1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // This cache mostly exists to store system libraries (and .tbds) as they're 177 // loaded, rather than the input archives, which are already cached at a higher 178 // level, and other files like the filelist that are only read once. 179 // Theoretically this caching could be more efficient by hoisting it, but that 180 // would require altering many callers to track the state. 181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 182 // Open a given file path and return it as a memory-mapped file. 183 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 184 CachedHashStringRef key(path); 185 auto entry = cachedReads.find(key); 186 if (entry != cachedReads.end()) 187 return entry->second; 188 189 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 190 if (std::error_code ec = mbOrErr.getError()) { 191 error("cannot open " + path + ": " + ec.message()); 192 return None; 193 } 194 195 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 196 MemoryBufferRef mbref = mb->getMemBufferRef(); 197 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 198 199 // If this is a regular non-fat file, return it. 200 const char *buf = mbref.getBufferStart(); 201 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 202 if (mbref.getBufferSize() < sizeof(uint32_t) || 203 read32be(&hdr->magic) != FAT_MAGIC) { 204 if (tar) 205 tar->append(relativeToRoot(path), mbref.getBuffer()); 206 return cachedReads[key] = mbref; 207 } 208 209 // Object files and archive files may be fat files, which contain multiple 210 // real files for different CPU ISAs. Here, we search for a file that matches 211 // with the current link target and returns it as a MemoryBufferRef. 212 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 213 214 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 215 if (reinterpret_cast<const char *>(arch + i + 1) > 216 buf + mbref.getBufferSize()) { 217 error(path + ": fat_arch struct extends beyond end of file"); 218 return None; 219 } 220 221 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 222 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 223 continue; 224 225 uint32_t offset = read32be(&arch[i].offset); 226 uint32_t size = read32be(&arch[i].size); 227 if (offset + size > mbref.getBufferSize()) 228 error(path + ": slice extends beyond end of file"); 229 if (tar) 230 tar->append(relativeToRoot(path), mbref.getBuffer()); 231 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 232 path.copy(bAlloc)); 233 } 234 235 error("unable to find matching architecture in " + path); 236 return None; 237 } 238 239 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 240 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 241 242 // Some sections comprise of fixed-size records, so instead of splitting them at 243 // symbol boundaries, we split them based on size. Records are distinct from 244 // literals in that they may contain references to other sections, instead of 245 // being leaf nodes in the InputSection graph. 246 // 247 // Note that "record" is a term I came up with. In contrast, "literal" is a term 248 // used by the Mach-O format. 249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 250 if (name == section_names::cfString) { 251 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 252 return target->wordSize == 8 ? 32 : 16; 253 } else if (name == section_names::compactUnwind) { 254 if (segname == segment_names::ld) 255 return target->wordSize == 8 ? 32 : 20; 256 } 257 return {}; 258 } 259 260 template <class Section> 261 void ObjFile::parseSections(ArrayRef<Section> sections) { 262 subsections.reserve(sections.size()); 263 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 264 265 for (const Section &sec : sections) { 266 StringRef name = 267 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 268 StringRef segname = 269 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 270 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 271 : buf + sec.offset, 272 static_cast<size_t>(sec.size)}; 273 if (sec.align >= 32) { 274 error("alignment " + std::to_string(sec.align) + " of section " + name + 275 " is too large"); 276 subsections.push_back({}); 277 continue; 278 } 279 uint32_t align = 1 << sec.align; 280 uint32_t flags = sec.flags; 281 282 auto splitRecords = [&](int recordSize) -> void { 283 subsections.push_back({}); 284 if (data.empty()) 285 return; 286 287 SubsectionMap &subsecMap = subsections.back(); 288 subsecMap.reserve(data.size() / recordSize); 289 auto *isec = make<ConcatInputSection>( 290 segname, name, this, data.slice(0, recordSize), align, flags); 291 subsecMap.push_back({0, isec}); 292 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 293 // Copying requires less memory than constructing a fresh InputSection. 294 auto *copy = make<ConcatInputSection>(*isec); 295 copy->data = data.slice(off, recordSize); 296 subsecMap.push_back({off, copy}); 297 } 298 }; 299 300 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 301 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 302 if (sec.nreloc && config->dedupLiterals) 303 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 304 sec.sectname + 305 ", so LLD cannot deduplicate literals. Try re-running without " 306 "--deduplicate-literals."); 307 308 InputSection *isec; 309 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 310 isec = 311 make<CStringInputSection>(segname, name, this, data, align, flags); 312 // FIXME: parallelize this? 313 cast<CStringInputSection>(isec)->splitIntoPieces(); 314 } else { 315 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 316 flags); 317 } 318 subsections.push_back({{0, isec}}); 319 } else if (auto recordSize = getRecordSize(segname, name)) { 320 splitRecords(*recordSize); 321 } else if (segname == segment_names::llvm) { 322 // ld64 does not appear to emit contents from sections within the __LLVM 323 // segment. Symbols within those sections point to bitcode metadata 324 // instead of actual symbols. Global symbols within those sections could 325 // have the same name without causing duplicate symbol errors. Push an 326 // empty map to ensure indices line up for the remaining sections. 