1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // This cache mostly exists to store system libraries (and .tbds) as they're 177 // loaded, rather than the input archives, which are already cached at a higher 178 // level, and other files like the filelist that are only read once. 179 // Theoretically this caching could be more efficient by hoisting it, but that 180 // would require altering many callers to track the state. 181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 182 // Open a given file path and return it as a memory-mapped file. 183 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 184 CachedHashStringRef key(path); 185 auto entry = cachedReads.find(key); 186 if (entry != cachedReads.end()) 187 return entry->second; 188 189 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 190 if (std::error_code ec = mbOrErr.getError()) { 191 error("cannot open " + path + ": " + ec.message()); 192 return None; 193 } 194 195 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 196 MemoryBufferRef mbref = mb->getMemBufferRef(); 197 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 198 199 // If this is a regular non-fat file, return it. 200 const char *buf = mbref.getBufferStart(); 201 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 202 if (mbref.getBufferSize() < sizeof(uint32_t) || 203 read32be(&hdr->magic) != FAT_MAGIC) { 204 if (tar) 205 tar->append(relativeToRoot(path), mbref.getBuffer()); 206 return cachedReads[key] = mbref; 207 } 208 209 // Object files and archive files may be fat files, which contain multiple 210 // real files for different CPU ISAs. Here, we search for a file that matches 211 // with the current link target and returns it as a MemoryBufferRef. 212 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 213 214 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 215 if (reinterpret_cast<const char *>(arch + i + 1) > 216 buf + mbref.getBufferSize()) { 217 error(path + ": fat_arch struct extends beyond end of file"); 218 return None; 219 } 220 221 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 222 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 223 continue; 224 225 uint32_t offset = read32be(&arch[i].offset); 226 uint32_t size = read32be(&arch[i].size); 227 if (offset + size > mbref.getBufferSize()) 228 error(path + ": slice extends beyond end of file"); 229 if (tar) 230 tar->append(relativeToRoot(path), mbref.getBuffer()); 231 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 232 path.copy(bAlloc)); 233 } 234 235 error("unable to find matching architecture in " + path); 236 return None; 237 } 238 239 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 240 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 241 242 // Some sections comprise of fixed-size records, so instead of splitting them at 243 // symbol boundaries, we split them based on size. Records are distinct from 244 // literals in that they may contain references to other sections, instead of 245 // being leaf nodes in the InputSection graph. 246 // 247 // Note that "record" is a term I came up with. In contrast, "literal" is a term 248 // used by the Mach-O format. 249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 250 if (name == section_names::cfString) { 251 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 252 return target->wordSize == 8 ? 32 : 16; 253 } else if (name == section_names::compactUnwind) { 254 if (segname == segment_names::ld) 255 return target->wordSize == 8 ? 32 : 20; 256 } 257 return {}; 258 } 259 260 // Parse the sequence of sections within a single LC_SEGMENT(_64). 261 // Split each section into subsections. 262 template <class SectionHeader> 263 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 264 sections.reserve(sectionHeaders.size()); 265 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 266 267 for (const SectionHeader &sec : sectionHeaders) { 268 StringRef name = 269 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 270 StringRef segname = 271 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 272 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 273 : buf + sec.offset, 274 static_cast<size_t>(sec.size)}; 275 if (sec.align >= 32) { 276 error("alignment " + std::to_string(sec.align) + " of section " + name + 277 " is too large"); 278 sections.push_back({}); 279 continue; 280 } 281 uint32_t align = 1 << sec.align; 282 uint32_t flags = sec.flags; 283 284 auto splitRecords = [&](int recordSize) -> void { 285 sections.push_back({}); 286 if (data.empty()) 287 return; 288 289 Subsections &subsections = sections.back().subsections; 290 subsections.reserve(data.size() / recordSize); 291 auto *isec = make<ConcatInputSection>( 292 segname, name, this, data.slice(0, recordSize), align, flags); 293 subsections.push_back({0, isec}); 294 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 295 // Copying requires less memory than constructing a fresh InputSection. 296 auto *copy = make<ConcatInputSection>(*isec); 297 copy->data = data.slice(off, recordSize); 298 subsections.push_back({off, copy}); 299 } 300 }; 301 302 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 303 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 304 if (sec.nreloc && config->dedupLiterals) 305 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 306 sec.sectname + 307 ", so LLD cannot deduplicate literals. Try re-running without " 308 "--deduplicate-literals."); 309 310 InputSection *isec; 311 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 312 isec = 313 make<CStringInputSection>(segname, name, this, data, align, flags); 314 // FIXME: parallelize this? 315 cast<CStringInputSection>(isec)->splitIntoPieces(); 316 } else { 317 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 318 flags); 319 } 320 sections.push_back({}); 321 sections.back().subsections.push_back({0, isec}); 322 } else if (auto recordSize = getRecordSize(segname, name)) { 323 splitRecords(*recordSize); 324 } else if (segname == segment_names::llvm) { 325 // ld64 does not appear to emit contents from sections within the __LLVM 326 // segment. Symbols within those sections point to bitcode metadata 327 // instead of actual symbols. Global symbols within those sections could 328 // have the same name without causing duplicate symbol errors. Push an 329 // empty entry to ensure indices line up for the remaining sections. 