1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/Architecture.h" 70 #include "llvm/TextAPI/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 92 } 93 94 SetVector<InputFile *> macho::inputFiles; 95 std::unique_ptr<TarWriter> macho::tar; 96 int InputFile::idCount = 0; 97 98 static VersionTuple decodeVersion(uint32_t version) { 99 unsigned major = version >> 16; 100 unsigned minor = (version >> 8) & 0xffu; 101 unsigned subMinor = version & 0xffu; 102 return VersionTuple(major, minor, subMinor); 103 } 104 105 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 106 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 107 return {}; 108 109 const char *hdr = input->mb.getBufferStart(); 110 111 std::vector<PlatformInfo> platformInfos; 112 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 113 PlatformInfo info; 114 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 115 info.minimum = decodeVersion(cmd->minos); 116 platformInfos.emplace_back(std::move(info)); 117 } 118 for (auto *cmd : findCommands<version_min_command>( 119 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 120 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 121 PlatformInfo info; 122 switch (cmd->cmd) { 123 case LC_VERSION_MIN_MACOSX: 124 info.target.Platform = PlatformKind::macOS; 125 break; 126 case LC_VERSION_MIN_IPHONEOS: 127 info.target.Platform = PlatformKind::iOS; 128 break; 129 case LC_VERSION_MIN_TVOS: 130 info.target.Platform = PlatformKind::tvOS; 131 break; 132 case LC_VERSION_MIN_WATCHOS: 133 info.target.Platform = PlatformKind::watchOS; 134 break; 135 } 136 info.minimum = decodeVersion(cmd->version); 137 platformInfos.emplace_back(std::move(info)); 138 } 139 140 return platformInfos; 141 } 142 143 static PlatformKind removeSimulator(PlatformKind platform) { 144 // Mapping of platform to simulator and vice-versa. 145 static const std::map<PlatformKind, PlatformKind> platformMap = { 146 {PlatformKind::iOSSimulator, PlatformKind::iOS}, 147 {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, 148 {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; 149 150 auto iter = platformMap.find(platform); 151 if (iter == platformMap.end()) 152 return platform; 153 return iter->second; 154 } 155 156 static bool checkCompatibility(const InputFile *input) { 157 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 158 if (platformInfos.empty()) 159 return true; 160 161 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 162 return removeSimulator(info.target.Platform) == 163 removeSimulator(config->platform()); 164 }); 165 if (it == platformInfos.end()) { 166 std::string platformNames; 167 raw_string_ostream os(platformNames); 168 interleave( 169 platformInfos, os, 170 [&](const PlatformInfo &info) { 171 os << getPlatformName(info.target.Platform); 172 }, 173 "/"); 174 error(toString(input) + " has platform " + platformNames + 175 Twine(", which is different from target platform ") + 176 getPlatformName(config->platform())); 177 return false; 178 } 179 180 if (it->minimum <= config->platformInfo.minimum) 181 return true; 182 183 error(toString(input) + " has version " + it->minimum.getAsString() + 184 ", which is newer than target minimum of " + 185 config->platformInfo.minimum.getAsString()); 186 return false; 187 } 188 189 // Open a given file path and return it as a memory-mapped file. 190 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 191 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 192 if (std::error_code ec = mbOrErr.getError()) { 193 error("cannot open " + path + ": " + ec.message()); 194 return None; 195 } 196 197 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 198 MemoryBufferRef mbref = mb->getMemBufferRef(); 199 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 200 201 // If this is a regular non-fat file, return it. 202 const char *buf = mbref.getBufferStart(); 203 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 204 if (mbref.getBufferSize() < sizeof(uint32_t) || 205 read32be(&hdr->magic) != FAT_MAGIC) { 206 if (tar) 207 tar->append(relativeToRoot(path), mbref.getBuffer()); 208 return mbref; 209 } 210 211 // Object files and archive files may be fat files, which contain multiple 212 // real files for different CPU ISAs. Here, we search for a file that matches 213 // with the current link target and returns it as a MemoryBufferRef. 