1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/MachO/Architecture.h" 70 #include "llvm/TextAPI/MachO/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 92 ")") 93 .str(); 94 } 95 96 SetVector<InputFile *> macho::inputFiles; 97 std::unique_ptr<TarWriter> macho::tar; 98 int InputFile::idCount = 0; 99 100 // Open a given file path and return it as a memory-mapped file. 101 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 102 // Open a file. 103 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 104 if (std::error_code ec = mbOrErr.getError()) { 105 error("cannot open " + path + ": " + ec.message()); 106 return None; 107 } 108 109 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 110 MemoryBufferRef mbref = mb->getMemBufferRef(); 111 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 112 113 // If this is a regular non-fat file, return it. 114 const char *buf = mbref.getBufferStart(); 115 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 116 if (mbref.getBufferSize() < sizeof(uint32_t) || 117 read32be(&hdr->magic) != FAT_MAGIC) { 118 if (tar) 119 tar->append(relativeToRoot(path), mbref.getBuffer()); 120 return mbref; 121 } 122 123 // Object files and archive files may be fat files, which contains 124 // multiple real files for different CPU ISAs. Here, we search for a 125 // file that matches with the current link target and returns it as 126 // a MemoryBufferRef. 127 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 128 129 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 130 if (reinterpret_cast<const char *>(arch + i + 1) > 131 buf + mbref.getBufferSize()) { 132 error(path + ": fat_arch struct extends beyond end of file"); 133 return None; 134 } 135 136 if (read32be(&arch[i].cputype) != target->cpuType || 137 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 138 continue; 139 140 uint32_t offset = read32be(&arch[i].offset); 141 uint32_t size = read32be(&arch[i].size); 142 if (offset + size > mbref.getBufferSize()) 143 error(path + ": slice extends beyond end of file"); 144 if (tar) 145 tar->append(relativeToRoot(path), mbref.getBuffer()); 146 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 147 } 148 149 error("unable to find matching architecture in " + path); 150 return None; 151 } 152 153 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 154 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 155 156 void ObjFile::parseSections(ArrayRef<section_64> sections) { 157 subsections.reserve(sections.size()); 158 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 159 160 for (const section_64 &sec : sections) { 161 InputSection *isec = make<InputSection>(); 162 isec->file = this; 163 isec->name = 164 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 165 isec->segname = 166 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 167 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 168 static_cast<size_t>(sec.size)}; 169 if (sec.align >= 32) 170 error("alignment " + std::to_string(sec.align) + " of section " + 171 isec->name + " is too large"); 172 else 173 isec->align = 1 << sec.align; 174 isec->flags = sec.flags; 175 176 if (!(isDebugSection(isec->flags) && 177 isec->segname == segment_names::dwarf)) { 178 subsections.push_back({{0, isec}}); 179 } else { 180 // Instead of emitting DWARF sections, we emit STABS symbols to the 181 // object files that contain them. We filter them out early to avoid 182 // parsing their relocations unnecessarily. But we must still push an 183 // empty map to ensure the indices line up for the remaining sections. 184 subsections.push_back({}); 185 debugSections.push_back(isec); 186 } 187 } 188 } 189 190 // Find the subsection corresponding to the greatest section offset that is <= 191 // that of the given offset. 192 // 193 // offset: an offset relative to the start of the original InputSection (before 194 // any subsection splitting has occurred). It will be updated to represent the 195 // same location as an offset relative to the start of the containing 196 // subsection. 197 static InputSection *findContainingSubsection(SubsectionMapping &map, 198 uint64_t *offset) { 199 auto it = std::prev(llvm::upper_bound( 200 map, *offset, [](uint64_t value, SubsectionEntry subsectionEntry) { 201 return value < subsectionEntry.offset; 202 })); 203 *offset -= it->offset; 204 return it->isec; 205 } 206 207 static bool validateRelocationInfo(InputFile *file, const section_64 &sec, 208 relocation_info rel) { 209 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 210 bool valid = true; 211 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 212 valid = false; 213 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 214 std::to_string(rel.r_address) + " of " + sec.segname + "," + 215 sec.sectname + " in " + toString(file)) 216 .str(); 217 }; 218 219 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 220 error(message("must