld doesn't currently implement that flag.
995     // FIXME: Consider using finalOutput instead of outputFile.
996     path::append(newPath, path::parent_path(config->outputFile), path);
997     path = newPath;
998   } else if (path.consume_front("@loader_path/")) {
999     fs::real_path(umbrella->getName(), newPath);
1000     path::remove_filename(newPath);
1001     path::append(newPath, path);
1002     path = newPath;
1003   } else if (path.startswith("@rpath/")) {
1004     for (StringRef rpath : umbrella->rpaths) {
1005       newPath.clear();
1006       if (rpath.consume_front("@loader_path/")) {
1007         fs::real_path(umbrella->getName(), newPath);
1008         path::remove_filename(newPath);
1009       }
1010       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1011       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1012         return loadDylib(*dylibPath, umbrella);
1013     }
1014   }
1015 
1016   // FIXME: Should this be further up?
1017   if (currentTopLevelTapi) {
1018     for (InterfaceFile &child :
1019          make_pointee_range(currentTopLevelTapi->documents())) {
1020       assert(child.documents().empty());
1021       if (path == child.getInstallName()) {
1022         auto file = make<DylibFile>(child, umbrella);
1023         file->parseReexports(child);
1024         return file;
1025       }
1026     }
1027   }
1028 
1029   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1030     return loadDylib(*dylibPath, umbrella);
1031 
1032   return nullptr;
1033 }
1034 
1035 // If a re-exported dylib is public (lives in /usr/lib or
1036 // /System/Library/Frameworks), then it is considered implicitly linked: we
1037 // should bind to its symbols directly instead of via the re-exporting umbrella
1038 // library.
1039 static bool isImplicitlyLinked(StringRef path) {
1040   if (!config->implicitDylibs)
1041     return false;
1042 
1043   if (path::parent_path(path) == "/usr/lib")
1044     return true;
1045 
1046   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1047   if (path.consume_front("/System/Library/Frameworks/")) {
1048     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1049     return path::filename(path) == frameworkName;
1050   }
1051 
1052   return false;
1053 }
1054 
1055 static void loadReexport(StringRef path, DylibFile *umbrella,
1056                          const InterfaceFile *currentTopLevelTapi) {
1057   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1058   if (!reexport)
1059     error("unable to locate re-export with install name " + path);
1060 }
1061 
1062 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1063                      bool isBundleLoader)
1064     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1065       isBundleLoader(isBundleLoader) {
1066   assert(!isBundleLoader || !umbrella);
1067   if (umbrella == nullptr)
1068     umbrella = this;
1069   this->umbrella = umbrella;
1070 
1071   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1072   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1073 
1074   // Initialize installName.
1075   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1076     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1077     currentVersion = read32le(&c->dylib.current_version);
1078     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1079     installName =
1080         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1081   } else if (!isBundleLoader) {
1082     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1083     // so it's OK.
1084     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1085     return;
1086   }
1087 
1088   if (config->printEachFile)
1089     message(toString(this));
1090   inputFiles.insert(this);
1091 
1092   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1093 
1094   if (!checkCompatibility(this))
1095     return;
1096 
1097   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1098 
1099   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1100     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1101     rpaths.push_back(rpath);
1102   }
1103 
1104   // Initialize symbols.
1105   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1106   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1107     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1108     parseTrie(buf + c->export_off, c->export_size,
1109               [&](const Twine &name, uint64_t flags) {
1110                 StringRef savedName = saver.save(name);
1111                 if (handleLDSymbol(savedName))
1112                   return;
1113                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1114                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1115                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1116                                                    isWeakDef, isTlv));
1117               });
1118   } else {
1119     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1120     return;
1121   }
1122 }
1123 
1124 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1125   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1126   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1127                      target->headerSize;
1128   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1129     auto *cmd = reinterpret_cast<const load_command *>(p);
1130     p += cmd->cmdsize;
1131 
1132     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1133         cmd->cmd == LC_REEXPORT_DYLIB) {
1134       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1135       StringRef reexportPath =
1136           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1137       loadReexport(reexportPath, exportingFile, nullptr);
1138     }
1139 
1140     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1141     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1142     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1143     if (config->namespaceKind == NamespaceKind::flat &&
1144         cmd->cmd == LC_LOAD_DYLIB) {
1145       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1146       StringRef dylibPath =
1147           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1148       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1149       if (!dylib)
1150         error(Twine("unable to locate library '") + dylibPath +
1151               "' loaded from '" + toString(this) + "' for -flat_namespace");
1152     }
1153   }
1154 }
1155 
1156 // Some versions of XCode ship with .tbd files that don't have the right
1157 // platform settings.
1158 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1159     "/usr/lib/system/libsystem_kernel.dylib",
1160     "/usr/lib/system/libsystem_platform.dylib",
1161     "/usr/lib/system/libsystem_pthread.dylib"};
1162 
1163 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1164                      bool isBundleLoader)
1165     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1166       isBundleLoader(isBundleLoader) {
1167   // FIXME: Add test for the missing TBD code path.