214 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 215 216 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 217 if (reinterpret_cast<const char *>(arch + i + 1) > 218 buf + mbref.getBufferSize()) { 219 error(path + ": fat_arch struct extends beyond end of file"); 220 return None; 221 } 222 223 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 224 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 225 continue; 226 227 uint32_t offset = read32be(&arch[i].offset); 228 uint32_t size = read32be(&arch[i].size); 229 if (offset + size > mbref.getBufferSize()) 230 error(path + ": slice extends beyond end of file"); 231 if (tar) 232 tar->append(relativeToRoot(path), mbref.getBuffer()); 233 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 234 } 235 236 error("unable to find matching architecture in " + path); 237 return None; 238 } 239 240 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 241 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 242 243 template <class Section> 244 void ObjFile::parseSections(ArrayRef<Section> sections) { 245 subsections.reserve(sections.size()); 246 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 247 248 for (const Section &sec : sections) { 249 InputSection *isec = make<InputSection>(); 250 isec->file = this; 251 isec->name = 252 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 253 isec->segname = 254 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 255 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 256 static_cast<size_t>(sec.size)}; 257 if (sec.align >= 32) 258 error("alignment " + std::to_string(sec.align) + " of section " + 259 isec->name + " is too large"); 260 else 261 isec->align = 1 << sec.align; 262 isec->flags = sec.flags; 263 264 if (!(isDebugSection(isec->flags) && 265 isec->segname == segment_names::dwarf)) { 266 subsections.push_back({{0, isec}}); 267 } else { 268 // Instead of emitting DWARF sections, we emit STABS symbols to the 269 // object files that contain them. We filter them out early to avoid 270 // parsing their relocations unnecessarily. But we must still push an 271 // empty map to ensure the indices line up for the remaining sections. 272 subsections.push_back({}); 273 debugSections.push_back(isec); 274 } 275 } 276 } 277 278 // Find the subsection corresponding to the greatest section offset that is <= 279 // that of the given offset. 280 // 281 // offset: an offset relative to the start of the original InputSection (before 282 // any subsection splitting has occurred). It will be updated to represent the 283 // same location as an offset relative to the start of the containing 284 // subsection. 285 static InputSection *findContainingSubsection(SubsectionMap &map, 286 uint64_t *offset) { 287 auto it = std::prev(llvm::upper_bound( 288 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 289 return value < subsecEntry.offset; 290 })); 291 *offset -= it->offset; 292 return it->isec; 293 } 294 295 template <class Section> 296 static bool validateRelocationInfo(InputFile *file, const Section &sec, 297 relocation_info rel) { 298 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 299 bool valid = true; 300 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 301 valid = false; 302 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 303 std::to_string(rel.r_address) + " of " + sec.segname + "," + 304 sec.sectname + " in " + toString(file)) 305 .str(); 306 }; 307 308 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 309 error(message("must be extern")); 310 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 311 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 312 "be PC-relative")); 313 if (isThreadLocalVariables(sec.flags) && 314 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 315 error(message("not allowed in thread-local section, must be UNSIGNED")); 316 if (rel.r_length < 2 || rel.r_length > 3 || 317 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 318 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 319 error(message("has width " + std::to_string(1 << rel.r_length) + 320 " bytes, but must be " + 321 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 322 " bytes")); 323 } 324 return valid; 325 } 326 327 template <class Section> 328 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 329 const Section &sec, SubsectionMap &subsecMap) { 330 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 331 ArrayRef<relocation_info> relInfos( 332 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 333 334 for (size_t i = 0; i < relInfos.size(); i++) { 335 // Paired relocations serve as Mach-O's method for attaching a 336 // supplemental datum to a primary relocation record. ELF does not 337 // need them because the *_RELOC_RELA records contain the extra 338 // addend field, vs. *_RELOC_REL which omit the addend. 339 // 340 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 341 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 342 // datum for each is a symbolic address. The result is the offset 343 // between two addresses. 344 // 345 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 346 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 347 // base symbolic address. 