be extern")); 221 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 222 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 223 "be PC-relative")); 224 if (isThreadLocalVariables(sec.flags) && 225 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 226 error(message("not allowed in thread-local section, must be UNSIGNED")); 227 if (rel.r_length < 2 || rel.r_length > 3 || 228 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 229 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 230 error(message("has width " + std::to_string(1 << rel.r_length) + 231 " bytes, but must be " + 232 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 233 " bytes")); 234 } 235 return valid; 236 } 237 238 void ObjFile::parseRelocations(const section_64 &sec, 239 SubsectionMapping &subsecMap) { 240 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 241 ArrayRef<relocation_info> relInfos( 242 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 243 244 for (size_t i = 0; i < relInfos.size(); i++) { 245 // Paired relocations serve as Mach-O's method for attaching a 246 // supplemental datum to a primary relocation record. ELF does not 247 // need them because the *_RELOC_RELA records contain the extra 248 // addend field, vs. *_RELOC_REL which omit the addend. 249 // 250 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 251 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 252 // datum for each is a symbolic address. The result is the offset 253 // between two addresses. 254 // 255 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 256 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 257 // base symbolic address. 258 // 259 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 260 // addend into the instruction stream. On X86, a relocatable address 261 // field always occupies an entire contiguous sequence of byte(s), 262 // so there is no need to merge opcode bits with address 263 // bits. Therefore, it's easy and convenient to store addends in the 264 // instruction-stream bytes that would otherwise contain zeroes. By 265 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 266 // address bits so that bitwise arithmetic is necessary to extract 267 // and insert them. Storing addends in the instruction stream is 268 // possible, but inconvenient and more costly at link time. 269 270 int64_t pairedAddend = 0; 271 relocation_info relInfo = relInfos[i]; 272 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 273 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 274 relInfo = relInfos[++i]; 275 } 276 assert(i < relInfos.size()); 277 if (!validateRelocationInfo(this, sec, relInfo)) 278 continue; 279 if (relInfo.r_address & R_SCATTERED) 280 fatal("TODO: Scattered relocations not supported"); 281 282 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo); 283 assert(!(embeddedAddend && pairedAddend)); 284 int64_t totalAddend = pairedAddend + embeddedAddend; 285 Reloc r; 286 r.type = relInfo.r_type; 287 r.pcrel = relInfo.r_pcrel; 288 r.length = relInfo.r_length; 289 r.offset = relInfo.r_address; 290 if (relInfo.r_extern) { 291 r.referent = symbols[relInfo.r_symbolnum]; 292 r.addend = totalAddend; 293 } else { 294 SubsectionMapping &referentSubsecMap = 295 subsections[relInfo.r_symbolnum - 1]; 296 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 297 uint64_t referentOffset; 298 if (relInfo.r_pcrel) { 299 // The implicit addend for pcrel section relocations is the pcrel offset 300 // in terms of the addresses in the input file. Here we adjust it so 301 // that it describes the offset from the start of the referent section. 302 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 303 // have pcrel section relocations. We may want to factor this out into 304 // the arch-specific .cpp file. 305 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 306 referentOffset = 307 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 308 } else { 309 // The addend for a non-pcrel relocation is its absolute address. 310 referentOffset = totalAddend - referentSec.addr; 311 } 312 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 313 r.addend = referentOffset; 314 } 315 316 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 317 subsec->relocs.push_back(r); 318 319 if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) { 320 relInfo = relInfos[++i]; 321 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 322 // indicating the minuend symbol. 323 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 324 relInfo.r_extern); 325 Reloc p; 326 p.type = relInfo.r_type; 327 p.referent = symbols[relInfo.r_symbolnum]; 328 subsec->relocs.push_back(p); 329 } 330 } 331 } 332 333 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 334 StringRef name, InputSection *isec, 335 uint64_t value) { 336 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 337 // N_EXT: Global symbols 338 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 339 // N_PEXT: Does not occur in input files in practice, 340 // a private extern must be external. 