327 // TODO: Evaluate whether the bitcode metadata is needed. 328 subsections.push_back({}); 329 } else { 330 auto *isec = 331 make<ConcatInputSection>(segname, name, this, data, align, flags); 332 if (isDebugSection(isec->getFlags()) && 333 isec->getSegName() == segment_names::dwarf) { 334 // Instead of emitting DWARF sections, we emit STABS symbols to the 335 // object files that contain them. We filter them out early to avoid 336 // parsing their relocations unnecessarily. But we must still push an 337 // empty map to ensure the indices line up for the remaining sections. 338 subsections.push_back({}); 339 debugSections.push_back(isec); 340 } else { 341 subsections.push_back({{0, isec}}); 342 } 343 } 344 } 345 } 346 347 // Find the subsection corresponding to the greatest section offset that is <= 348 // that of the given offset. 349 // 350 // offset: an offset relative to the start of the original InputSection (before 351 // any subsection splitting has occurred). It will be updated to represent the 352 // same location as an offset relative to the start of the containing 353 // subsection. 354 static InputSection *findContainingSubsection(SubsectionMap &map, 355 uint64_t *offset) { 356 auto it = std::prev(llvm::upper_bound( 357 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 358 return value < subsecEntry.offset; 359 })); 360 *offset -= it->offset; 361 return it->isec; 362 } 363 364 template <class Section> 365 static bool validateRelocationInfo(InputFile *file, const Section &sec, 366 relocation_info rel) { 367 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 368 bool valid = true; 369 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 370 valid = false; 371 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 372 std::to_string(rel.r_address) + " of " + sec.segname + "," + 373 sec.sectname + " in " + toString(file)) 374 .str(); 375 }; 376 377 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 378 error(message("must be extern")); 379 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 380 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 381 "be PC-relative")); 382 if (isThreadLocalVariables(sec.flags) && 383 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 384 error(message("not allowed in thread-local section, must be UNSIGNED")); 385 if (rel.r_length < 2 || rel.r_length > 3 || 386 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 387 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 388 error(message("has width " + std::to_string(1 << rel.r_length) + 389 " bytes, but must be " + 390 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 391 " bytes")); 392 } 393 return valid; 394 } 395 396 template <class Section> 397 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 398 const Section &sec, SubsectionMap &subsecMap) { 399 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 400 ArrayRef<relocation_info> relInfos( 401 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 402 403 auto subsecIt = subsecMap.rbegin(); 404 for (size_t i = 0; i < relInfos.size(); i++) { 405 // Paired relocations serve as Mach-O's method for attaching a 406 // supplemental datum to a primary relocation record. ELF does not 407 // need them because the *_RELOC_RELA records contain the extra 408 // addend field, vs. *_RELOC_REL which omit the addend. 409 // 410 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 411 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 412 // datum for each is a symbolic address. The result is the offset 413 // between two addresses. 414 // 415 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 416 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 417 // base symbolic address. 418 // 419 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 420 // addend into the instruction stream. On X86, a relocatable address 421 // field always occupies an entire contiguous sequence of byte(s), 422 // so there is no need to merge opcode bits with address 423 // bits. Therefore, it's easy and convenient to store addends in the 424 // instruction-stream bytes that would otherwise contain zeroes. By 425 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 426 // address bits so that bitwise arithmetic is necessary to extract 427 // and insert them. Storing addends in the instruction stream is 428 // possible, but inconvenient and more costly at link time. 429 430 int64_t pairedAddend = 0; 431 relocation_info relInfo = relInfos[i]; 432 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 433 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 434 relInfo = relInfos[++i]; 435 } 436 assert(i < relInfos.size()); 437 if (!validateRelocationInfo(this, sec, relInfo)) 438 continue; 439 if (relInfo.r_address & R_SCATTERED) 440 fatal("TODO: Scattered relocations not supported"); 441 442 bool isSubtrahend = 443 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 444 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 445 assert(!(embeddedAddend && pairedAddend)); 446 int64_t totalAddend = pairedAddend + embeddedAddend; 447 Reloc r; 448 r.type = relInfo.r_type; 449 r.pcrel = relInfo.r_pcrel; 450 r.length = relInfo.r_length; 451 r.offset = relInfo.r_address; 452 if (relInfo.r_extern) { 453 r.referent = symbols[relInfo.r_symbolnum]; 454 r.addend = isSubtrahend ? 0 : totalAddend; 455 } else { 456 assert(!isSubtrahend); 457 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 458 uint64_t referentOffset; 459 if (relInfo.r_pcrel) { 460 // The implicit addend for pcrel section relocations is the pcrel offset 461 // in terms of the addresses in the input file. Here we adjust it so 462 // that it describes the offset from the start of the referent section. 463 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 464 // have pcrel section relocations. We may want to factor this out into 465 // the arch-specific .cpp file. 466 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 467 referentOffset = 468 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 469 } else { 470 // The addend for a non-pcrel relocation is its absolute address. 