348 // 349 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 350 // addend into the instruction stream. On X86, a relocatable address 351 // field always occupies an entire contiguous sequence of byte(s), 352 // so there is no need to merge opcode bits with address 353 // bits. Therefore, it's easy and convenient to store addends in the 354 // instruction-stream bytes that would otherwise contain zeroes. By 355 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 356 // address bits so that bitwise arithmetic is necessary to extract 357 // and insert them. Storing addends in the instruction stream is 358 // possible, but inconvenient and more costly at link time. 359 360 int64_t pairedAddend = 0; 361 relocation_info relInfo = relInfos[i]; 362 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 363 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 364 relInfo = relInfos[++i]; 365 } 366 assert(i < relInfos.size()); 367 if (!validateRelocationInfo(this, sec, relInfo)) 368 continue; 369 if (relInfo.r_address & R_SCATTERED) 370 fatal("TODO: Scattered relocations not supported"); 371 372 bool isSubtrahend = 373 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 374 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 375 assert(!(embeddedAddend && pairedAddend)); 376 int64_t totalAddend = pairedAddend + embeddedAddend; 377 Reloc r; 378 r.type = relInfo.r_type; 379 r.pcrel = relInfo.r_pcrel; 380 r.length = relInfo.r_length; 381 r.offset = relInfo.r_address; 382 if (relInfo.r_extern) { 383 r.referent = symbols[relInfo.r_symbolnum]; 384 r.addend = isSubtrahend ? 0 : totalAddend; 385 } else { 386 assert(!isSubtrahend); 387 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 388 uint64_t referentOffset; 389 if (relInfo.r_pcrel) { 390 // The implicit addend for pcrel section relocations is the pcrel offset 391 // in terms of the addresses in the input file. Here we adjust it so 392 // that it describes the offset from the start of the referent section. 393 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 394 // have pcrel section relocations. We may want to factor this out into 395 // the arch-specific .cpp file. 396 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 397 referentOffset = 398 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 399 } else { 400 // The addend for a non-pcrel relocation is its absolute address. 401 referentOffset = totalAddend - referentSec.addr; 402 } 403 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 404 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 405 r.addend = referentOffset; 406 } 407 408 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 409 subsec->relocs.push_back(r); 410 411 if (isSubtrahend) { 412 relocation_info minuendInfo = relInfos[++i]; 413 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 414 // attached to the same address. 415 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 416 relInfo.r_address == minuendInfo.r_address); 417 Reloc p; 418 p.type = minuendInfo.r_type; 419 if (minuendInfo.r_extern) { 420 p.referent = symbols[minuendInfo.r_symbolnum]; 421 p.addend = totalAddend; 422 } else { 423 uint64_t referentOffset = 424 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 425 SubsectionMap &referentSubsecMap = 426 subsections[minuendInfo.r_symbolnum - 1]; 427 p.referent = 428 findContainingSubsection(referentSubsecMap, &referentOffset); 429 p.addend = referentOffset; 430 } 431 subsec->relocs.push_back(p); 432 } 433 } 434 } 435 436 template <class NList> 437 static macho::Symbol *createDefined(const NList &sym, StringRef name, 438 InputSection *isec, uint64_t value, 439 uint64_t size) { 440 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 441 // N_EXT: Global symbols. These go in the symbol table during the link, 442 // and also in the export table of the output so that the dynamic 443 // linker sees them. 444 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 445 // symbol table during the link so that duplicates are 446 // either reported (for non-weak symbols) or merged 447 // (for weak symbols), but they do not go in the export 448 // table of the output. 449 // N_PEXT: Does not occur in input files in practice, 450 // a private extern must be external. 451 // 0: Translation-unit scoped. These are not in the symbol table during 452 // link, and not in the export table of the output either. 453 454 bool isWeakDefCanBeHidden = 455 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 456 457 if (sym.n_type & (N_EXT | N_PEXT)) { 458 assert((sym.n_type & N_EXT) && "invalid input"); 459 bool isPrivateExtern = sym.n_type & N_PEXT; 460 461 // lld's behavior for merging symbols is slightly different from ld64: 462 // ld64 picks the winning symbol based on several criteria (see 463 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 464 // just merges metadata and keeps the contents of the first symbol 465 // with that name (see SymbolTable::addDefined). For: 466 // * inline function F in a TU built with -fvisibility-inlines-hidden 467 // * and inline function F in another TU built without that flag 468 // ld64 will pick the one from the file built without 469 // -fvisibility-inlines-hidden. 470 // lld will instead pick the one listed first on the link command line and 471 // give it visibility as if the function was built without 472 // -fvisibility-inlines-hidden. 