330 // TODO: Evaluate whether the bitcode metadata is needed. 331 sections.push_back({}); 332 } else { 333 auto *isec = 334 make<ConcatInputSection>(segname, name, this, data, align, flags); 335 if (isDebugSection(isec->getFlags()) && 336 isec->getSegName() == segment_names::dwarf) { 337 // Instead of emitting DWARF sections, we emit STABS symbols to the 338 // object files that contain them. We filter them out early to avoid 339 // parsing their relocations unnecessarily. But we must still push an 340 // empty entry to ensure the indices line up for the remaining sections. 341 sections.push_back({}); 342 debugSections.push_back(isec); 343 } else { 344 sections.push_back({}); 345 sections.back().subsections.push_back({0, isec}); 346 } 347 } 348 } 349 } 350 351 // Find the subsection corresponding to the greatest section offset that is <= 352 // that of the given offset. 353 // 354 // offset: an offset relative to the start of the original InputSection (before 355 // any subsection splitting has occurred). It will be updated to represent the 356 // same location as an offset relative to the start of the containing 357 // subsection. 358 template <class T> 359 static InputSection *findContainingSubsection(Subsections &subsections, 360 T *offset) { 361 auto it = std::prev(llvm::upper_bound( 362 subsections, *offset, 363 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 364 *offset -= it->offset; 365 return it->isec; 366 } 367 368 template <class SectionHeader> 369 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 370 relocation_info rel) { 371 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 372 bool valid = true; 373 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 374 valid = false; 375 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 376 std::to_string(rel.r_address) + " of " + sec.segname + "," + 377 sec.sectname + " in " + toString(file)) 378 .str(); 379 }; 380 381 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 382 error(message("must be extern")); 383 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 384 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 385 "be PC-relative")); 386 if (isThreadLocalVariables(sec.flags) && 387 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 388 error(message("not allowed in thread-local section, must be UNSIGNED")); 389 if (rel.r_length < 2 || rel.r_length > 3 || 390 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 391 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 392 error(message("has width " + std::to_string(1 << rel.r_length) + 393 " bytes, but must be " + 394 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 395 " bytes")); 396 } 397 return valid; 398 } 399 400 template <class SectionHeader> 401 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 402 const SectionHeader &sec, 403 Subsections &subsections) { 404 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 405 ArrayRef<relocation_info> relInfos( 406 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 407 408 auto subsecIt = subsections.rbegin(); 409 for (size_t i = 0; i < relInfos.size(); i++) { 410 // Paired relocations serve as Mach-O's method for attaching a 411 // supplemental datum to a primary relocation record. ELF does not 412 // need them because the *_RELOC_RELA records contain the extra 413 // addend field, vs. *_RELOC_REL which omit the addend. 414 // 415 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 416 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 417 // datum for each is a symbolic address. The result is the offset 418 // between two addresses. 419 // 420 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 421 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 422 // base symbolic address. 423 // 424 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 425 // addend into the instruction stream. On X86, a relocatable address 426 // field always occupies an entire contiguous sequence of byte(s), 427 // so there is no need to merge opcode bits with address 428 // bits. Therefore, it's easy and convenient to store addends in the 429 // instruction-stream bytes that would otherwise contain zeroes. By 430 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 431 // address bits so that bitwise arithmetic is necessary to extract 432 // and insert them. Storing addends in the instruction stream is 433 // possible, but inconvenient and more costly at link time. 434 435 int64_t pairedAddend = 0; 436 relocation_info relInfo = relInfos[i]; 437 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 438 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 439 relInfo = relInfos[++i]; 440 } 441 assert(i < relInfos.size()); 442 if (!validateRelocationInfo(this, sec, relInfo)) 443 continue; 444 if (relInfo.r_address & R_SCATTERED) 445 fatal("TODO: Scattered relocations not supported"); 446 447 bool isSubtrahend = 448 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 449 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 450 assert(!(embeddedAddend && pairedAddend)); 451 int64_t totalAddend = pairedAddend + embeddedAddend; 452 Reloc r; 453 r.type = relInfo.r_type; 454 r.pcrel = relInfo.r_pcrel; 455 r.length = relInfo.r_length; 456 r.offset = relInfo.r_address; 457 if (relInfo.r_extern) { 458 r.referent = symbols[relInfo.r_symbolnum]; 459 r.addend = isSubtrahend ? 0 : totalAddend; 460 } else { 461 assert(!isSubtrahend); 462 const SectionHeader &referentSecHead = 463 sectionHeaders[relInfo.r_symbolnum - 1]; 464 uint64_t referentOffset; 465 if (relInfo.r_pcrel) { 466 // The implicit addend for pcrel section relocations is the pcrel offset 467 // in terms of the addresses in the input file. Here we adjust it so 468 // that it describes the offset from the start of the referent section. 469 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 470 // have pcrel section relocations. We may want to factor this out into 471 // the arch-specific .cpp file. 472 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 473 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 474 referentSecHead.addr; 475 } else { 476 // The addend for a non-pcrel relocation is its absolute address. 