1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // Open a given file path and return it as a memory-mapped file. 177 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 179 if (std::error_code ec = mbOrErr.getError()) { 180 error("cannot open " + path + ": " + ec.message()); 181 return None; 182 } 183 184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 185 MemoryBufferRef mbref = mb->getMemBufferRef(); 186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 187 188 // If this is a regular non-fat file, return it. 189 const char *buf = mbref.getBufferStart(); 190 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 191 if (mbref.getBufferSize() < sizeof(uint32_t) || 192 read32be(&hdr->magic) != FAT_MAGIC) { 193 if (tar) 194 tar->append(relativeToRoot(path), mbref.getBuffer()); 195 return mbref; 196 } 197 198 // Object files and archive files may be fat files, which contain multiple 199 // real files for different CPU ISAs. Here, we search for a file that matches 200 // with the current link target and returns it as a MemoryBufferRef. 201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 202 203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 204 if (reinterpret_cast<const char *>(arch + i + 1) > 205 buf + mbref.getBufferSize()) { 206 error(path + ": fat_arch struct extends beyond end of file"); 207 return None; 208 } 209 210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 211 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 212 continue; 213 214 uint32_t offset = read32be(&arch[i].offset); 215 uint32_t size = read32be(&arch[i].size); 216 if (offset + size > mbref.getBufferSize()) 217 error(path + ": slice extends beyond end of file"); 218 if (tar) 219 tar->append(relativeToRoot(path), mbref.getBuffer()); 220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 221 } 222 223 error("unable to find matching architecture in " + path); 224 return None; 225 } 226 227 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 229 230 template <class Section> 231 void ObjFile::parseSections(ArrayRef<Section> sections) { 232 subsections.reserve(sections.size()); 233 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 234 235 for (const Section &sec : sections) { 236 StringRef name = 237 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 238 StringRef segname = 239 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 240 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 241 : buf + sec.offset, 242 static_cast<size_t>(sec.size)}; 243 if (sec.align >= 32) { 244 error("alignment " + std::to_string(sec.align) + " of section " + name + 245 " is too large"); 246 subsections.push_back({}); 247 continue; 248 } 249 uint32_t align = 1 << sec.align; 250 uint32_t flags = sec.flags; 251 252 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 253 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 254 if (sec.nreloc && config->dedupLiterals) 255 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 256 sec.sectname + 257 ", so LLD cannot deduplicate literals. Try re-running without " 258 "--deduplicate-literals."); 259 260 InputSection *isec; 261 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 262 isec = 263 make<CStringInputSection>(segname, name, this, data, align, flags); 264 // FIXME: parallelize this? 265 cast<CStringInputSection>(isec)->splitIntoPieces(); 266 } else { 267 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 268 flags); 269 } 270 subsections.push_back({{0, isec}}); 271 } else if (config->icfLevel != ICFLevel::none && 272 (name == section_names::cfString && 273 segname == segment_names::data)) { 274 uint64_t literalSize = target->wordSize == 8 ? 32 : 16; 275 subsections.push_back({}); 276 SubsectionMap &subsecMap = subsections.back(); 277 for (uint64_t off = 0; off < data.size(); off += literalSize) 278 subsecMap.push_back( 279 {off, make<ConcatInputSection>(segname, name, this, 280 data.slice(off, literalSize), align, 281 flags)}); 282 } else { 283 auto *isec = 284 make<ConcatInputSection>(segname, name, this, data, align, flags); 285 if (!(isDebugSection(isec->getFlags()) && 286 isec->getSegName() == segment_names::dwarf)) { 287 subsections.push_back({{0, isec}}); 288 } else { 289 // Instead of emitting DWARF sections, we emit STABS symbols to the 290 // object files that contain them. We filter them out early to avoid 291 // parsing their relocations unnecessarily. But we must still push an 292 // empty map to ensure the indices line up for the remaining sections. 