473 // If both functions have the same contents, this will have the same 474 // behavior. If not, it won't, but the input had an ODR violation in 475 // that case. 476 // 477 // Similarly, merging a symbol 478 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 479 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 480 // should produce one 481 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 482 // with ld64's semantics, because it means the non-private-extern 483 // definition will continue to take priority if more private extern 484 // definitions are encountered. With lld's semantics there's no observable 485 // difference between a symbol that's isWeakDefCanBeHidden or one that's 486 // privateExtern -- neither makes it into the dynamic symbol table. So just 487 // promote isWeakDefCanBeHidden to isPrivateExtern here. 488 if (isWeakDefCanBeHidden) 489 isPrivateExtern = true; 490 491 return symtab->addDefined(name, isec->file, isec, value, size, 492 sym.n_desc & N_WEAK_DEF, isPrivateExtern, 493 sym.n_desc & N_ARM_THUMB_DEF, 494 sym.n_desc & REFERENCED_DYNAMICALLY); 495 } 496 497 assert(!isWeakDefCanBeHidden && 498 "weak_def_can_be_hidden on already-hidden symbol?"); 499 return make<Defined>( 500 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 501 /*isExternal=*/false, /*isPrivateExtern=*/false, 502 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY); 503 } 504 505 // Absolute symbols are defined symbols that do not have an associated 506 // InputSection. They cannot be weak. 507 template <class NList> 508 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 509 StringRef name) { 510 if (sym.n_type & (N_EXT | N_PEXT)) { 511 assert((sym.n_type & N_EXT) && "invalid input"); 512 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 513 /*isWeakDef=*/false, sym.n_type & N_PEXT, 514 sym.n_desc & N_ARM_THUMB_DEF, 515 /*isReferencedDynamically=*/false); 516 } 517 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 518 /*isWeakDef=*/false, 519 /*isExternal=*/false, /*isPrivateExtern=*/false, 520 sym.n_desc & N_ARM_THUMB_DEF, 521 /*isReferencedDynamically=*/false); 522 } 523 524 template <class NList> 525 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 526 StringRef name) { 527 uint8_t type = sym.n_type & N_TYPE; 528 switch (type) { 529 case N_UNDF: 530 return sym.n_value == 0 531 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 532 : symtab->addCommon(name, this, sym.n_value, 533 1 << GET_COMM_ALIGN(sym.n_desc), 534 sym.n_type & N_PEXT); 535 case N_ABS: 536 return createAbsolute(sym, this, name); 537 case N_PBUD: 538 case N_INDR: 539 error("TODO: support symbols of type " + std::to_string(type)); 540 return nullptr; 541 case N_SECT: 542 llvm_unreachable( 543 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 544 default: 545 llvm_unreachable("invalid symbol type"); 546 } 547 } 548 549 template <class LP> 550 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 551 ArrayRef<typename LP::nlist> nList, 552 const char *strtab, bool subsectionsViaSymbols) { 553 using NList = typename LP::nlist; 554 555 // Groups indices of the symbols by the sections that contain them. 556 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 557 symbols.resize(nList.size()); 558 for (uint32_t i = 0; i < nList.size(); ++i) { 559 const NList &sym = nList[i]; 560 StringRef name = strtab + sym.n_strx; 561 if ((sym.n_type & N_TYPE) == N_SECT) { 562 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 563 // parseSections() may have chosen not to parse this section. 564 if (subsecMap.empty()) 565 continue; 566 symbolsBySection[sym.n_sect - 1].push_back(i); 567 } else { 568 symbols[i] = parseNonSectionSymbol(sym, name); 569 } 570 } 571 572 // Calculate symbol sizes and create subsections by splitting the sections 573 // along symbol boundaries. 574 for (size_t i = 0; i < subsections.size(); ++i) { 575 SubsectionMap &subsecMap = subsections[i]; 576 if (subsecMap.empty()) 577 continue; 578 579 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 580 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 581 return nList[lhs].n_value < nList[rhs].n_value; 582 }); 583 uint64_t sectionAddr = sectionHeaders[i].addr; 584 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 585 586 // We populate subsecMap by repeatedly splitting the last (highest address) 587 // subsection. 588 SubsectionEntry subsecEntry = subsecMap.back(); 589 for (size_t j = 0; j < symbolIndices.size(); ++j) { 590 uint32_t symIndex = symbolIndices[j]; 591 const NList &sym = nList[symIndex]; 592 StringRef name = strtab + sym.n_strx; 593 InputSection *isec = subsecEntry.isec; 594 595 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 596 uint64_t symbolOffset = sym.n_value - subsecAddr; 597 uint64_t symbolSize = 598 j + 1 < symbolIndices.size() 599 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 600 : isec->data.size() - symbolOffset; 601 // There are 3 cases where we do not need to create a new subsection: 602 // 1. If the input file does not use subsections-via-symbols. 603 // 2. Multiple symbols at the same address only induce one subsection. 604 // (The symbolOffset == 0 check covers both this case as well as 605 // the first loop iteration.) 606 // 3. Alternative entry points do not induce new subsections. 