471 referentOffset = totalAddend - referentSec.addr; 472 } 473 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 474 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 475 r.addend = referentOffset; 476 } 477 478 // Find the subsection that this relocation belongs to. 479 // Though not required by the Mach-O format, clang and gcc seem to emit 480 // relocations in order, so let's take advantage of it. However, ld64 emits 481 // unsorted relocations (in `-r` mode), so we have a fallback for that 482 // uncommon case. 483 InputSection *subsec; 484 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 485 ++subsecIt; 486 if (subsecIt == subsecMap.rend() || 487 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 488 subsec = findContainingSubsection(subsecMap, &r.offset); 489 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 490 // for the other relocations. 491 subsecIt = subsecMap.rend(); 492 } else { 493 subsec = subsecIt->isec; 494 r.offset -= subsecIt->offset; 495 } 496 subsec->relocs.push_back(r); 497 498 if (isSubtrahend) { 499 relocation_info minuendInfo = relInfos[++i]; 500 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 501 // attached to the same address. 502 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 503 relInfo.r_address == minuendInfo.r_address); 504 Reloc p; 505 p.type = minuendInfo.r_type; 506 if (minuendInfo.r_extern) { 507 p.referent = symbols[minuendInfo.r_symbolnum]; 508 p.addend = totalAddend; 509 } else { 510 uint64_t referentOffset = 511 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 512 SubsectionMap &referentSubsecMap = 513 subsections[minuendInfo.r_symbolnum - 1]; 514 p.referent = 515 findContainingSubsection(referentSubsecMap, &referentOffset); 516 p.addend = referentOffset; 517 } 518 subsec->relocs.push_back(p); 519 } 520 } 521 } 522 523 template <class NList> 524 static macho::Symbol *createDefined(const NList &sym, StringRef name, 525 InputSection *isec, uint64_t value, 526 uint64_t size) { 527 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 528 // N_EXT: Global symbols. These go in the symbol table during the link, 529 // and also in the export table of the output so that the dynamic 530 // linker sees them. 531 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 532 // symbol table during the link so that duplicates are 533 // either reported (for non-weak symbols) or merged 534 // (for weak symbols), but they do not go in the export 535 // table of the output. 536 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 537 // object files) may produce them. LLD does not yet support -r. 538 // These are translation-unit scoped, identical to the `0` case. 539 // 0: Translation-unit scoped. These are not in the symbol table during 540 // link, and not in the export table of the output either. 541 bool isWeakDefCanBeHidden = 542 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 543 544 if (sym.n_type & N_EXT) { 545 bool isPrivateExtern = sym.n_type & N_PEXT; 546 // lld's behavior for merging symbols is slightly different from ld64: 547 // ld64 picks the winning symbol based on several criteria (see 548 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 549 // just merges metadata and keeps the contents of the first symbol 550 // with that name (see SymbolTable::addDefined). For: 551 // * inline function F in a TU built with -fvisibility-inlines-hidden 552 // * and inline function F in another TU built without that flag 553 // ld64 will pick the one from the file built without 554 // -fvisibility-inlines-hidden. 555 // lld will instead pick the one listed first on the link command line and 556 // give it visibility as if the function was built without 557 // -fvisibility-inlines-hidden. 558 // If both functions have the same contents, this will have the same 559 // behavior. If not, it won't, but the input had an ODR violation in 560 // that case. 561 // 562 // Similarly, merging a symbol 563 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 564 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 565 // should produce one 566 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 567 // with ld64's semantics, because it means the non-private-extern 568 // definition will continue to take priority if more private extern 569 // definitions are encountered. With lld's semantics there's no observable 570 // difference between a symbol that's isWeakDefCanBeHidden or one that's 571 // privateExtern -- neither makes it into the dynamic symbol table. So just 572 // promote isWeakDefCanBeHidden to isPrivateExtern here. 573 if (isWeakDefCanBeHidden) 574 isPrivateExtern = true; 575 576 return symtab->addDefined( 577 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 578 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 579 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 580 } 581 assert(!isWeakDefCanBeHidden && 582 "weak_def_can_be_hidden on already-hidden symbol?"); 583 return make<Defined>( 584 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 585 /*isExternal=*/false, /*isPrivateExtern=*/false, 586 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 587 sym.n_desc & N_NO_DEAD_STRIP); 588 } 589 590 // Absolute symbols are defined symbols that do not have an associated 591 // InputSection. They cannot be weak. 592 template <class NList> 593 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 594 StringRef name) { 595 if (sym.n_type & N_EXT) { 596 return symtab->addDefined( 597 name, file, nullptr, sym.n_value, /*size=*/0, 598 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 599 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 600 } 601 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 602 /*isWeakDef=*/false, 603 /*isExternal=*/false, /*isPrivateExtern=*/false, 604 sym.n_desc & N_ARM_THUMB_DEF, 605 /*isReferencedDynamically=*/false, 606 sym.n_desc & N_NO_DEAD_STRIP); 607 } 608 609 template <class NList> 610 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 