341 // 0: Translation-unit scoped. These are not in the symbol table. 342 343 if (sym.n_type & (N_EXT | N_PEXT)) { 344 assert((sym.n_type & N_EXT) && "invalid input"); 345 return symtab->addDefined(name, isec->file, isec, value, 346 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 347 } 348 return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF, 349 /*isExternal=*/false, /*isPrivateExtern=*/false); 350 } 351 352 // Checks if the version specified in `cmd` is compatible with target 353 // version. IOW, check if cmd's version >= config's version. 354 static bool hasCompatVersion(const InputFile *input, 355 const build_version_command *cmd) { 356 357 if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) { 358 error(toString(input) + " has platform " + 359 getPlatformName(static_cast<PlatformKind>(cmd->platform)) + 360 Twine(", which is different from target platform ") + 361 getPlatformName(config->target.Platform)); 362 return false; 363 } 364 365 unsigned major = cmd->minos >> 16; 366 unsigned minor = (cmd->minos >> 8) & 0xffu; 367 unsigned subMinor = cmd->minos & 0xffu; 368 VersionTuple version(major, minor, subMinor); 369 if (version >= config->platformInfo.minimum) 370 return true; 371 372 error(toString(input) + " has version " + version.getAsString() + 373 ", which is incompatible with target version of " + 374 config->platformInfo.minimum.getAsString()); 375 return false; 376 } 377 378 // Absolute symbols are defined symbols that do not have an associated 379 // InputSection. They cannot be weak. 380 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 381 InputFile *file, StringRef name) { 382 if (sym.n_type & (N_EXT | N_PEXT)) { 383 assert((sym.n_type & N_EXT) && "invalid input"); 384 return symtab->addDefined(name, file, nullptr, sym.n_value, 385 /*isWeakDef=*/false, sym.n_type & N_PEXT); 386 } 387 return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false, 388 /*isExternal=*/false, /*isPrivateExtern=*/false); 389 } 390 391 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 392 StringRef name) { 393 uint8_t type = sym.n_type & N_TYPE; 394 switch (type) { 395 case N_UNDF: 396 return sym.n_value == 0 397 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 398 : symtab->addCommon(name, this, sym.n_value, 399 1 << GET_COMM_ALIGN(sym.n_desc), 400 sym.n_type & N_PEXT); 401 case N_ABS: 402 return createAbsolute(sym, this, name); 403 case N_PBUD: 404 case N_INDR: 405 error("TODO: support symbols of type " + std::to_string(type)); 406 return nullptr; 407 case N_SECT: 408 llvm_unreachable( 409 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 410 default: 411 llvm_unreachable("invalid symbol type"); 412 } 413 } 414 415 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 416 const char *strtab, bool subsectionsViaSymbols) { 417 // Precompute the boundaries of symbols within a section. 418 // If subsectionsViaSymbols is True then the corresponding subsections will be 419 // created, otherwise these boundaries are used for the calculation of symbols 420 // sizes only. 421 422 for (const structs::nlist_64 &sym : nList) { 423 if ((sym.n_type & N_TYPE) == N_SECT && !(sym.n_desc & N_ALT_ENTRY) && 424 !subsections[sym.n_sect - 1].empty()) { 425 SubsectionMapping &subsectionMapping = subsections[sym.n_sect - 1]; 426 subsectionMapping.push_back( 427 {sym.n_value - sectionHeaders[sym.n_sect - 1].addr, 428 subsectionMapping.front().isec}); 429 } 430 } 431 432 for (SubsectionMapping &subsectionMap : subsections) { 433 if (subsectionMap.empty()) 434 continue; 435 llvm::sort(subsectionMap, 436 [](const SubsectionEntry &lhs, const SubsectionEntry &rhs) { 437 return lhs.offset < rhs.offset; 438 }); 439 subsectionMap.erase( 440 std::unique(subsectionMap.begin(), subsectionMap.end(), 441 [](const SubsectionEntry &lhs, const SubsectionEntry &rhs) { 442 return lhs.offset == rhs.offset; 443 }), 444 subsectionMap.end()); 445 if (!subsectionsViaSymbols) 446 continue; 447 for (size_t i = 0; i < subsectionMap.size(); ++i) { 448 uint32_t offset = subsectionMap[i].offset; 449 InputSection *&isec = subsectionMap[i].isec; 450 uint32_t end = i + 1 < subsectionMap.size() ? subsectionMap[i + 1].offset 451 : isec->data.size(); 452 isec = make<InputSection>(*isec); 453 isec->data = isec->data.slice(offset, end - offset); 454 // TODO: ld64 appears to preserve the original alignment as well as each 455 // subsection's offset from the last aligned address. We should consider 456 // emulating that behavior. 