477 referentOffset = totalAddend - referentSecHead.addr; 478 } 479 Subsections &referentSubsections = 480 sections[relInfo.r_symbolnum - 1].subsections; 481 r.referent = 482 findContainingSubsection(referentSubsections, &referentOffset); 483 r.addend = referentOffset; 484 } 485 486 // Find the subsection that this relocation belongs to. 487 // Though not required by the Mach-O format, clang and gcc seem to emit 488 // relocations in order, so let's take advantage of it. However, ld64 emits 489 // unsorted relocations (in `-r` mode), so we have a fallback for that 490 // uncommon case. 491 InputSection *subsec; 492 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 493 ++subsecIt; 494 if (subsecIt == subsections.rend() || 495 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 496 subsec = findContainingSubsection(subsections, &r.offset); 497 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 498 // for the other relocations. 499 subsecIt = subsections.rend(); 500 } else { 501 subsec = subsecIt->isec; 502 r.offset -= subsecIt->offset; 503 } 504 subsec->relocs.push_back(r); 505 506 if (isSubtrahend) { 507 relocation_info minuendInfo = relInfos[++i]; 508 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 509 // attached to the same address. 510 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 511 relInfo.r_address == minuendInfo.r_address); 512 Reloc p; 513 p.type = minuendInfo.r_type; 514 if (minuendInfo.r_extern) { 515 p.referent = symbols[minuendInfo.r_symbolnum]; 516 p.addend = totalAddend; 517 } else { 518 uint64_t referentOffset = 519 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 520 Subsections &referentSubsectVec = 521 sections[minuendInfo.r_symbolnum - 1].subsections; 522 p.referent = 523 findContainingSubsection(referentSubsectVec, &referentOffset); 524 p.addend = referentOffset; 525 } 526 subsec->relocs.push_back(p); 527 } 528 } 529 } 530 531 template <class NList> 532 static macho::Symbol *createDefined(const NList &sym, StringRef name, 533 InputSection *isec, uint64_t value, 534 uint64_t size) { 535 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 536 // N_EXT: Global symbols. These go in the symbol table during the link, 537 // and also in the export table of the output so that the dynamic 538 // linker sees them. 539 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 540 // symbol table during the link so that duplicates are 541 // either reported (for non-weak symbols) or merged 542 // (for weak symbols), but they do not go in the export 543 // table of the output. 544 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 545 // object files) may produce them. LLD does not yet support -r. 546 // These are translation-unit scoped, identical to the `0` case. 547 // 0: Translation-unit scoped. These are not in the symbol table during 548 // link, and not in the export table of the output either. 549 bool isWeakDefCanBeHidden = 550 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 551 552 if (sym.n_type & N_EXT) { 553 bool isPrivateExtern = sym.n_type & N_PEXT; 554 // lld's behavior for merging symbols is slightly different from ld64: 555 // ld64 picks the winning symbol based on several criteria (see 556 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 557 // just merges metadata and keeps the contents of the first symbol 558 // with that name (see SymbolTable::addDefined). For: 559 // * inline function F in a TU built with -fvisibility-inlines-hidden 560 // * and inline function F in another TU built without that flag 561 // ld64 will pick the one from the file built without 562 // -fvisibility-inlines-hidden. 563 // lld will instead pick the one listed first on the link command line and 564 // give it visibility as if the function was built without 565 // -fvisibility-inlines-hidden. 566 // If both functions have the same contents, this will have the same 567 // behavior. If not, it won't, but the input had an ODR violation in 568 // that case. 569 // 570 // Similarly, merging a symbol 571 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 572 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 573 // should produce one 574 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 575 // with ld64's semantics, because it means the non-private-extern 576 // definition will continue to take priority if more private extern 577 // definitions are encountered. With lld's semantics there's no observable 578 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 579 // that's privateExtern -- neither makes it into the dynamic symbol table, 580 // unless the autohide symbol is explicitly exported. 581 // But if a symbol is both privateExtern and autohide then it can't 582 // be exported. 583 // So we nullify the autohide flag when privateExtern is present 584 // and promote the symbol to privateExtern when it is not already. 585 if (isWeakDefCanBeHidden && isPrivateExtern) 586 isWeakDefCanBeHidden = false; 587 else if (isWeakDefCanBeHidden) 588 isPrivateExtern = true; 589 return symtab->addDefined( 590 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 591 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 592 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 593 isWeakDefCanBeHidden); 594 } 595 assert(!isWeakDefCanBeHidden && 596 "weak_def_can_be_hidden on already-hidden symbol?"); 597 return make<Defined>( 598 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 599 /*isExternal=*/false, /*isPrivateExtern=*/false, 600 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 601 sym.n_desc & N_NO_DEAD_STRIP); 602 } 603 604 // Absolute symbols are defined symbols that do not have an associated 605 // InputSection. They cannot be weak. 606 template <class NList> 607 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 608 StringRef name) { 609 if (sym.n_type & N_EXT) { 610 return symtab->addDefined( 611 name, file, nullptr, sym.n_value, /*size=*/0, 612 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 613 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 614 /*isWeakDefCanBeHidden=*/false); 615 } 616 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 617 /*isWeakDef=*/false, 618 /*isExternal=*/false, /*isPrivateExtern=*/false, 619 sym.n_desc & N_ARM_THUMB_DEF, 620 /*isReferencedDynamically=*/false, 621 sym.n_desc & N_NO_DEAD_STRIP); 622 } 623 624 template <class NList> 625 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 626 StringRef name) { 627 uint8_t type = sym.n_type & N_TYPE; 628 switch (type) { 629 case N_UNDF: 630 return sym.n_value == 0 631 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 632 : symtab->addCommon(name, this, sym.n_value, 633 1 << GET_COMM_ALIGN(sym.n_desc), 634 sym.n_type & N_PEXT); 635 case N_ABS: 636 return createAbsolute(sym, this, name); 637 case N_PBUD: 638 case N_INDR: 639 error("TODO: support symbols of type " + std::to_string(type)); 640 return nullptr; 641 case N_SECT: 642 llvm_unreachable( 643 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 644 default: 645 llvm_unreachable("invalid symbol type"); 646 } 647 } 648 649 template <class NList> static bool isUndef(const NList &sym) { 650 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 651 } 652 653 template <class LP> 654 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 655 ArrayRef<typename LP::nlist> nList, 656 const char *strtab, bool subsectionsViaSymbols) { 657 using NList = typename LP::nlist; 658 659 // Groups indices of the symbols by the sections that contain them. 660 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 661 symbols.resize(nList.size()); 662 SmallVector<unsigned, 32> undefineds; 663 for (uint32_t i = 0; i < nList.size(); ++i) { 664 const NList &sym = nList[i]; 665 666 // Ignore debug symbols for now. 667 // FIXME: may need special handling. 668 if (sym.n_type & N_STAB) 669 continue; 670 671 StringRef name = strtab + sym.n_strx; 672 if ((sym.n_type & N_TYPE) == N_SECT) { 673 Subsections &subsections = sections[sym.n_sect - 1].subsections; 674 // parseSections() may have chosen not to parse this section. 675 if (subsections.empty()) 676 continue; 677 symbolsBySection[sym.n_sect - 1].push_back(i); 678 } else if (isUndef(sym)) { 679 undefineds.push_back(i); 680 } else { 681 symbols[i] = parseNonSectionSymbol(sym, name); 682 } 683 } 684 685 for (size_t i = 0; i < sections.size(); ++i) { 686 Subsections &subsections = sections[i].subsections; 687 if (subsections.empty()) 688 continue; 689 690 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 691 uint64_t sectionAddr = sectionHeaders[i].addr; 692 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 693 694 InputSection *lastIsec = subsections.back().isec; 695 // Record-based sections have already been split into subsections during 696 // parseSections(), so we simply need to match Symbols to the corresponding 697 // subsection here. 698 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 699 for (size_t j = 0; j < symbolIndices.size(); ++j) { 700 uint32_t symIndex = symbolIndices[j]; 701 const NList &sym = nList[symIndex]; 702 StringRef name = strtab + sym.n_strx; 703 uint64_t symbolOffset = sym.n_value - sectionAddr; 704 InputSection *isec = 705 findContainingSubsection(subsections, &symbolOffset); 706 if (symbolOffset != 0) { 707 error(toString(lastIsec) + ": symbol " + name + 708 " at misaligned offset"); 709 continue; 710 } 711 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 712 } 713 continue; 714 } 715 716 // Calculate symbol sizes and create subsections by splitting the sections 717 // along symbol boundaries. 718 // We populate subsections by repeatedly splitting the last (highest 719 // address) subsection. 720 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 721 return nList[lhs].n_value < nList[rhs].n_value; 722 }); 723 Subsection subsec = subsections.back(); 724 for (size_t j = 0; j < symbolIndices.size(); ++j) { 725 uint32_t symIndex = symbolIndices[j]; 726 const NList &sym = nList[symIndex]; 727 StringRef name = strtab + sym.n_strx; 728 InputSection *isec = subsec.isec; 729 730 uint64_t subsecAddr = sectionAddr + subsec.offset; 731 size_t symbolOffset = sym.n_value - subsecAddr; 732 uint64_t symbolSize = 733 j + 1 < symbolIndices.size() 734 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 735 : isec->data.size() - symbolOffset; 736 // There are 4 cases where we do not need to create a new subsection: 737 // 1. If the input file does not use subsections-via-symbols. 738 // 2. Multiple symbols at the same address only induce one subsection. 739 // (The symbolOffset == 0 check covers both this case as well as 740 // the first loop iteration.) 741 // 3. Alternative entry points do not induce new subsections. 742 // 4. If we have a literal section (e.g. __cstring and __literal4). 743 if (!subsectionsViaSymbols || symbolOffset == 0 || 744 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 745 symbols[symIndex] = 746 createDefined(sym, name, isec, symbolOffset, symbolSize); 747 continue; 748 } 749 auto *concatIsec = cast<ConcatInputSection>(isec); 750 751 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 752 nextIsec->wasCoalesced = false; 753 if (isZeroFill(isec->getFlags())) { 754 // Zero-fill sections have NULL data.data() non-zero data.size() 755 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 756 isec->data = {nullptr, symbolOffset}; 757 } else { 758 nextIsec->data = isec->data.slice(symbolOffset); 759 isec->data = isec->data.slice(0, symbolOffset); 760 } 761 762 // By construction, the symbol will be at offset zero in the new 763 // subsection. 764 symbols[symIndex] = 765 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 766 // TODO: ld64 appears to preserve the original alignment as well as each 767 // subsection's offset from the last aligned address. We should consider 768 // emulating that behavior. 769 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 770 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 771 subsec = subsections.back(); 772 } 773 } 774 775 // Undefined symbols can trigger recursive fetch from Archives due to 776 // LazySymbols. Process defined symbols first so that the relative order 777 // between a defined symbol and an undefined symbol does not change the 778 // symbol resolution behavior. In addition, a set of interconnected symbols 779 // will all be resolved to the same file, instead of being resolved to 780 // different files. 