607 if (!subsectionsViaSymbols || symbolOffset == 0 || 608 sym.n_desc & N_ALT_ENTRY) { 609 symbols[symIndex] = 610 createDefined(sym, name, isec, symbolOffset, symbolSize); 611 continue; 612 } 613 614 auto *nextIsec = make<InputSection>(*isec); 615 nextIsec->data = isec->data.slice(symbolOffset); 616 nextIsec->numRefs = 0; 617 nextIsec->canOmitFromOutput = false; 618 isec->data = isec->data.slice(0, symbolOffset); 619 620 // By construction, the symbol will be at offset zero in the new 621 // subsection. 622 symbols[symIndex] = 623 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 624 // TODO: ld64 appears to preserve the original alignment as well as each 625 // subsection's offset from the last aligned address. We should consider 626 // emulating that behavior. 627 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 628 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 629 subsecEntry = subsecMap.back(); 630 } 631 } 632 } 633 634 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 635 StringRef sectName) 636 : InputFile(OpaqueKind, mb) { 637 InputSection *isec = make<InputSection>(); 638 isec->file = this; 639 isec->name = sectName.take_front(16); 640 isec->segname = segName.take_front(16); 641 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 642 isec->data = {buf, mb.getBufferSize()}; 643 subsections.push_back({{0, isec}}); 644 } 645 646 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 647 : InputFile(ObjKind, mb), modTime(modTime) { 648 this->archiveName = std::string(archiveName); 649 if (target->wordSize == 8) 650 parse<LP64>(); 651 else 652 parse<ILP32>(); 653 } 654 655 template <class LP> void ObjFile::parse() { 656 using Header = typename LP::mach_header; 657 using SegmentCommand = typename LP::segment_command; 658 using Section = typename LP::section; 659 using NList = typename LP::nlist; 660 661 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 662 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 663 664 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 665 if (arch != config->arch()) { 666 error(toString(this) + " has architecture " + getArchitectureName(arch) + 667 " which is incompatible with target architecture " + 668 getArchitectureName(config->arch())); 669 return; 670 } 671 672 if (!checkCompatibility(this)) 673 return; 674 675 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 676 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 677 StringRef data{reinterpret_cast<const char *>(c + 1), 678 c->cmdsize - sizeof(linker_option_command)}; 679 parseLCLinkerOption(this, c->count, data); 680 } 681 682 ArrayRef<Section> sectionHeaders; 683 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 684 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 685 sectionHeaders = 686 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 687 parseSections(sectionHeaders); 688 } 689 690 // TODO: Error on missing LC_SYMTAB? 691 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 692 auto *c = reinterpret_cast<const symtab_command *>(cmd); 693 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 694 c->nsyms); 695 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 696 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 697 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 698 } 699 700 // The relocations may refer to the symbols, so we parse them after we have 701 // parsed all the symbols. 702 for (size_t i = 0, n = subsections.size(); i < n; ++i) 703 if (!subsections[i].empty()) 704 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 705 706 parseDebugInfo(); 707 } 708 709 void ObjFile::parseDebugInfo() { 710 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 711 if (!dObj) 712 return; 713 714 auto *ctx = make<DWARFContext>( 715 std::move(dObj), "", 716 [&](Error err) { 717 warn(toString(this) + ": " + toString(std::move(err))); 718 }, 719 [&](Error warning) { 720 warn(toString(this) + ": " + toString(std::move(warning))); 721 }); 722 723 // TODO: Since object files can contain a lot of DWARF info, we should verify 724 // that we are parsing just the info we need 725 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 726 // FIXME: There can be more than one compile unit per object file. See 727 // PR48637. 728 auto it = units.begin(); 729 compileUnit = it->get(); 730 } 731 732 // The path can point to either a dylib or a .tbd file. 733 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 734 Optional<MemoryBufferRef> mbref = readFile(path); 735 if (!mbref) { 736 error("could not read dylib file at " + path); 737 return {}; 738 } 739 return loadDylib(*mbref, umbrella); 740 } 741 742 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 743 // the first document storing child pointers to the rest of them. When we are 744 // processing a given TBD file, we store that top-level document in 745 // currentTopLevelTapi. When processing re-exports, we search its children for 746 // potentially matching documents in the same TBD file. Note that the children 747 // themselves don't point to further documents, i.e. this is a two-level tree. 748 // 749 // Re-exports can either refer to on-disk files, or to documents within .tbd 750 // files. 