293 subsections.push_back({}); 294 debugSections.push_back(isec); 295 } 296 } 297 } 298 } 299 300 // Find the subsection corresponding to the greatest section offset that is <= 301 // that of the given offset. 302 // 303 // offset: an offset relative to the start of the original InputSection (before 304 // any subsection splitting has occurred). It will be updated to represent the 305 // same location as an offset relative to the start of the containing 306 // subsection. 307 static InputSection *findContainingSubsection(SubsectionMap &map, 308 uint64_t *offset) { 309 auto it = std::prev(llvm::upper_bound( 310 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 311 return value < subsecEntry.offset; 312 })); 313 *offset -= it->offset; 314 return it->isec; 315 } 316 317 template <class Section> 318 static bool validateRelocationInfo(InputFile *file, const Section &sec, 319 relocation_info rel) { 320 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 321 bool valid = true; 322 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 323 valid = false; 324 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 325 std::to_string(rel.r_address) + " of " + sec.segname + "," + 326 sec.sectname + " in " + toString(file)) 327 .str(); 328 }; 329 330 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 331 error(message("must be extern")); 332 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 333 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 334 "be PC-relative")); 335 if (isThreadLocalVariables(sec.flags) && 336 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 337 error(message("not allowed in thread-local section, must be UNSIGNED")); 338 if (rel.r_length < 2 || rel.r_length > 3 || 339 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 340 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 341 error(message("has width " + std::to_string(1 << rel.r_length) + 342 " bytes, but must be " + 343 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 344 " bytes")); 345 } 346 return valid; 347 } 348 349 template <class Section> 350 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 351 const Section &sec, SubsectionMap &subsecMap) { 352 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 353 ArrayRef<relocation_info> relInfos( 354 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 355 356 auto subsecIt = subsecMap.rbegin(); 357 for (size_t i = 0; i < relInfos.size(); i++) { 358 // Paired relocations serve as Mach-O's method for attaching a 359 // supplemental datum to a primary relocation record. ELF does not 360 // need them because the *_RELOC_RELA records contain the extra 361 // addend field, vs. *_RELOC_REL which omit the addend. 362 // 363 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 364 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 365 // datum for each is a symbolic address. The result is the offset 366 // between two addresses. 367 // 368 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 369 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 370 // base symbolic address. 371 // 372 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 373 // addend into the instruction stream. On X86, a relocatable address 374 // field always occupies an entire contiguous sequence of byte(s), 375 // so there is no need to merge opcode bits with address 376 // bits. Therefore, it's easy and convenient to store addends in the 377 // instruction-stream bytes that would otherwise contain zeroes. By 378 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 379 // address bits so that bitwise arithmetic is necessary to extract 380 // and insert them. Storing addends in the instruction stream is 381 // possible, but inconvenient and more costly at link time. 382 383 int64_t pairedAddend = 0; 384 relocation_info relInfo = relInfos[i]; 385 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 386 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 387 relInfo = relInfos[++i]; 388 } 389 assert(i < relInfos.size()); 390 if (!validateRelocationInfo(this, sec, relInfo)) 391 continue; 392 if (relInfo.r_address & R_SCATTERED) 393 fatal("TODO: Scattered relocations not supported"); 394 395 bool isSubtrahend = 396 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 397 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 398 assert(!(embeddedAddend && pairedAddend)); 399 int64_t totalAddend = pairedAddend + embeddedAddend; 400 Reloc r; 401 r.type = relInfo.r_type; 402 r.pcrel = relInfo.r_pcrel; 403 r.length = relInfo.r_length; 404 r.offset = relInfo.r_address; 405 if (relInfo.r_extern) { 406 r.referent = symbols[relInfo.r_symbolnum]; 407 r.addend = isSubtrahend ? 