781 for (unsigned i : undefineds) { 782 const NList &sym = nList[i]; 783 StringRef name = strtab + sym.n_strx; 784 symbols[i] = parseNonSectionSymbol(sym, name); 785 } 786 } 787 788 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 789 StringRef sectName) 790 : InputFile(OpaqueKind, mb) { 791 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 792 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 793 ConcatInputSection *isec = 794 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 795 /*file=*/this, data); 796 isec->live = true; 797 sections.push_back({}); 798 sections.back().subsections.push_back({0, isec}); 799 } 800 801 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 802 : InputFile(ObjKind, mb), modTime(modTime) { 803 this->archiveName = std::string(archiveName); 804 if (target->wordSize == 8) 805 parse<LP64>(); 806 else 807 parse<ILP32>(); 808 } 809 810 template <class LP> void ObjFile::parse() { 811 using Header = typename LP::mach_header; 812 using SegmentCommand = typename LP::segment_command; 813 using SectionHeader = typename LP::section; 814 using NList = typename LP::nlist; 815 816 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 817 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 818 819 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 820 if (arch != config->arch()) { 821 auto msg = config->errorForArchMismatch 822 ? static_cast<void (*)(const Twine &)>(error) 823 : warn; 824 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 825 " which is incompatible with target architecture " + 826 getArchitectureName(config->arch())); 827 return; 828 } 829 830 if (!checkCompatibility(this)) 831 return; 832 833 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 834 StringRef data{reinterpret_cast<const char *>(cmd + 1), 835 cmd->cmdsize - sizeof(linker_option_command)}; 836 parseLCLinkerOption(this, cmd->count, data); 837 } 838 839 ArrayRef<SectionHeader> sectionHeaders; 840 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 841 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 842 sectionHeaders = ArrayRef<SectionHeader>{ 843 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 844 parseSections(sectionHeaders); 845 } 846 847 // TODO: Error on missing LC_SYMTAB? 848 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 849 auto *c = reinterpret_cast<const symtab_command *>(cmd); 850 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 851 c->nsyms); 852 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 853 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 854 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 855 } 856 857 // The relocations may refer to the symbols, so we parse them after we have 858 // parsed all the symbols. 859 for (size_t i = 0, n = sections.size(); i < n; ++i) 860 if (!sections[i].subsections.empty()) 861 parseRelocations(sectionHeaders, sectionHeaders[i], 862 sections[i].subsections); 863 864 parseDebugInfo(); 865 if (config->emitDataInCodeInfo) 866 parseDataInCode(); 867 registerCompactUnwind(); 868 } 869 870 void ObjFile::parseDebugInfo() { 871 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 872 if (!dObj) 873 return; 874 875 auto *ctx = make<DWARFContext>( 876 std::move(dObj), "", 877 [&](Error err) { 878 warn(toString(this) + ": " + toString(std::move(err))); 879 }, 880 [&](Error warning) { 881 warn(toString(this) + ": " + toString(std::move(warning))); 882 }); 883 884 // TODO: Since object files can contain a lot of DWARF info, we should verify 885 // that we are parsing just the info we need 886 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 887 // FIXME: There can be more than one compile unit per object file. See 888 // PR48637. 889 auto it = units.begin(); 890 compileUnit = it->get(); 891 } 892 893 void ObjFile::parseDataInCode() { 894 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 895 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 896 if (!cmd) 897 return; 898 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 899 dataInCodeEntries = { 900 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 901 c->datasize / sizeof(data_in_code_entry)}; 902 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 903 const data_in_code_entry &rhs) { 904 return lhs.offset < rhs.offset; 905 })); 906 } 907 908 // Create pointers from symbols to their associated compact unwind entries. 909 void ObjFile::registerCompactUnwind() { 910 // First, locate the __compact_unwind section. 911 Section *cuSection = nullptr; 912 for (Section §ion : sections) { 913 if (section.subsections.empty()) 914 continue; 915 if (section.subsections[0].isec->getSegName() != segment_names::ld) 916 continue; 917 cuSection = §ion; 918 break; 919 } 920 if (!cuSection) 921 return; 922 923 for (Subsection &subsection : cuSection->subsections) { 924 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 925 // Hack!! Since each CUE contains a different function address, if ICF 926 // operated naively and compared the entire contents of each CUE, entries 927 // with identical unwind info but belonging to different functions would 928 // never be considered equivalent. To work around this problem, we slice 929 // away the function address here. (Note that we do not adjust the offsets 930 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 931 // to correctly handle these truncated input sections. 932 isec->data = isec->data.slice(target->wordSize); 933 934 ConcatInputSection *referentIsec; 935 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 936 Reloc &r = *it; 937 // We only wish to handle the relocation for CUE::functionAddress. 938 if (r.offset != 0) { 939 ++it; 940 continue; 941 } 942 uint64_t add = r.addend; 943 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 944 // Check whether the symbol defined in this file is the prevailing one. 945 // Skip if it is e.g. a weak def that didn't prevail. 946 if (sym->getFile() != this) { 947 ++it; 948 continue; 949 } 950 add += sym->value; 951 referentIsec = cast<ConcatInputSection>(sym->isec); 952 } else { 953 referentIsec = 954 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 955 } 956 if (referentIsec->getSegName() != segment_names::text) 957 error("compact unwind references address in " + toString(referentIsec) + 958 " which is not in segment __TEXT"); 959 // The functionAddress relocations are typically section relocations. 960 // However, unwind info operates on a per-symbol basis, so we search for 961 // the function symbol here. 962 auto symIt = llvm::lower_bound( 963 referentIsec->symbols, add, 964 [](Defined *d, uint64_t add) { return d->value < add; }); 965 // The relocation should point at the exact address of a symbol (with no 966 // addend). 