751 static Optional<DylibFile *> 752 findDylib(StringRef path, DylibFile *umbrella, 753 const InterfaceFile *currentTopLevelTapi) { 754 if (path::is_absolute(path, path::Style::posix)) 755 for (StringRef root : config->systemLibraryRoots) 756 if (Optional<std::string> dylibPath = 757 resolveDylibPath((root + path).str())) 758 return loadDylib(*dylibPath, umbrella); 759 760 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 761 762 if (currentTopLevelTapi) { 763 for (InterfaceFile &child : 764 make_pointee_range(currentTopLevelTapi->documents())) { 765 assert(child.documents().empty()); 766 if (path == child.getInstallName()) 767 return make<DylibFile>(child, umbrella); 768 } 769 } 770 771 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 772 return loadDylib(*dylibPath, umbrella); 773 774 return {}; 775 } 776 777 // If a re-exported dylib is public (lives in /usr/lib or 778 // /System/Library/Frameworks), then it is considered implicitly linked: we 779 // should bind to its symbols directly instead of via the re-exporting umbrella 780 // library. 781 static bool isImplicitlyLinked(StringRef path) { 782 if (!config->implicitDylibs) 783 return false; 784 785 if (path::parent_path(path) == "/usr/lib") 786 return true; 787 788 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 789 if (path.consume_front("/System/Library/Frameworks/")) { 790 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 791 return path::filename(path) == frameworkName; 792 } 793 794 return false; 795 } 796 797 void loadReexport(StringRef path, DylibFile *umbrella, 798 const InterfaceFile *currentTopLevelTapi) { 799 Optional<DylibFile *> reexport = 800 findDylib(path, umbrella, currentTopLevelTapi); 801 if (!reexport) 802 error("unable to locate re-export with install name " + path); 803 else if (isImplicitlyLinked(path)) 804 inputFiles.insert(*reexport); 805 } 806 807 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 808 bool isBundleLoader) 809 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 810 isBundleLoader(isBundleLoader) { 811 assert(!isBundleLoader || !umbrella); 812 if (umbrella == nullptr) 813 umbrella = this; 814 815 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 816 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 817 818 // Initialize dylibName. 819 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 820 auto *c = reinterpret_cast<const dylib_command *>(cmd); 821 currentVersion = read32le(&c->dylib.current_version); 822 compatibilityVersion = read32le(&c->dylib.compatibility_version); 823 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 824 } else if (!isBundleLoader) { 825 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 826 // so it's OK. 827 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 828 return; 829 } 830 831 if (!checkCompatibility(this)) 832 return; 833 834 // Initialize symbols. 835 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 836 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 837 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 838 parseTrie(buf + c->export_off, c->export_size, 839 [&](const Twine &name, uint64_t flags) { 840 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 841 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 842 symbols.push_back(symtab->addDylib( 843 saver.save(name), exportingFile, isWeakDef, isTlv)); 844 }); 845 } else { 846 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 847 return; 848 } 849 850 const uint8_t *p = 851 reinterpret_cast<const uint8_t *>(hdr) + target->headerSize; 852 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 853 auto *cmd = reinterpret_cast<const load_command *>(p); 854 p += cmd->cmdsize; 855 856 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 857 cmd->cmd == LC_REEXPORT_DYLIB) { 858 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 859 StringRef reexportPath = 860 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 861 loadReexport(reexportPath, exportingFile, nullptr); 862 } 863 864 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 865 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 866 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 867 if (config->namespaceKind == NamespaceKind::flat && 868 cmd->cmd == LC_LOAD_DYLIB) { 869 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 870 StringRef dylibPath = 871 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 872 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 873 if (!dylib) 874 error(Twine("unable to locate library '") + dylibPath + 875 "' loaded from '" + toString(this) + "' for -flat_namespace"); 876 } 877 } 878 } 879 880 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 881 bool isBundleLoader) 882 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 883 isBundleLoader(isBundleLoader) { 884 // FIXME: Add test for the missing TBD code path. 885 886 if (umbrella == nullptr) 887 umbrella = this; 888 889 dylibName = saver.save(interface.getInstallName()); 890 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 891 currentVersion = interface.getCurrentVersion().rawValue(); 892 893 // Some versions of XCode ship with .tbd files that don't have the right 894 // platform settings. 