0 : totalAddend; 408 } else { 409 assert(!isSubtrahend); 410 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 411 uint64_t referentOffset; 412 if (relInfo.r_pcrel) { 413 // The implicit addend for pcrel section relocations is the pcrel offset 414 // in terms of the addresses in the input file. Here we adjust it so 415 // that it describes the offset from the start of the referent section. 416 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 417 // have pcrel section relocations. We may want to factor this out into 418 // the arch-specific .cpp file. 419 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 420 referentOffset = 421 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 422 } else { 423 // The addend for a non-pcrel relocation is its absolute address. 424 referentOffset = totalAddend - referentSec.addr; 425 } 426 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 427 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 428 r.addend = referentOffset; 429 } 430 431 // Find the subsection that this relocation belongs to. 432 // Though not required by the Mach-O format, clang and gcc seem to emit 433 // relocations in order, so let's take advantage of it. However, ld64 emits 434 // unsorted relocations (in `-r` mode), so we have a fallback for that 435 // uncommon case. 436 InputSection *subsec; 437 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 438 ++subsecIt; 439 if (subsecIt == subsecMap.rend() || 440 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 441 subsec = findContainingSubsection(subsecMap, &r.offset); 442 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 443 // for the other relocations. 444 subsecIt = subsecMap.rend(); 445 } else { 446 subsec = subsecIt->isec; 447 r.offset -= subsecIt->offset; 448 } 449 subsec->relocs.push_back(r); 450 451 if (isSubtrahend) { 452 relocation_info minuendInfo = relInfos[++i]; 453 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 454 // attached to the same address. 455 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 456 relInfo.r_address == minuendInfo.r_address); 457 Reloc p; 458 p.type = minuendInfo.r_type; 459 if (minuendInfo.r_extern) { 460 p.referent = symbols[minuendInfo.r_symbolnum]; 461 p.addend = totalAddend; 462 } else { 463 uint64_t referentOffset = 464 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 465 SubsectionMap &referentSubsecMap = 466 subsections[minuendInfo.r_symbolnum - 1]; 467 p.referent = 468 findContainingSubsection(referentSubsecMap, &referentOffset); 469 p.addend = referentOffset; 470 } 471 subsec->relocs.push_back(p); 472 } 473 } 474 } 475 476 template <class NList> 477 static macho::Symbol *createDefined(const NList &sym, StringRef name, 478 InputSection *isec, uint64_t value, 479 uint64_t size) { 480 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 481 // N_EXT: Global symbols. These go in the symbol table during the link, 482 // and also in the export table of the output so that the dynamic 483 // linker sees them. 484 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 485 // symbol table during the link so that duplicates are 486 // either reported (for non-weak symbols) or merged 487 // (for weak symbols), but they do not go in the export 488 // table of the output. 489 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 490 // object files) may produce them. LLD does not yet support -r. 491 // These are translation-unit scoped, identical to the `0` case. 492 // 0: Translation-unit scoped. These are not in the symbol table during 493 // link, and not in the export table of the output either. 494 bool isWeakDefCanBeHidden = 495 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 496 497 if (sym.n_type & N_EXT) { 498 bool isPrivateExtern = sym.n_type & N_PEXT; 499 // lld's behavior for merging symbols is slightly different from ld64: 500 // ld64 picks the winning symbol based on several criteria (see 501 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 502 // just merges metadata and keeps the contents of the first symbol 503 // with that name (see SymbolTable::addDefined). For: 504 // * inline function F in a TU built with -fvisibility-inlines-hidden 505 // * and inline function F in another TU built without that flag 506 // ld64 will pick the one from the file built without 507 // -fvisibility-inlines-hidden. 508 // lld will instead pick the one listed first on the link command line and 509 // give it visibility as if the function was built without 510 // -fvisibility-inlines-hidden. 