457 isec->align = MinAlign(isec->align, offset); 458 } 459 } 460 461 symbols.resize(nList.size()); 462 for (size_t i = 0, n = nList.size(); i < n; ++i) { 463 const structs::nlist_64 &sym = nList[i]; 464 StringRef name = strtab + sym.n_strx; 465 466 if ((sym.n_type & N_TYPE) != N_SECT) { 467 symbols[i] = parseNonSectionSymbol(sym, name); 468 continue; 469 } 470 471 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 472 SubsectionMapping &subsecMap = subsections[sym.n_sect - 1]; 473 474 // parseSections() may have chosen not to parse this section. 475 if (subsecMap.empty()) 476 continue; 477 478 uint64_t offset = sym.n_value - sec.addr; 479 480 // If the input file does not use subsections-via-symbols, all symbols can 481 // use the same subsection. Otherwise, we must split the sections along 482 // symbol boundaries. 483 if (!subsectionsViaSymbols) { 484 symbols[i] = createDefined(sym, name, subsecMap.front().isec, offset); 485 continue; 486 } 487 488 InputSection *subsec = findContainingSubsection(subsecMap, &offset); 489 symbols[i] = createDefined(sym, name, subsec, offset); 490 } 491 492 if (!subsectionsViaSymbols) 493 for (SubsectionMapping &subsectionMap : subsections) 494 if (!subsectionMap.empty()) 495 subsectionMap = {subsectionMap.front()}; 496 } 497 498 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 499 StringRef sectName) 500 : InputFile(OpaqueKind, mb) { 501 InputSection *isec = make<InputSection>(); 502 isec->file = this; 503 isec->name = sectName.take_front(16); 504 isec->segname = segName.take_front(16); 505 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 506 isec->data = {buf, mb.getBufferSize()}; 507 subsections.push_back({{0, isec}}); 508 } 509 510 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 511 : InputFile(ObjKind, mb), modTime(modTime) { 512 this->archiveName = std::string(archiveName); 513 514 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 515 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 516 517 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 518 if (arch != config->target.Arch) { 519 error(toString(this) + " has architecture " + getArchitectureName(arch) + 520 " which is incompatible with target architecture " + 521 getArchitectureName(config->target.Arch)); 522 return; 523 } 524 525 if (const auto *cmd = 526 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 527 if (!hasCompatVersion(this, cmd)) 528 return; 529 } 530 531 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 532 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 533 StringRef data{reinterpret_cast<const char *>(c + 1), 534 c->cmdsize - sizeof(linker_option_command)}; 535 parseLCLinkerOption(this, c->count, data); 536 } 537 538 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 539 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 540 sectionHeaders = ArrayRef<section_64>{ 541 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 542 parseSections(sectionHeaders); 543 } 544 545 // TODO: Error on missing LC_SYMTAB? 546 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 547 auto *c = reinterpret_cast<const symtab_command *>(cmd); 548 ArrayRef<structs::nlist_64> nList( 549 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 550 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 551 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 552 parseSymbols(nList, strtab, subsectionsViaSymbols); 553 } 554 555 // The relocations may refer to the symbols, so we parse them after we have 556 // parsed all the symbols. 557 for (size_t i = 0, n = subsections.size(); i < n; ++i) 558 if (!subsections[i].empty()) 559 parseRelocations(sectionHeaders[i], subsections[i]); 560 561 parseDebugInfo(); 562 } 563 564 void ObjFile::parseDebugInfo() { 565 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 566 if (!dObj) 567 return; 568 569 auto *ctx = make<DWARFContext>( 570 std::move(dObj), "", 571 [&](Error err) { 572 warn(toString(this) + ": " + toString(std::move(err))); 573 }, 574 [&](Error warning) { 575 warn(toString(this) + ": " + toString(std::move(warning))); 576 }); 577 578 // TODO: Since object files can contain a lot of DWARF info, we should verify 579 // that we are parsing just the info we need 580 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 581 // FIXME: There can be more than one compile unit per object file. See 582 // PR48637. 583 auto it = units.begin(); 584 compileUnit = it->get(); 585 } 586 587 // The path can point to either a dylib or a .tbd file. 588 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 589 Optional<MemoryBufferRef> mbref = readFile(path); 590 if (!mbref) { 591 error("could not read dylib file at " + path); 592 return {}; 593 } 594 return loadDylib(*mbref, umbrella); 595 } 596 597 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 598 // the first document storing child pointers to the rest of them. When we are 599 // processing a given TBD file, we store that top-level document in 600 // currentTopLevelTapi. When processing re-exports, we search its children for 601 // potentially matching documents in the same TBD file. Note that the children 602 // themselves don't point to further documents, i.e. this is a two-level tree. 603 // 604 // Re-exports can either refer to on-disk files, or to documents within .tbd 605 // files. 