611 StringRef name) { 612 uint8_t type = sym.n_type & N_TYPE; 613 switch (type) { 614 case N_UNDF: 615 return sym.n_value == 0 616 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 617 : symtab->addCommon(name, this, sym.n_value, 618 1 << GET_COMM_ALIGN(sym.n_desc), 619 sym.n_type & N_PEXT); 620 case N_ABS: 621 return createAbsolute(sym, this, name); 622 case N_PBUD: 623 case N_INDR: 624 error("TODO: support symbols of type " + std::to_string(type)); 625 return nullptr; 626 case N_SECT: 627 llvm_unreachable( 628 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 629 default: 630 llvm_unreachable("invalid symbol type"); 631 } 632 } 633 634 template <class NList> static bool isUndef(const NList &sym) { 635 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 636 } 637 638 template <class LP> 639 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 640 ArrayRef<typename LP::nlist> nList, 641 const char *strtab, bool subsectionsViaSymbols) { 642 using NList = typename LP::nlist; 643 644 // Groups indices of the symbols by the sections that contain them. 645 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 646 symbols.resize(nList.size()); 647 SmallVector<unsigned, 32> undefineds; 648 for (uint32_t i = 0; i < nList.size(); ++i) { 649 const NList &sym = nList[i]; 650 651 // Ignore debug symbols for now. 652 // FIXME: may need special handling. 653 if (sym.n_type & N_STAB) 654 continue; 655 656 StringRef name = strtab + sym.n_strx; 657 if ((sym.n_type & N_TYPE) == N_SECT) { 658 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 659 // parseSections() may have chosen not to parse this section. 660 if (subsecMap.empty()) 661 continue; 662 symbolsBySection[sym.n_sect - 1].push_back(i); 663 } else if (isUndef(sym)) { 664 undefineds.push_back(i); 665 } else { 666 symbols[i] = parseNonSectionSymbol(sym, name); 667 } 668 } 669 670 for (size_t i = 0; i < subsections.size(); ++i) { 671 SubsectionMap &subsecMap = subsections[i]; 672 if (subsecMap.empty()) 673 continue; 674 675 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 676 uint64_t sectionAddr = sectionHeaders[i].addr; 677 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 678 679 InputSection *lastIsec = subsecMap.back().isec; 680 // Record-based sections have already been split into subsections during 681 // parseSections(), so we simply need to match Symbols to the corresponding 682 // subsection here. 683 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 684 for (size_t j = 0; j < symbolIndices.size(); ++j) { 685 uint32_t symIndex = symbolIndices[j]; 686 const NList &sym = nList[symIndex]; 687 StringRef name = strtab + sym.n_strx; 688 uint64_t symbolOffset = sym.n_value - sectionAddr; 689 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 690 if (symbolOffset != 0) { 691 error(toString(lastIsec) + ": symbol " + name + 692 " at misaligned offset"); 693 continue; 694 } 695 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 696 } 697 continue; 698 } 699 700 // Calculate symbol sizes and create subsections by splitting the sections 701 // along symbol boundaries. 702 // We populate subsecMap by repeatedly splitting the last (highest address) 703 // subsection. 704 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 705 return nList[lhs].n_value < nList[rhs].n_value; 706 }); 707 SubsectionEntry subsecEntry = subsecMap.back(); 708 for (size_t j = 0; j < symbolIndices.size(); ++j) { 709 uint32_t symIndex = symbolIndices[j]; 710 const NList &sym = nList[symIndex]; 711 StringRef name = strtab + sym.n_strx; 712 InputSection *isec = subsecEntry.isec; 713 714 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 715 size_t symbolOffset = sym.n_value - subsecAddr; 716 uint64_t symbolSize = 717 j + 1 < symbolIndices.size() 718 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 719 : isec->data.size() - symbolOffset; 720 // There are 4 cases where we do not need to create a new subsection: 721 // 1. If the input file does not use subsections-via-symbols. 722 // 2. Multiple symbols at the same address only induce one subsection. 723 // (The symbolOffset == 0 check covers both this case as well as 724 // the first loop iteration.) 725 // 3. Alternative entry points do not induce new subsections. 726 // 4. If we have a literal section (e.g. __cstring and __literal4). 727 if (!subsectionsViaSymbols || symbolOffset == 0 || 728 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 729 symbols[symIndex] = 730 createDefined(sym, name, isec, symbolOffset, symbolSize); 731 continue; 732 } 733 auto *concatIsec = cast<ConcatInputSection>(isec); 734 735 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 736 nextIsec->wasCoalesced = false; 737 if (isZeroFill(isec->getFlags())) { 738 // Zero-fill sections have NULL data.data() non-zero data.size() 739 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 740 isec->data = {nullptr, symbolOffset}; 741 } else { 742 nextIsec->data = isec->data.slice(symbolOffset); 743 isec->data = isec->data.slice(0, symbolOffset); 744 } 745 746 // By construction, the symbol will be at offset zero in the new 747 // subsection. 748 symbols[symIndex] = 749 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 750 // TODO: ld64 appears to preserve the original alignment as well as each 751 // subsection's offset from the last aligned address. We should consider 752 // emulating that behavior. 753 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 754 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 755 subsecEntry = subsecMap.back(); 756 } 757 } 758 759 // Undefined symbols can trigger recursive fetch from Archives due to 760 // LazySymbols. Process defined symbols first so that the relative order 761 // between a defined symbol and an undefined symbol does not change the 762 // symbol resolution behavior. In addition, a set of interconnected symbols 763 // will all be resolved to the same file, instead of being resolved to 764 // different files. 