511 // If both functions have the same contents, this will have the same 512 // behavior. If not, it won't, but the input had an ODR violation in 513 // that case. 514 // 515 // Similarly, merging a symbol 516 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 517 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 518 // should produce one 519 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 520 // with ld64's semantics, because it means the non-private-extern 521 // definition will continue to take priority if more private extern 522 // definitions are encountered. With lld's semantics there's no observable 523 // difference between a symbol that's isWeakDefCanBeHidden or one that's 524 // privateExtern -- neither makes it into the dynamic symbol table. So just 525 // promote isWeakDefCanBeHidden to isPrivateExtern here. 526 if (isWeakDefCanBeHidden) 527 isPrivateExtern = true; 528 529 return symtab->addDefined( 530 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 531 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 532 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 533 } 534 535 assert(!isWeakDefCanBeHidden && 536 "weak_def_can_be_hidden on already-hidden symbol?"); 537 return make<Defined>( 538 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 539 /*isExternal=*/false, /*isPrivateExtern=*/false, 540 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 541 sym.n_desc & N_NO_DEAD_STRIP); 542 } 543 544 // Absolute symbols are defined symbols that do not have an associated 545 // InputSection. They cannot be weak. 546 template <class NList> 547 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 548 StringRef name) { 549 if (sym.n_type & N_EXT) { 550 return symtab->addDefined( 551 name, file, nullptr, sym.n_value, /*size=*/0, 552 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 553 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 554 } 555 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 556 /*isWeakDef=*/false, 557 /*isExternal=*/false, /*isPrivateExtern=*/false, 558 sym.n_desc & N_ARM_THUMB_DEF, 559 /*isReferencedDynamically=*/false, 560 sym.n_desc & N_NO_DEAD_STRIP); 561 } 562 563 template <class NList> 564 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 565 StringRef name) { 566 uint8_t type = sym.n_type & N_TYPE; 567 switch (type) { 568 case N_UNDF: 569 return sym.n_value == 0 570 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 571 : symtab->addCommon(name, this, sym.n_value, 572 1 << GET_COMM_ALIGN(sym.n_desc), 573 sym.n_type & N_PEXT); 574 case N_ABS: 575 return createAbsolute(sym, this, name); 576 case N_PBUD: 577 case N_INDR: 578 error("TODO: support symbols of type " + std::to_string(type)); 579 return nullptr; 580 case N_SECT: 581 llvm_unreachable( 582 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 583 default: 584 llvm_unreachable("invalid symbol type"); 585 } 586 } 587 588 template <class LP> 589 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 590 ArrayRef<typename LP::nlist> nList, 591 const char *strtab, bool subsectionsViaSymbols) { 592 using NList = typename LP::nlist; 593 594 // Groups indices of the symbols by the sections that contain them. 595 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 596 symbols.resize(nList.size()); 597 for (uint32_t i = 0; i < nList.size(); ++i) { 598 const NList &sym = nList[i]; 599 600 // Ignore debug symbols for now. 601 // FIXME: may need special handling. 602 if (sym.n_type & N_STAB) 603 continue; 604 605 StringRef name = strtab + sym.n_strx; 606 if ((sym.n_type & N_TYPE) == N_SECT) { 607 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 608 // parseSections() may have chosen not to parse this section. 609 if (subsecMap.empty()) 610 continue; 611 symbolsBySection[sym.n_sect - 1].push_back(i); 612 } else { 613 symbols[i] = parseNonSectionSymbol(sym, name); 614 } 615 } 616 617 for (size_t i = 0; i < subsections.size(); ++i) { 618 SubsectionMap &subsecMap = subsections[i]; 619 if (subsecMap.empty()) 620 continue; 621 622 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 623 uint64_t sectionAddr = sectionHeaders[i].addr; 624 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 625 626 InputSection *isec = subsecMap.back().isec; 627 // __cfstring has already been split into subsections during 628 // parseSections(), so we simply need to match Symbols to the corresponding 629 // subsection here. 630 if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) { 631 for (size_t j = 0; j < symbolIndices.size(); ++j) { 632 uint32_t symIndex = symbolIndices[j]; 633 const NList &sym = nList[symIndex]; 634 StringRef name = strtab + sym.n_strx; 635 uint64_t symbolOffset = sym.n_value - sectionAddr; 636 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 637 if (symbolOffset != 0) { 638 error(toString(this) + ": __cfstring contains symbol " + name + 639 " at misaligned offset"); 640 continue; 641 } 642 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 643 } 644 continue; 645 } 646 647 // Calculate symbol sizes and create subsections by splitting the sections 648 // along symbol boundaries. 