967 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 968 assert(referentIsec->wasCoalesced); 969 ++it; 970 continue; 971 } 972 (*symIt)->compactUnwind = isec; 973 // Since we've sliced away the functionAddress, we should remove the 974 // corresponding relocation too. Given that clang emits relocations in 975 // reverse order of address, this relocation should be at the end of the 976 // vector for most of our input object files, so this is typically an O(1) 977 // operation. 978 it = isec->relocs.erase(it); 979 } 980 } 981 } 982 983 // The path can point to either a dylib or a .tbd file. 984 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 985 Optional<MemoryBufferRef> mbref = readFile(path); 986 if (!mbref) { 987 error("could not read dylib file at " + path); 988 return nullptr; 989 } 990 return loadDylib(*mbref, umbrella); 991 } 992 993 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 994 // the first document storing child pointers to the rest of them. When we are 995 // processing a given TBD file, we store that top-level document in 996 // currentTopLevelTapi. When processing re-exports, we search its children for 997 // potentially matching documents in the same TBD file. Note that the children 998 // themselves don't point to further documents, i.e. this is a two-level tree. 999 // 1000 // Re-exports can either refer to on-disk files, or to documents within .tbd 1001 // files. 1002 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1003 const InterfaceFile *currentTopLevelTapi) { 1004 // Search order: 1005 // 1. Install name basename in -F / -L directories. 1006 { 1007 StringRef stem = path::stem(path); 1008 SmallString<128> frameworkName; 1009 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1010 bool isFramework = path.endswith(frameworkName); 1011 if (isFramework) { 1012 for (StringRef dir : config->frameworkSearchPaths) { 1013 SmallString<128> candidate = dir; 1014 path::append(candidate, frameworkName); 1015 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1016 return loadDylib(*dylibPath, umbrella); 1017 } 1018 } else if (Optional<StringRef> dylibPath = findPathCombination( 1019 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1020 return loadDylib(*dylibPath, umbrella); 1021 } 1022 1023 // 2. As absolute path. 1024 if (path::is_absolute(path, path::Style::posix)) 1025 for (StringRef root : config->systemLibraryRoots) 1026 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1027 return loadDylib(*dylibPath, umbrella); 1028 1029 // 3. As relative path. 1030 1031 // TODO: Handle -dylib_file 1032 1033 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1034 SmallString<128> newPath; 1035 if (config->outputType == MH_EXECUTE && 1036 path.consume_front("@executable_path/")) { 1037 // ld64 allows overriding this with the undocumented flag -executable_path. 1038 // lld doesn't currently implement that flag. 1039 // FIXME: Consider using finalOutput instead of outputFile. 1040 path::append(newPath, path::parent_path(config->outputFile), path); 1041 path = newPath; 1042 } else if (path.consume_front("@loader_path/")) { 1043 fs::real_path(umbrella->getName(), newPath); 1044 path::remove_filename(newPath); 1045 path::append(newPath, path); 1046 path = newPath; 1047 } else if (path.startswith("@rpath/")) { 1048 for (StringRef rpath : umbrella->rpaths) { 1049 newPath.clear(); 1050 if (rpath.consume_front("@loader_path/")) { 1051 fs::real_path(umbrella->getName(), newPath); 1052 path::remove_filename(newPath); 1053 } 1054 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1055 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1056 return loadDylib(*dylibPath, umbrella); 1057 } 1058 } 1059 1060 // FIXME: Should this be further up? 1061 if (currentTopLevelTapi) { 1062 for (InterfaceFile &child : 1063 make_pointee_range(currentTopLevelTapi->documents())) { 1064 assert(child.documents().empty()); 1065 if (path == child.getInstallName()) { 1066 auto file = make<DylibFile>(child, umbrella); 1067 file->parseReexports(child); 1068 return file; 1069 } 1070 } 1071 } 1072 1073 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1074 return loadDylib(*dylibPath, umbrella); 1075 1076 return nullptr; 1077 } 1078 1079 // If a re-exported dylib is public (lives in /usr/lib or 1080 // /System/Library/Frameworks), then it is considered implicitly linked: we 1081 // should bind to its symbols directly instead of via the re-exporting umbrella 1082 // library. 1083 static bool isImplicitlyLinked(StringRef path) { 1084 if (!config->implicitDylibs) 1085 return false; 1086 1087 if (path::parent_path(path) == "/usr/lib") 1088 return true; 1089 1090 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1091 if (path.consume_front("/System/Library/Frameworks/")) { 1092 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1093 return path::filename(path) == frameworkName; 1094 } 1095 1096 return false; 1097 } 1098 1099 static void loadReexport(StringRef path, DylibFile *umbrella, 1100 const InterfaceFile *currentTopLevelTapi) { 1101 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1102 if (!reexport) 1103 error("unable to locate re-export with install name " + path); 1104 } 1105 1106 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1107 bool isBundleLoader) 1108 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1109 isBundleLoader(isBundleLoader) { 1110 assert(!isBundleLoader || !umbrella); 1111 if (umbrella == nullptr) 1112 umbrella = this; 1113 this->umbrella = umbrella; 1114 1115 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1116 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1117 1118 // Initialize installName. 1119 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1120 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1121 currentVersion = read32le(&c->dylib.current_version); 1122 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1123 installName = 1124 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1125 } else if (!isBundleLoader) { 1126 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1127 // so it's OK. 1128 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1129 return; 1130 } 1131 1132 if (config->printEachFile) 1133 message(toString(this)); 1134 inputFiles.insert(this); 1135 1136 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1137 1138 if (!checkCompatibility(this)) 1139 return; 1140 1141 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1142 1143 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1144 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1145 rpaths.push_back(rpath); 1146 } 1147 1148 // Initialize symbols. 