895 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 896 "/usr/lib/system/libsystem_kernel.dylib", 897 "/usr/lib/system/libsystem_platform.dylib", 898 "/usr/lib/system/libsystem_pthread.dylib"}; 899 900 if (!is_contained(skipPlatformChecks, dylibName) && 901 !is_contained(interface.targets(), config->platformInfo.target)) { 902 error(toString(this) + " is incompatible with " + 903 std::string(config->platformInfo.target)); 904 return; 905 } 906 907 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 908 auto addSymbol = [&](const Twine &name) -> void { 909 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 910 /*isWeakDef=*/false, 911 /*isTlv=*/false)); 912 }; 913 // TODO(compnerd) filter out symbols based on the target platform 914 // TODO: handle weak defs, thread locals 915 for (const auto *symbol : interface.symbols()) { 916 if (!symbol->getArchitectures().has(config->arch())) 917 continue; 918 919 switch (symbol->getKind()) { 920 case SymbolKind::GlobalSymbol: 921 addSymbol(symbol->getName()); 922 break; 923 case SymbolKind::ObjectiveCClass: 924 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 925 // want to emulate that. 926 addSymbol(objc::klass + symbol->getName()); 927 addSymbol(objc::metaclass + symbol->getName()); 928 break; 929 case SymbolKind::ObjectiveCClassEHType: 930 addSymbol(objc::ehtype + symbol->getName()); 931 break; 932 case SymbolKind::ObjectiveCInstanceVariable: 933 addSymbol(objc::ivar + symbol->getName()); 934 break; 935 } 936 } 937 938 const InterfaceFile *topLevel = 939 interface.getParent() == nullptr ? &interface : interface.getParent(); 940 941 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 942 InterfaceFile::const_target_range targets = intfRef.targets(); 943 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 944 is_contained(targets, config->platformInfo.target)) 945 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 946 } 947 } 948 949 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 950 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 951 for (const object::Archive::Symbol &sym : file->symbols()) 952 symtab->addLazy(sym.getName(), this, sym); 953 } 954 955 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 956 object::Archive::Child c = 957 CHECK(sym.getMember(), toString(this) + 958 ": could not get the member for symbol " + 959 toMachOString(sym)); 960 961 if (!seen.insert(c.getChildOffset()).second) 962 return; 963 964 MemoryBufferRef mb = 965 CHECK(c.getMemoryBufferRef(), 966 toString(this) + 967 ": could not get the buffer for the member defining symbol " + 968 toMachOString(sym)); 969 970 if (tar && c.getParent()->isThin()) 971 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 972 973 uint32_t modTime = toTimeT( 974 CHECK(c.getLastModified(), toString(this) + 975 ": could not get the modification time " 976 "for the member defining symbol " + 977 toMachOString(sym))); 978 979 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 980 // and become invalid after that call. Copy it to the stack so we can refer 981 // to it later. 982 const object::Archive::Symbol symCopy = sym; 983 984 if (Optional<InputFile *> file = 985 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 986 inputFiles.insert(*file); 987 // ld64 doesn't demangle sym here even with -demangle. 988 // Match that: intentionally don't call toMachOString(). 989 printArchiveMemberLoad(symCopy.getName(), *file); 990 } 991 } 992 993 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 994 BitcodeFile &file) { 995 StringRef name = saver.save(objSym.getName()); 996 997 // TODO: support weak references 998 if (objSym.isUndefined()) 999 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1000 1001 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1002 1003 // TODO: Write a test demonstrating why computing isPrivateExtern before 1004 // LTO compilation is important. 1005 bool isPrivateExtern = false; 1006 switch (objSym.getVisibility()) { 1007 case GlobalValue::HiddenVisibility: 1008 isPrivateExtern = true; 1009 break; 1010 case GlobalValue::ProtectedVisibility: 1011 error(name + " has protected visibility, which is not supported by Mach-O"); 1012 break; 1013 case GlobalValue::DefaultVisibility: 1014 break; 1015 } 1016 1017 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1018 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1019 /*isThumb=*/false, 1020 /*isReferencedDynamically=*/false); 1021 } 1022 1023 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1024 : InputFile(BitcodeKind, mbref) { 1025 obj = check(lto::InputFile::create(mbref)); 1026 1027 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1028 // "winning" symbol will then be marked as Prevailing at LTO compilation 1029 // time. 1030 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1031 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1032 } 1033 1034 template void ObjFile::parse<LP64>(); 1035