765 for (unsigned i : undefineds) { 766 const NList &sym = nList[i]; 767 StringRef name = strtab + sym.n_strx; 768 symbols[i] = parseNonSectionSymbol(sym, name); 769 } 770 } 771 772 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 773 StringRef sectName) 774 : InputFile(OpaqueKind, mb) { 775 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 776 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 777 ConcatInputSection *isec = 778 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 779 /*file=*/this, data); 780 isec->live = true; 781 subsections.push_back({{0, isec}}); 782 } 783 784 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 785 : InputFile(ObjKind, mb), modTime(modTime) { 786 this->archiveName = std::string(archiveName); 787 if (target->wordSize == 8) 788 parse<LP64>(); 789 else 790 parse<ILP32>(); 791 } 792 793 template <class LP> void ObjFile::parse() { 794 using Header = typename LP::mach_header; 795 using SegmentCommand = typename LP::segment_command; 796 using Section = typename LP::section; 797 using NList = typename LP::nlist; 798 799 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 800 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 801 802 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 803 if (arch != config->arch()) { 804 auto msg = config->errorForArchMismatch 805 ? static_cast<void (*)(const Twine &)>(error) 806 : warn; 807 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 808 " which is incompatible with target architecture " + 809 getArchitectureName(config->arch())); 810 return; 811 } 812 813 if (!checkCompatibility(this)) 814 return; 815 816 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 817 StringRef data{reinterpret_cast<const char *>(cmd + 1), 818 cmd->cmdsize - sizeof(linker_option_command)}; 819 parseLCLinkerOption(this, cmd->count, data); 820 } 821 822 ArrayRef<Section> sectionHeaders; 823 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 824 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 825 sectionHeaders = 826 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 827 parseSections(sectionHeaders); 828 } 829 830 // TODO: Error on missing LC_SYMTAB? 831 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 832 auto *c = reinterpret_cast<const symtab_command *>(cmd); 833 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 834 c->nsyms); 835 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 836 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 837 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 838 } 839 840 // The relocations may refer to the symbols, so we parse them after we have 841 // parsed all the symbols. 842 for (size_t i = 0, n = subsections.size(); i < n; ++i) 843 if (!subsections[i].empty()) 844 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 845 846 parseDebugInfo(); 847 if (config->emitDataInCodeInfo) 848 parseDataInCode(); 849 registerCompactUnwind(); 850 } 851 852 void ObjFile::parseDebugInfo() { 853 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 854 if (!dObj) 855 return; 856 857 auto *ctx = make<DWARFContext>( 858 std::move(dObj), "", 859 [&](Error err) { 860 warn(toString(this) + ": " + toString(std::move(err))); 861 }, 862 [&](Error warning) { 863 warn(toString(this) + ": " + toString(std::move(warning))); 864 }); 865 866 // TODO: Since object files can contain a lot of DWARF info, we should verify 867 // that we are parsing just the info we need 868 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 869 // FIXME: There can be more than one compile unit per object file. See 870 // PR48637. 871 auto it = units.begin(); 872 compileUnit = it->get(); 873 } 874 875 void ObjFile::parseDataInCode() { 876 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 877 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 878 if (!cmd) 879 return; 880 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 881 dataInCodeEntries = { 882 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 883 c->datasize / sizeof(data_in_code_entry)}; 884 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 885 const data_in_code_entry &rhs) { 886 return lhs.offset < rhs.offset; 887 })); 888 } 889 890 // Create pointers from symbols to their associated compact unwind entries. 891 void ObjFile::registerCompactUnwind() { 892 // First, locate the __compact_unwind section. 893 SubsectionMap *cuSubsecMap = nullptr; 894 for (SubsectionMap &map : subsections) { 895 if (map.empty()) 896 continue; 897 if (map[0].isec->getSegName() != segment_names::ld) 898 continue; 899 cuSubsecMap = ↦ 900 break; 901 } 902 if (!cuSubsecMap) 903 return; 904 905 for (SubsectionEntry &entry : *cuSubsecMap) { 906 ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec); 907 ConcatInputSection *referentIsec; 908 for (const Reloc &r : isec->relocs) { 909 if (r.offset != 0) 910 continue; 911 uint64_t add = r.addend; 912 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 913 add += sym->value; 914 referentIsec = cast<ConcatInputSection>(sym->isec); 915 } else { 916 referentIsec = 917 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 918 } 919 if (referentIsec->getSegName() != segment_names::text) 920 error("compact unwind references address in " + toString(referentIsec) + 921 " which is not in segment __TEXT"); 922 // The functionAddress relocations are typically section relocations. 923 // However, unwind info operates on a per-symbol basis, so we search for 924 // the function symbol here. 925 auto it = llvm::lower_bound( 926 referentIsec->symbols, add, 927 [](Defined *d, uint64_t add) { return d->value < add; }); 928 // The relocation should point at the exact address of a symbol (with no 929 // addend). 