1149 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1150 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1151 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1152 parseTrie(buf + c->export_off, c->export_size, 1153 [&](const Twine &name, uint64_t flags) { 1154 StringRef savedName = saver.save(name); 1155 if (handleLDSymbol(savedName)) 1156 return; 1157 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1158 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1159 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1160 isWeakDef, isTlv)); 1161 }); 1162 } else { 1163 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1164 return; 1165 } 1166 } 1167 1168 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1169 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1170 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1171 target->headerSize; 1172 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1173 auto *cmd = reinterpret_cast<const load_command *>(p); 1174 p += cmd->cmdsize; 1175 1176 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1177 cmd->cmd == LC_REEXPORT_DYLIB) { 1178 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1179 StringRef reexportPath = 1180 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1181 loadReexport(reexportPath, exportingFile, nullptr); 1182 } 1183 1184 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1185 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1186 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1187 if (config->namespaceKind == NamespaceKind::flat && 1188 cmd->cmd == LC_LOAD_DYLIB) { 1189 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1190 StringRef dylibPath = 1191 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1192 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1193 if (!dylib) 1194 error(Twine("unable to locate library '") + dylibPath + 1195 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1196 } 1197 } 1198 } 1199 1200 // Some versions of XCode ship with .tbd files that don't have the right 1201 // platform settings. 1202 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1203 "/usr/lib/system/libsystem_kernel.dylib", 1204 "/usr/lib/system/libsystem_platform.dylib", 1205 "/usr/lib/system/libsystem_pthread.dylib"}; 1206 1207 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1208 bool isBundleLoader) 1209 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1210 isBundleLoader(isBundleLoader) { 1211 // FIXME: Add test for the missing TBD code path. 1212 1213 if (umbrella == nullptr) 1214 umbrella = this; 1215 this->umbrella = umbrella; 1216 1217 installName = saver.save(interface.getInstallName()); 1218 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1219 currentVersion = interface.getCurrentVersion().rawValue(); 1220 1221 if (config->printEachFile) 1222 message(toString(this)); 1223 inputFiles.insert(this); 1224 1225 if (!is_contained(skipPlatformChecks, installName) && 1226 !is_contained(interface.targets(), config->platformInfo.target)) { 1227 error(toString(this) + " is incompatible with " + 1228 std::string(config->platformInfo.target)); 1229 return; 1230 } 1231 1232 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1233 1234 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1235 auto addSymbol = [&](const Twine &name) -> void { 1236 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1237 /*isWeakDef=*/false, 1238 /*isTlv=*/false)); 1239 }; 1240 // TODO(compnerd) filter out symbols based on the target platform 1241 // TODO: handle weak defs, thread locals 1242 for (const auto *symbol : interface.symbols()) { 1243 if (!symbol->getArchitectures().has(config->arch())) 1244 continue; 1245 1246 if (handleLDSymbol(symbol->getName())) 1247 continue; 1248 1249 switch (symbol->getKind()) { 1250 case SymbolKind::GlobalSymbol: 1251 addSymbol(symbol->getName()); 1252 break; 1253 case SymbolKind::ObjectiveCClass: 1254 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1255 // want to emulate that. 1256 addSymbol(objc::klass + symbol->getName()); 1257 addSymbol(objc::metaclass + symbol->getName()); 1258 break; 1259 case SymbolKind::ObjectiveCClassEHType: 1260 addSymbol(objc::ehtype + symbol->getName()); 1261 break; 1262 case SymbolKind::ObjectiveCInstanceVariable: 1263 addSymbol(objc::ivar + symbol->getName()); 1264 break; 1265 } 1266 } 1267 } 1268 1269 void DylibFile::parseReexports(const InterfaceFile &interface) { 1270 const InterfaceFile *topLevel = 1271 interface.getParent() == nullptr ? &interface : interface.getParent(); 1272 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1273 InterfaceFile::const_target_range targets = intfRef.targets(); 1274 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1275 is_contained(targets, config->platformInfo.target)) 1276 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1277 } 1278 } 1279 1280 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1281 // name, compatibility version or hide/add symbols) for specific target 1282 // versions. 1283 bool DylibFile::handleLDSymbol(StringRef originalName) { 1284 if (!originalName.startswith("$ld$")) 1285 return false; 1286 1287 StringRef action; 1288 StringRef name; 1289 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1290 if (action == "previous") 1291 handleLDPreviousSymbol(name, originalName); 1292 else if (action == "install_name") 1293 handleLDInstallNameSymbol(name, originalName); 1294 return true; 1295 } 1296 1297 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1298 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1299 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1300 StringRef installName; 1301 StringRef compatVersion; 1302 StringRef platformStr; 1303 StringRef startVersion; 1304 StringRef endVersion; 1305 StringRef symbolName; 1306 StringRef rest; 1307 1308 std::tie(installName, name) = name.split('$'); 1309 std::tie(compatVersion, name) = name.split('$'); 1310 std::tie(platformStr, name) = name.split('$'); 1311 std::tie(startVersion, name) = name.split('$'); 1312 std::tie(endVersion, name) = name.split('$'); 1313 std::tie(symbolName, rest) = name.split('$'); 1314 // TODO: ld64 contains some logic for non-empty symbolName as well. 1315 if (!symbolName.empty()) 1316 