1168 
1169   if (umbrella == nullptr)
1170     umbrella = this;
1171   this->umbrella = umbrella;
1172 
1173   installName = saver.save(interface.getInstallName());
1174   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1175   currentVersion = interface.getCurrentVersion().rawValue();
1176 
1177   if (config->printEachFile)
1178     message(toString(this));
1179   inputFiles.insert(this);
1180 
1181   if (!is_contained(skipPlatformChecks, installName) &&
1182       !is_contained(interface.targets(), config->platformInfo.target)) {
1183     error(toString(this) + " is incompatible with " +
1184           std::string(config->platformInfo.target));
1185     return;
1186   }
1187 
1188   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1189 
1190   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1191   auto addSymbol = [&](const Twine &name) -> void {
1192     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1193                                        /*isWeakDef=*/false,
1194                                        /*isTlv=*/false));
1195   };
1196   // TODO(compnerd) filter out symbols based on the target platform
1197   // TODO: handle weak defs, thread locals
1198   for (const auto *symbol : interface.symbols()) {
1199     if (!symbol->getArchitectures().has(config->arch()))
1200       continue;
1201 
1202     if (handleLDSymbol(symbol->getName()))
1203       continue;
1204 
1205     switch (symbol->getKind()) {
1206     case SymbolKind::GlobalSymbol:
1207       addSymbol(symbol->getName());
1208       break;
1209     case SymbolKind::ObjectiveCClass:
1210       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1211       // want to emulate that.
1212       addSymbol(objc::klass + symbol->getName());
1213       addSymbol(objc::metaclass + symbol->getName());
1214       break;
1215     case SymbolKind::ObjectiveCClassEHType:
1216       addSymbol(objc::ehtype + symbol->getName());
1217       break;
1218     case SymbolKind::ObjectiveCInstanceVariable:
1219       addSymbol(objc::ivar + symbol->getName());
1220       break;
1221     }
1222   }
1223 }
1224 
1225 void DylibFile::parseReexports(const InterfaceFile &interface) {
1226   const InterfaceFile *topLevel =
1227       interface.getParent() == nullptr ? &interface : interface.getParent();
1228   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1229     InterfaceFile::const_target_range targets = intfRef.targets();
1230     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1231         is_contained(targets, config->platformInfo.target))
1232       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1233   }
1234 }
1235 
1236 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1237 // name, compatibility version or hide/add symbols) for specific target
1238 // versions.
1239 bool DylibFile::handleLDSymbol(StringRef originalName) {
1240   if (!originalName.startswith("$ld$"))
1241     return false;
1242 
1243   StringRef action;
1244   StringRef name;
1245   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1246   if (action == "previous")
1247     handleLDPreviousSymbol(name, originalName);
1248   else if (action == "install_name")
1249     handleLDInstallNameSymbol(name, originalName);
1250   return true;
1251 }
1252 
1253 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1254   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1255   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1256   StringRef installName;
1257   StringRef compatVersion;
1258   StringRef platformStr;
1259   StringRef startVersion;
1260   StringRef endVersion;
1261   StringRef symbolName;
1262   StringRef rest;
1263 
1264   std::tie(installName, name) = name.split('$');
1265   std::tie(compatVersion, name) = name.split('$');
1266   std::tie(platformStr, name) = name.split('$');
1267   std::tie(startVersion, name) = name.split('$');
1268   std::tie(endVersion, name) = name.split('$');
1269   std::tie(symbolName, rest) = name.split('$');
1270   // TODO: ld64 contains some logic for non-empty symbolName as well.