930 if (it == referentIsec->symbols.end() || (*it)->value != add) { 931 assert(referentIsec->wasCoalesced); 932 continue; 933 } 934 (*it)->compactUnwind = isec; 935 } 936 } 937 } 938 939 // The path can point to either a dylib or a .tbd file. 940 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 941 Optional<MemoryBufferRef> mbref = readFile(path); 942 if (!mbref) { 943 error("could not read dylib file at " + path); 944 return nullptr; 945 } 946 return loadDylib(*mbref, umbrella); 947 } 948 949 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 950 // the first document storing child pointers to the rest of them. When we are 951 // processing a given TBD file, we store that top-level document in 952 // currentTopLevelTapi. When processing re-exports, we search its children for 953 // potentially matching documents in the same TBD file. Note that the children 954 // themselves don't point to further documents, i.e. this is a two-level tree. 955 // 956 // Re-exports can either refer to on-disk files, or to documents within .tbd 957 // files. 958 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 959 const InterfaceFile *currentTopLevelTapi) { 960 // Search order: 961 // 1. Install name basename in -F / -L directories. 962 { 963 StringRef stem = path::stem(path); 964 SmallString<128> frameworkName; 965 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 966 bool isFramework = path.endswith(frameworkName); 967 if (isFramework) { 968 for (StringRef dir : config->frameworkSearchPaths) { 969 SmallString<128> candidate = dir; 970 path::append(candidate, frameworkName); 971 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 972 return loadDylib(*dylibPath, umbrella); 973 } 974 } else if (Optional<StringRef> dylibPath = findPathCombination( 975 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 976 return loadDylib(*dylibPath, umbrella); 977 } 978 979 // 2. As absolute path. 980 if (path::is_absolute(path, path::Style::posix)) 981 for (StringRef root : config->systemLibraryRoots) 982 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 983 return loadDylib(*dylibPath, umbrella); 984 985 // 3. As relative path. 986 987 // TODO: Handle -dylib_file 988 989 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 990 SmallString<128> newPath; 991 if (config->outputType == MH_EXECUTE && 992 path.consume_front("@executable_path/")) { 993 // ld64 allows overriding this with the undocumented flag -executable_path. 994 // lld doesn't currently implement that flag. 995 // FIXME: Consider using finalOutput instead of outputFile. 996 path::append(newPath, path::parent_path(config->outputFile), path); 997 path = newPath; 998 } else if (path.consume_front("@loader_path/")) { 999 fs::real_path(umbrella->getName(), newPath); 1000 path::remove_filename(newPath); 1001 path::append(newPath, path); 1002 path = newPath; 1003 } else if (path.startswith("@rpath/")) { 1004 for (StringRef rpath : umbrella->rpaths) { 1005 newPath.clear(); 1006 if (rpath.consume_front("@loader_path/")) { 1007 fs::real_path(umbrella->getName(), newPath); 1008 path::remove_filename(newPath); 1009 } 1010 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1011 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1012 return loadDylib(*dylibPath, umbrella); 1013 } 1014 } 1015 1016 // FIXME: Should this be further up? 1017 if (currentTopLevelTapi) { 1018 for (InterfaceFile &child : 1019 make_pointee_range(currentTopLevelTapi->documents())) { 1020 assert(child.documents().empty()); 1021 if (path == child.getInstallName()) { 1022 auto file = make<DylibFile>(child, umbrella); 1023 file->parseReexports(child); 1024 return file; 1025 } 1026 } 1027 } 1028 1029 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1030 return loadDylib(*dylibPath, umbrella); 1031 1032 return nullptr; 1033 } 1034 1035 // If a re-exported dylib is public (lives in /usr/lib or 1036 // /System/Library/Frameworks), then it is considered implicitly linked: we 1037 // should bind to its symbols directly instead of via the re-exporting umbrella 1038 // library. 1039 static bool isImplicitlyLinked(StringRef path) { 1040 if (!config->implicitDylibs) 1041 return false; 1042 1043 if (path::parent_path(path) == "/usr/lib") 1044 return true; 1045 1046 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1047 if (path.consume_front("/System/Library/Frameworks/")) { 1048 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1049 return path::filename(path) == frameworkName; 1050 } 1051 1052 return false; 1053 } 1054 1055 static void loadReexport(StringRef path, DylibFile *umbrella, 1056 const InterfaceFile *currentTopLevelTapi) { 1057 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1058 if (!reexport) 1059 error("unable to locate re-export with install name " + path); 1060 } 1061 1062 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1063 bool isBundleLoader) 1064 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1065 isBundleLoader(isBundleLoader) { 1066 assert(!isBundleLoader || !umbrella); 1067 if (umbrella == nullptr) 1068 umbrella = this; 1069 this->umbrella = umbrella; 1070 1071 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1072 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1073 1074 // Initialize installName. 1075 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1076 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1077 currentVersion = read32le(&c->dylib.current_version); 1078 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1079 installName = 1080 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1081 } else if (!isBundleLoader) { 1082 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1083 // so it's OK. 1084 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1085 return; 1086 } 1087 1088 if (config->printEachFile) 1089 message(toString(this)); 1090 inputFiles.insert(this); 1091 1092 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1093 1094 if (!checkCompatibility(this)) 1095 return; 1096 1097 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1098 1099 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1100 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1101 rpaths.push_back(rpath); 1102 } 1103 1104 // Initialize symbols. 