return; 1317 unsigned platform; 1318 if (platformStr.getAsInteger(10, platform) || 1319 platform != static_cast<unsigned>(config->platform())) 1320 return; 1321 1322 VersionTuple start; 1323 if (start.tryParse(startVersion)) { 1324 warn("failed to parse start version, symbol '" + originalName + 1325 "' ignored"); 1326 return; 1327 } 1328 VersionTuple end; 1329 if (end.tryParse(endVersion)) { 1330 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1331 return; 1332 } 1333 if (config->platformInfo.minimum < start || 1334 config->platformInfo.minimum >= end) 1335 return; 1336 1337 this->installName = saver.save(installName); 1338 1339 if (!compatVersion.empty()) { 1340 VersionTuple cVersion; 1341 if (cVersion.tryParse(compatVersion)) { 1342 warn("failed to parse compatibility version, symbol '" + originalName + 1343 "' ignored"); 1344 return; 1345 } 1346 compatibilityVersion = encodeVersion(cVersion); 1347 } 1348 } 1349 1350 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1351 StringRef originalName) { 1352 // originalName: $ld$ install_name $ os<version> $ install_name 1353 StringRef condition, installName; 1354 std::tie(condition, installName) = name.split('$'); 1355 VersionTuple version; 1356 if (!condition.consume_front("os") || version.tryParse(condition)) 1357 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1358 else if (version == config->platformInfo.minimum) 1359 this->installName = saver.save(installName); 1360 } 1361 1362 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1363 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1364 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1365 } 1366 1367 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1368 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1369 1370 void ArchiveFile::addLazySymbols() { 1371 for (const object::Archive::Symbol &sym : file->symbols()) 1372 symtab->addLazy(sym.getName(), this, sym); 1373 } 1374 1375 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1376 uint32_t modTime, 1377 StringRef archiveName, 1378 uint64_t offsetInArchive) { 1379 if (config->zeroModTime) 1380 modTime = 0; 1381 1382 switch (identify_magic(mb.getBuffer())) { 1383 case file_magic::macho_object: 1384 return make<ObjFile>(mb, modTime, archiveName); 1385 case file_magic::bitcode: 1386 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1387 default: 1388 return createStringError(inconvertibleErrorCode(), 1389 mb.getBufferIdentifier() + 1390 " has unhandled file type"); 1391 } 1392 } 1393 1394 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1395 if (!seen.insert(c.getChildOffset()).second) 1396 return Error::success(); 1397 1398 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1399 if (!mb) 1400 return mb.takeError(); 1401 1402 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1403 if (tar && c.getParent()->isThin()) 1404 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1405 1406 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1407 if (!modTime) 1408 return modTime.takeError(); 1409 1410 Expected<InputFile *> file = 1411 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1412 1413 if (!file) 1414 return file.takeError(); 1415 1416 inputFiles.insert(*file); 1417 printArchiveMemberLoad(reason, *file); 1418 return Error::success(); 1419 } 1420 1421 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1422 object::Archive::Child c = 1423 CHECK(sym.getMember(), toString(this) + 1424 ": could not get the member defining symbol " + 1425 toMachOString(sym)); 1426 1427 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1428 // and become invalid after that call. Copy it to the stack so we can refer 1429 // to it later. 1430 const object::Archive::Symbol symCopy = sym; 1431 1432 // ld64 doesn't demangle sym here even with -demangle. 1433 // Match that: intentionally don't call toMachOString(). 1434 if (Error e = fetch(c, symCopy.getName())) 1435 error(toString(this) + ": could not get the member defining symbol " + 1436 toMachOString(symCopy) + ": " + toString(std::move(e))); 1437 } 1438 1439 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1440 BitcodeFile &file) { 1441 StringRef name = saver.save(objSym.getName()); 1442 1443 // TODO: support weak references 1444 if (objSym.isUndefined()) 1445 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1446 1447 // TODO: Write a test demonstrating why computing isPrivateExtern before 1448 // LTO compilation is important. 1449 bool isPrivateExtern = false; 1450 switch (objSym.getVisibility()) { 1451 case GlobalValue::HiddenVisibility: 1452 isPrivateExtern = true; 1453 break; 1454 case GlobalValue::ProtectedVisibility: 1455 error(name + " has protected visibility, which is not supported by Mach-O"); 1456 break; 1457 case GlobalValue::DefaultVisibility: 1458 break; 1459 } 1460 1461 if (objSym.isCommon()) 1462 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1463 objSym.getCommonAlignment(), isPrivateExtern); 1464 1465 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1466 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1467 /*isThumb=*/false, 1468 /*isReferencedDynamically=*/false, 1469 /*noDeadStrip=*/false, 1470 /*isWeakDefCanBeHidden=*/false); 1471 } 1472 1473 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1474 uint64_t offsetInArchive) 1475 : InputFile(BitcodeKind, mb) { 1476 std::string path = mb.getBufferIdentifier().str(); 1477 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1478 // name. If two members with the same name are provided, this causes a 1479 // collision and ThinLTO can't proceed. 1480 // So, we append the archive name to disambiguate two members with the same 1481 // name from multiple different archives, and offset within the archive to 1482 // disambiguate two members of the same name from a single archive. 1483 MemoryBufferRef mbref( 1484 mb.getBuffer(), 1485 saver.save(archiveName.empty() ? path 1486 : archiveName + sys::path::filename(path) + 1487 utostr(offsetInArchive))); 1488 1489 obj = check(lto::InputFile::create(mbref)); 1490 1491 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1492 // "winning" symbol will then be marked as Prevailing at LTO compilation 1493 // time. 1494 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1495 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1496 } 1497 1498 template void ObjFile::parse<LP64>(); 1499