606 static Optional<DylibFile *> 607 findDylib(StringRef path, DylibFile *umbrella, 608 const InterfaceFile *currentTopLevelTapi) { 609 if (path::is_absolute(path, path::Style::posix)) 610 for (StringRef root : config->systemLibraryRoots) 611 if (Optional<std::string> dylibPath = 612 resolveDylibPath((root + path).str())) 613 return loadDylib(*dylibPath, umbrella); 614 615 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 616 617 if (currentTopLevelTapi) { 618 for (InterfaceFile &child : 619 make_pointee_range(currentTopLevelTapi->documents())) { 620 assert(child.documents().empty()); 621 if (path == child.getInstallName()) 622 return make<DylibFile>(child, umbrella); 623 } 624 } 625 626 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 627 return loadDylib(*dylibPath, umbrella); 628 629 return {}; 630 } 631 632 // If a re-exported dylib is public (lives in /usr/lib or 633 // /System/Library/Frameworks), then it is considered implicitly linked: we 634 // should bind to its symbols directly instead of via the re-exporting umbrella 635 // library. 636 static bool isImplicitlyLinked(StringRef path) { 637 if (!config->implicitDylibs) 638 return false; 639 640 if (path::parent_path(path) == "/usr/lib") 641 return true; 642 643 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 644 if (path.consume_front("/System/Library/Frameworks/")) { 645 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 646 return path::filename(path) == frameworkName; 647 } 648 649 return false; 650 } 651 652 void loadReexport(StringRef path, DylibFile *umbrella, 653 const InterfaceFile *currentTopLevelTapi) { 654 Optional<DylibFile *> reexport = 655 findDylib(path, umbrella, currentTopLevelTapi); 656 if (!reexport) 657 error("unable to locate re-export with install name " + path); 658 else if (isImplicitlyLinked(path)) 659 inputFiles.insert(*reexport); 660 } 661 662 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 663 bool isBundleLoader) 664 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 665 isBundleLoader(isBundleLoader) { 666 assert(!isBundleLoader || !umbrella); 667 if (umbrella == nullptr) 668 umbrella = this; 669 670 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 671 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 672 673 // Initialize dylibName. 674 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 675 auto *c = reinterpret_cast<const dylib_command *>(cmd); 676 currentVersion = read32le(&c->dylib.current_version); 677 compatibilityVersion = read32le(&c->dylib.compatibility_version); 678 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 679 } else if (!isBundleLoader) { 680 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 681 // so it's OK. 682 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 683 return; 684 } 685 686 if (const build_version_command *cmd = 687 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 688 if (!hasCompatVersion(this, cmd)) 689 return; 690 } 691 692 // Initialize symbols. 693 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 694 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 695 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 696 parseTrie(buf + c->export_off, c->export_size, 697 [&](const Twine &name, uint64_t flags) { 698 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 699 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 700 symbols.push_back(symtab->addDylib( 701 saver.save(name), exportingFile, isWeakDef, isTlv)); 702 }); 703 } else { 704 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 705 return; 706 } 707 708 const uint8_t *p = 709 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 710 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 711 auto *cmd = reinterpret_cast<const load_command *>(p); 712 p += cmd->cmdsize; 713 714 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 715 cmd->cmd == LC_REEXPORT_DYLIB) { 716 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 717 StringRef reexportPath = 718 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 719 loadReexport(reexportPath, exportingFile, nullptr); 720 } 721 722 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 723 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 724 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 725 if (config->namespaceKind == NamespaceKind::flat && 726 cmd->cmd == LC_LOAD_DYLIB) { 727 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 728 StringRef dylibPath = 729 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 730 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 731 if (!dylib) 732 error(Twine("unable to locate library '") + dylibPath + 733 "' loaded from '" + toString(this) + "' for -flat_namespace"); 734 } 735 } 736 } 737 738 