1105 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1106 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1107 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1108 parseTrie(buf + c->export_off, c->export_size, 1109 [&](const Twine &name, uint64_t flags) { 1110 StringRef savedName = saver.save(name); 1111 if (handleLDSymbol(savedName)) 1112 return; 1113 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1114 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1115 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1116 isWeakDef, isTlv)); 1117 }); 1118 } else { 1119 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1120 return; 1121 } 1122 } 1123 1124 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1125 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1126 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1127 target->headerSize; 1128 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1129 auto *cmd = reinterpret_cast<const load_command *>(p); 1130 p += cmd->cmdsize; 1131 1132 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1133 cmd->cmd == LC_REEXPORT_DYLIB) { 1134 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1135 StringRef reexportPath = 1136 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1137 loadReexport(reexportPath, exportingFile, nullptr); 1138 } 1139 1140 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1141 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1142 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1143 if (config->namespaceKind == NamespaceKind::flat && 1144 cmd->cmd == LC_LOAD_DYLIB) { 1145 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1146 StringRef dylibPath = 1147 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1148 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1149 if (!dylib) 1150 error(Twine("unable to locate library '") + dylibPath + 1151 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1152 } 1153 } 1154 } 1155 1156 // Some versions of XCode ship with .tbd files that don't have the right 1157 // platform settings. 1158 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1159 "/usr/lib/system/libsystem_kernel.dylib", 1160 "/usr/lib/system/libsystem_platform.dylib", 1161 "/usr/lib/system/libsystem_pthread.dylib"}; 1162 1163 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1164 bool isBundleLoader) 1165 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1166 isBundleLoader(isBundleLoader) { 1167 // FIXME: Add test for the missing TBD code path. 1168 1169 if (umbrella == nullptr) 1170 umbrella = this; 1171 this->umbrella = umbrella; 1172 1173 installName = saver.save(interface.getInstallName()); 1174 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1175 currentVersion = interface.getCurrentVersion().rawValue(); 1176 1177 if (config->printEachFile) 1178 message(toString(this)); 1179 inputFiles.insert(this); 1180 1181 if (!is_contained(skipPlatformChecks, installName) && 1182 !is_contained(interface.targets(), config->platformInfo.target)) { 1183 error(toString(this) + " is incompatible with " + 1184 std::string(config->platformInfo.target)); 1185 return; 1186 } 1187 1188 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1189 1190 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1191 auto addSymbol = [&](const Twine &name) -> void { 1192 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1193 /*isWeakDef=*/false, 1194 /*isTlv=*/false)); 1195 }; 1196 // TODO(compnerd) filter out symbols based on the target platform 1197 // TODO: handle weak defs, thread locals 1198 for (const auto *symbol : interface.symbols()) { 1199 if (!symbol->getArchitectures().has(config->arch())) 1200 continue; 1201 1202 if (handleLDSymbol(symbol->getName())) 1203 continue; 1204 1205 switch (symbol->getKind()) { 1206 case SymbolKind::GlobalSymbol: 1207 addSymbol(symbol->getName()); 1208 break; 1209 case SymbolKind::ObjectiveCClass: 1210 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1211 // want to emulate that. 1212 addSymbol(objc::klass + symbol->getName()); 1213 addSymbol(objc::metaclass + symbol->getName()); 1214 break; 1215 case SymbolKind::ObjectiveCClassEHType: 1216 addSymbol(objc::ehtype + symbol->getName()); 1217 break; 1218 case SymbolKind::ObjectiveCInstanceVariable: 1219 addSymbol(objc::ivar + symbol->getName()); 1220 break; 1221 } 1222 } 1223 } 1224 1225 void DylibFile::parseReexports(const InterfaceFile &interface) { 1226 const InterfaceFile *topLevel = 1227 interface.getParent() == nullptr ? &interface : interface.getParent(); 1228 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1229 InterfaceFile::const_target_range targets = intfRef.targets(); 1230 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1231 is_contained(targets, config->platformInfo.target)) 1232 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1233 } 1234 } 1235 1236 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1237 // name, compatibility version or hide/add symbols) for specific target 1238 // versions. 1239 bool DylibFile::handleLDSymbol(StringRef originalName) { 1240 if (!originalName.startswith("$ld$")) 1241 return false; 1242 1243 StringRef action; 1244 StringRef name; 1245 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1246 if (action == "previous") 1247 handleLDPreviousSymbol(name, originalName); 1248 else if (action == "install_name") 1249 handleLDInstallNameSymbol(name, originalName); 1250 return true; 1251 } 1252 1253 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1254 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1255 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1256 StringRef installName; 1257 StringRef compatVersion; 1258 StringRef platformStr; 1259 StringRef startVersion; 1260 StringRef endVersion; 1261 StringRef symbolName; 1262 StringRef rest; 1263 1264 std::tie(installName, name) = name.split('$'); 1265 std::tie(compatVersion, name) = name.split('$'); 1266 std::tie(platformStr, name) = name.split('$'); 1267 std::tie(startVersion, name) = name.split('$'); 1268 std::tie(endVersion, name) = name.split('$'); 1269 std::tie(symbolName, rest) = name.split('$'); 1270 // TODO: ld64 contains some logic for non-empty symbolName as well. 1271 if (!symbolName.empty()) 1272 return; 1273 unsigned platform; 1274 if (platformStr.getAsInteger(10, platform) || 1275 platform != static_cast<unsigned>(config->platform())) 1276 return; 1277 1278 VersionTuple start; 1279 if (start.tryParse(startVersion)) { 1280 