649 // We populate subsecMap by repeatedly splitting the last (highest address) 650 // subsection. 651 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 652 return nList[lhs].n_value < nList[rhs].n_value; 653 }); 654 SubsectionEntry subsecEntry = subsecMap.back(); 655 for (size_t j = 0; j < symbolIndices.size(); ++j) { 656 uint32_t symIndex = symbolIndices[j]; 657 const NList &sym = nList[symIndex]; 658 StringRef name = strtab + sym.n_strx; 659 InputSection *isec = subsecEntry.isec; 660 661 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 662 size_t symbolOffset = sym.n_value - subsecAddr; 663 uint64_t symbolSize = 664 j + 1 < symbolIndices.size() 665 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 666 : isec->data.size() - symbolOffset; 667 // There are 4 cases where we do not need to create a new subsection: 668 // 1. If the input file does not use subsections-via-symbols. 669 // 2. Multiple symbols at the same address only induce one subsection. 670 // (The symbolOffset == 0 check covers both this case as well as 671 // the first loop iteration.) 672 // 3. Alternative entry points do not induce new subsections. 673 // 4. If we have a literal section (e.g. __cstring and __literal4). 674 if (!subsectionsViaSymbols || symbolOffset == 0 || 675 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 676 symbols[symIndex] = 677 createDefined(sym, name, isec, symbolOffset, symbolSize); 678 continue; 679 } 680 auto *concatIsec = cast<ConcatInputSection>(isec); 681 682 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 683 nextIsec->numRefs = 0; 684 nextIsec->wasCoalesced = false; 685 if (isZeroFill(isec->getFlags())) { 686 // Zero-fill sections have NULL data.data() non-zero data.size() 687 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 688 isec->data = {nullptr, symbolOffset}; 689 } else { 690 nextIsec->data = isec->data.slice(symbolOffset); 691 isec->data = isec->data.slice(0, symbolOffset); 692 } 693 694 // By construction, the symbol will be at offset zero in the new 695 // subsection. 696 symbols[symIndex] = 697 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 698 // TODO: ld64 appears to preserve the original alignment as well as each 699 // subsection's offset from the last aligned address. We should consider 700 // emulating that behavior. 701 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 702 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 703 subsecEntry = subsecMap.back(); 704 } 705 } 706 } 707 708 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 709 StringRef sectName) 710 : InputFile(OpaqueKind, mb) { 711 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 712 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 713 ConcatInputSection *isec = 714 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 715 /*file=*/this, data); 716 isec->live = true; 717 subsections.push_back({{0, isec}}); 718 } 719 720 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 721 : InputFile(ObjKind, mb), modTime(modTime) { 722 this->archiveName = std::string(archiveName); 723 if (target->wordSize == 8) 724 parse<LP64>(); 725 else 726 parse<ILP32>(); 727 } 728 729 template <class LP> void ObjFile::parse() { 730 using Header = typename LP::mach_header; 731 using SegmentCommand = typename LP::segment_command; 732 using Section = typename LP::section; 733 using NList = typename LP::nlist; 734 735 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 736 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 737 738 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 739 if (arch != config->arch()) { 740 error(toString(this) + " has architecture " + getArchitectureName(arch) + 741 " which is incompatible with target architecture " + 742 getArchitectureName(config->arch())); 743 return; 744 } 745 746 if (!checkCompatibility(this)) 747 return; 748 749 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 750 StringRef data{reinterpret_cast<const char *>(cmd + 1), 751 cmd->cmdsize - sizeof(linker_option_command)}; 752 parseLCLinkerOption(this, cmd->count, data); 753 } 754 755 ArrayRef<Section> sectionHeaders; 756 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 757 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 758 sectionHeaders = 759 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 760 parseSections(sectionHeaders); 761 } 762 763 // TODO: Error on missing LC_SYMTAB? 