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 739 bool isBundleLoader) 740 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 741 isBundleLoader(isBundleLoader) { 742 // FIXME: Add test for the missing TBD code path. 743 744 if (umbrella == nullptr) 745 umbrella = this; 746 747 dylibName = saver.save(interface.getInstallName()); 748 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 749 currentVersion = interface.getCurrentVersion().rawValue(); 750 751 if (!is_contained(interface.targets(), config->target)) { 752 error(toString(this) + " is incompatible with " + 753 std::string(config->target)); 754 return; 755 } 756 757 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 758 auto addSymbol = [&](const Twine &name) -> void { 759 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 760 /*isWeakDef=*/false, 761 /*isTlv=*/false)); 762 }; 763 // TODO(compnerd) filter out symbols based on the target platform 764 // TODO: handle weak defs, thread locals 765 for (const auto *symbol : interface.symbols()) { 766 if (!symbol->getArchitectures().has(config->target.Arch)) 767 continue; 768 769 switch (symbol->getKind()) { 770 case SymbolKind::GlobalSymbol: 771 addSymbol(symbol->getName()); 772 break; 773 case SymbolKind::ObjectiveCClass: 774 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 775 // want to emulate that. 776 addSymbol(objc::klass + symbol->getName()); 777 addSymbol(objc::metaclass + symbol->getName()); 778 break; 779 case SymbolKind::ObjectiveCClassEHType: 780 addSymbol(objc::ehtype + symbol->getName()); 781 break; 782 case SymbolKind::ObjectiveCInstanceVariable: 783 addSymbol(objc::ivar + symbol->getName()); 784 break; 785 } 786 } 787 788 const InterfaceFile *topLevel = 789 interface.getParent() == nullptr ? &interface : interface.getParent(); 790 791 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 792 InterfaceFile::const_target_range targets = intfRef.targets(); 793 if (is_contained(targets, config->target)) 794 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 795 } 796 } 797 798 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 799 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 800 for (const object::Archive::Symbol &sym : file->symbols()) 801 symtab->addLazy(sym.getName(), this, sym); 802 } 803 804 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 805 object::Archive::Child c = 806 CHECK(sym.getMember(), toString(this) + 807 ": could not get the member for symbol " + 808 toMachOString(sym)); 809 810 if (!seen.insert(c.getChildOffset()).second) 811 return; 812 813 MemoryBufferRef mb = 814 CHECK(c.getMemoryBufferRef(), 815 toString(this) + 816 ": could not get the buffer for the member defining symbol " + 817 toMachOString(sym)); 818 819 if (tar && c.getParent()->isThin()) 820 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 821 822 uint32_t modTime = toTimeT( 823 CHECK(c.getLastModified(), toString(this) + 824 ": could not get the modification time " 825 "for the member defining symbol " + 826 toMachOString(sym))); 827 828 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 829 // and become invalid after that call. Copy it to the stack so we can refer 830 // to it later. 831 const object::Archive::Symbol sym_copy = sym; 832 833 if (Optional<InputFile *> file = 834 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 835 inputFiles.insert(*file); 836 // ld64 doesn't demangle sym here even with -demangle. Match that, so 837 // intentionally no call to toMachOString() here. 838 printArchiveMemberLoad(sym_copy.getName(), *file); 839 } 840 } 841 842 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 843 BitcodeFile &file) { 844 StringRef name = saver.save(objSym.getName()); 845 846 // TODO: support weak references 847 if (objSym.isUndefined()) 848 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 849 850 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 851 852 // TODO: Write a test demonstrating why computing isPrivateExtern before 853 // LTO compilation is important. 854 bool isPrivateExtern = false; 855 switch (objSym.getVisibility()) { 856 case GlobalValue::HiddenVisibility: 857 isPrivateExtern = true; 858 break; 859 case GlobalValue::ProtectedVisibility: 860 error(name + " has protected visibility, which is not supported by Mach-O"); 861 break; 862 case GlobalValue::DefaultVisibility: 863 break; 864 } 865 866 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 867 objSym.isWeak(), isPrivateExtern); 868 } 869 870 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 871 : InputFile(BitcodeKind, mbref) { 872 obj = check(lto::InputFile::create(mbref)); 873 874 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 875 // "winning" symbol will then be marked as Prevailing at LTO compilation 876 // time. 877 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 878 symbols.push_back(createBitcodeSymbol(objSym, *this)); 879 } 880