warn("failed to parse start version, symbol '" + originalName + 1281 "' ignored"); 1282 return; 1283 } 1284 VersionTuple end; 1285 if (end.tryParse(endVersion)) { 1286 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1287 return; 1288 } 1289 if (config->platformInfo.minimum < start || 1290 config->platformInfo.minimum >= end) 1291 return; 1292 1293 this->installName = saver.save(installName); 1294 1295 if (!compatVersion.empty()) { 1296 VersionTuple cVersion; 1297 if (cVersion.tryParse(compatVersion)) { 1298 warn("failed to parse compatibility version, symbol '" + originalName + 1299 "' ignored"); 1300 return; 1301 } 1302 compatibilityVersion = encodeVersion(cVersion); 1303 } 1304 } 1305 1306 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1307 StringRef originalName) { 1308 // originalName: $ld$ install_name $ os<version> $ install_name 1309 StringRef condition, installName; 1310 std::tie(condition, installName) = name.split('$'); 1311 VersionTuple version; 1312 if (!condition.consume_front("os") || version.tryParse(condition)) 1313 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1314 else if (version == config->platformInfo.minimum) 1315 this->installName = saver.save(installName); 1316 } 1317 1318 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1319 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1320 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1321 } 1322 1323 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1324 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1325 1326 void ArchiveFile::addLazySymbols() { 1327 for (const object::Archive::Symbol &sym : file->symbols()) 1328 symtab->addLazy(sym.getName(), this, sym); 1329 } 1330 1331 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1332 uint32_t modTime, 1333 StringRef archiveName, 1334 uint64_t offsetInArchive) { 1335 if (config->zeroModTime) 1336 modTime = 0; 1337 1338 switch (identify_magic(mb.getBuffer())) { 1339 case file_magic::macho_object: 1340 return make<ObjFile>(mb, modTime, archiveName); 1341 case file_magic::bitcode: 1342 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1343 default: 1344 return createStringError(inconvertibleErrorCode(), 1345 mb.getBufferIdentifier() + 1346 " has unhandled file type"); 1347 } 1348 } 1349 1350 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1351 if (!seen.insert(c.getChildOffset()).second) 1352 return Error::success(); 1353 1354 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1355 if (!mb) 1356 return mb.takeError(); 1357 1358 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1359 if (tar && c.getParent()->isThin()) 1360 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1361 1362 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1363 if (!modTime) 1364 return modTime.takeError(); 1365 1366 Expected<InputFile *> file = 1367 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1368 1369 if (!file) 1370 return file.takeError(); 1371 1372 inputFiles.insert(*file); 1373 printArchiveMemberLoad(reason, *file); 1374 return Error::success(); 1375 } 1376 1377 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1378 object::Archive::Child c = 1379 CHECK(sym.getMember(), toString(this) + 1380 ": could not get the member defining symbol " + 1381 toMachOString(sym)); 1382 1383 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1384 // and become invalid after that call. Copy it to the stack so we can refer 1385 // to it later. 1386 const object::Archive::Symbol symCopy = sym; 1387 1388 // ld64 doesn't demangle sym here even with -demangle. 1389 // Match that: intentionally don't call toMachOString(). 1390 if (Error e = fetch(c, symCopy.getName())) 1391 error(toString(this) + ": could not get the member defining symbol " + 1392 toMachOString(symCopy) + ": " + toString(std::move(e))); 1393 } 1394 1395 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1396 BitcodeFile &file) { 1397 StringRef name = saver.save(objSym.getName()); 1398 1399 // TODO: support weak references 1400 if (objSym.isUndefined()) 1401 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1402 1403 // TODO: Write a test demonstrating why computing isPrivateExtern before 1404 // LTO compilation is important. 1405 bool isPrivateExtern = false; 1406 switch (objSym.getVisibility()) { 1407 case GlobalValue::HiddenVisibility: 1408 isPrivateExtern = true; 1409 break; 1410 case GlobalValue::ProtectedVisibility: 1411 error(name + " has protected visibility, which is not supported by Mach-O"); 1412 break; 1413 case GlobalValue::DefaultVisibility: 1414 break; 1415 } 1416 1417 if (objSym.isCommon()) 1418 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1419 objSym.getCommonAlignment(), isPrivateExtern); 1420 1421 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1422 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1423 /*isThumb=*/false, 1424 /*isReferencedDynamically=*/false, 1425 /*noDeadStrip=*/false); 1426 } 1427 1428 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1429 uint64_t offsetInArchive) 1430 : InputFile(BitcodeKind, mb) { 1431 std::string path = mb.getBufferIdentifier().str(); 1432 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1433 // name. If two members with the same name are provided, this causes a 1434 // collision and ThinLTO can't proceed. 1435 // So, we append the archive name to disambiguate two members with the same 1436 // name from multiple different archives, and offset within the archive to 1437 // disambiguate two members of the same name from a single archive. 1438 MemoryBufferRef mbref( 1439 mb.getBuffer(), 1440 saver.save(archiveName.empty() ? path 1441 : archiveName + sys::path::filename(path) + 1442 utostr(offsetInArchive))); 1443 1444 obj = check(lto::InputFile::create(mbref)); 1445 1446 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1447 // "winning" symbol will then be marked as Prevailing at LTO compilation 1448 // time. 1449 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1450 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1451 } 1452 1453 template void ObjFile::parse<LP64>(); 1454