1271   if (!symbolName.empty())
1272     return;
1273   unsigned platform;
1274   if (platformStr.getAsInteger(10, platform) ||
1275       platform != static_cast<unsigned>(config->platform()))
1276     return;
1277 
1278   VersionTuple start;
1279   if (start.tryParse(startVersion)) {
1280     warn("failed to parse start version, symbol '" + originalName +
1281          "' ignored");
1282     return;
1283   }
1284   VersionTuple end;
1285   if (end.tryParse(endVersion)) {
1286     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1287     return;
1288   }
1289   if (config->platformInfo.minimum < start ||
1290       config->platformInfo.minimum >= end)
1291     return;
1292 
1293   this->installName = saver.save(installName);
1294 
1295   if (!compatVersion.empty()) {
1296     VersionTuple cVersion;
1297     if (cVersion.tryParse(compatVersion)) {
1298       warn("failed to parse compatibility version, symbol '" + originalName +
1299            "' ignored");
1300       return;
1301     }
1302     compatibilityVersion = encodeVersion(cVersion);
1303   }
1304 }
1305 
1306 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1307                                           StringRef originalName) {
1308   // originalName: $ld$ install_name $ os<version> $ install_name
1309   StringRef condition, installName;
1310   std::tie(condition, installName) = name.split('$');
1311   VersionTuple version;
1312   if (!condition.consume_front("os") || version.tryParse(condition))
1313     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1314   else if (version == config->platformInfo.minimum)
1315     this->installName = saver.save(installName);
1316 }
1317 
1318 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1319   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1320     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1321 }
1322 
1323 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1324     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1325 
1326 void ArchiveFile::addLazySymbols() {
1327   for (const object::Archive::Symbol &sym : file->symbols())
1328     symtab->addLazy(sym.getName(), this, sym);
1329 }
1330 
1331 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1332                                                uint32_t modTime,
1333                                                StringRef archiveName,
1334                                                uint64_t offsetInArchive) {
1335   if (config->zeroModTime)
1336     modTime = 0;
1337 
1338   switch (identify_magic(mb.getBuffer())) {
1339   case file_magic::macho_object:
1340     return make<ObjFile>(mb, modTime, archiveName);
1341   case file_magic::bitcode:
1342     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1343   default:
1344     return createStringError(inconvertibleErrorCode(),
1345                              mb.getBufferIdentifier() +
1346                                  " has unhandled file type");
1347   }
1348 }
1349 
1350 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1351   if (!seen.insert(c.getChildOffset()).second)
1352     return Error::success();
1353 
1354   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1355   if (!mb)
1356     return mb.takeError();
1357 
1358   // Thin archives refer to .o files, so --reproduce needs the .o files too.
1359   if (tar && c.getParent()->isThin())
1360     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1361 
1362   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1363   if (!modTime)
1364     return modTime.takeError();
1365 
1366   Expected<InputFile *> file =
1367       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1368 
1369   if (!file)
1370     return file.takeError();
1371 
1372   inputFiles.insert(*file);
1373   printArchiveMemberLoad(reason, *file);
1374   return Error::success();
1375 }
1376 
1377 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1378   object::Archive::Child c =
1379       CHECK(sym.getMember(), toString(this) +
1380                                  ": could not get the member defining symbol " +
1381                                  toMachOString(sym));
1382 
1383   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1384   // and become invalid after that call. Copy it to the stack so we can refer
1385   // to it later.
1386   const object::Archive::Symbol symCopy = sym;
1387 
1388   // ld64 doesn't demangle sym here even with -demangle.
1389   // Match that: intentionally don't call toMachOString().
1390   if (Error e = fetch(c, symCopy.getName()))
1391     error(toString(this) + ": could not get the member defining symbol " +
1392           toMachOString(symCopy) + ": " + toString(std::move(e)));
1393 }
1394 
1395 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1396                                           BitcodeFile &file) {
1397   StringRef name = saver.save(objSym.getName());
1398 
1399   // TODO: support weak references
1400   if (objSym.isUndefined())
1401     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1402 
1403   // TODO: Write a test demonstrating why computing isPrivateExtern before
1404   // LTO compilation is important.
1405   bool isPrivateExtern = false;
1406   switch (objSym.getVisibility()) {
1407   case GlobalValue::HiddenVisibility:
1408     isPrivateExtern = true;
1409     break;
1410   case GlobalValue::ProtectedVisibility:
1411     error(name + " has protected visibility, which is not supported by Mach-O");
1412     break;
1413   case GlobalValue::DefaultVisibility:
1414     break;
1415   }
1416 
1417   if (objSym.isCommon())
1418     return symtab->addCommon(name, &file, objSym.getCommonSize(),
1419                              objSym.getCommonAlignment(), isPrivateExtern);
1420 
1421   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1422                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1423                             /*isThumb=*/false,
1424                             /*isReferencedDynamically=*/false,
1425                             /*noDeadStrip=*/false);
1426 }
1427 
1428 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1429                          uint64_t offsetInArchive)
1430     : InputFile(BitcodeKind, mb) {
1431   std::string path = mb.getBufferIdentifier().str();
1432   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1433   // name. If two members with the same name are provided, this causes a
1434   // collision and ThinLTO can't proceed.
1435   // So, we append the archive name to disambiguate two members with the same
1436   // name from multiple different archives, and offset within the archive to
1437   // disambiguate two members of the same name from a single archive.
1438   MemoryBufferRef mbref(
1439       mb.getBuffer(),
1440       saver.save(archiveName.empty() ? path
1441                                      : archiveName + sys::path::filename(path) +
1442                                            utostr(offsetInArchive)));
1443 
1444   obj = check(lto::InputFile::create(mbref));
1445 
1446   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1447   // "winning" symbol will then be marked as Prevailing at LTO compilation
1448   // time.
1449   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1450     symbols.push_back(createBitcodeSymbol(objSym, *this));
1451 }
1452 
1453 template void ObjFile::parse<LP64>();
1454