764 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 765 auto *c = reinterpret_cast<const symtab_command *>(cmd); 766 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 767 c->nsyms); 768 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 769 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 770 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 771 } 772 773 // The relocations may refer to the symbols, so we parse them after we have 774 // parsed all the symbols. 775 for (size_t i = 0, n = subsections.size(); i < n; ++i) 776 if (!subsections[i].empty()) 777 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 778 779 parseDebugInfo(); 780 if (config->emitDataInCodeInfo) 781 parseDataInCode(); 782 } 783 784 void ObjFile::parseDebugInfo() { 785 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 786 if (!dObj) 787 return; 788 789 auto *ctx = make<DWARFContext>( 790 std::move(dObj), "", 791 [&](Error err) { 792 warn(toString(this) + ": " + toString(std::move(err))); 793 }, 794 [&](Error warning) { 795 warn(toString(this) + ": " + toString(std::move(warning))); 796 }); 797 798 // TODO: Since object files can contain a lot of DWARF info, we should verify 799 // that we are parsing just the info we need 800 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 801 // FIXME: There can be more than one compile unit per object file. See 802 // PR48637. 803 auto it = units.begin(); 804 compileUnit = it->get(); 805 } 806 807 void ObjFile::parseDataInCode() { 808 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 809 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 810 if (!cmd) 811 return; 812 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 813 dataInCodeEntries = { 814 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 815 c->datasize / sizeof(data_in_code_entry)}; 816 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 817 const data_in_code_entry &rhs) { 818 return lhs.offset < rhs.offset; 819 })); 820 } 821 822 // The path can point to either a dylib or a .tbd file. 823 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 824 Optional<MemoryBufferRef> mbref = readFile(path); 825 if (!mbref) { 826 error("could not read dylib file at " + path); 827 return nullptr; 828 } 829 return loadDylib(*mbref, umbrella); 830 } 831 832 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 833 // the first document storing child pointers to the rest of them. When we are 834 // processing a given TBD file, we store that top-level document in 835 // currentTopLevelTapi. When processing re-exports, we search its children for 836 // potentially matching documents in the same TBD file. Note that the children 837 // themselves don't point to further documents, i.e. this is a two-level tree. 838 // 839 // Re-exports can either refer to on-disk files, or to documents within .tbd 840 // files. 841 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 842 const InterfaceFile *currentTopLevelTapi) { 843 if (path::is_absolute(path, path::Style::posix)) 844 for (StringRef root : config->systemLibraryRoots) 845 if (Optional<std::string> dylibPath = 846 resolveDylibPath((root + path).str())) 847 return loadDylib(*dylibPath, umbrella); 848 849 // TODO: Handle -dylib_file 850 851 SmallString<128> newPath; 852 if (config->outputType == MH_EXECUTE && 853 path.consume_front("@executable_path/")) { 854 // ld64 allows overriding this with the undocumented flag -executable_path. 855 // lld doesn't currently implement that flag. 856 // FIXME: Consider using finalOutput instead of outputFile. 857 path::append(newPath, path::parent_path(config->outputFile), path); 858 path = newPath; 859 } else if (path.consume_front("@loader_path/")) { 860 fs::real_path(umbrella->getName(), newPath); 861 path::remove_filename(newPath); 862 path::append(newPath, path); 863 path = newPath; 864 } else if (path.startswith("@rpath/")) { 865 for (StringRef rpath : umbrella->rpaths) { 866 newPath.clear(); 867 if (rpath.consume_front("@loader_path/")) { 868 fs::real_path(umbrella->getName(), newPath); 869 path::remove_filename(newPath); 870 } 871 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 872 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 873 return loadDylib(*dylibPath, umbrella); 874 } 875 } 876 877 if (currentTopLevelTapi) { 878 for (InterfaceFile &child : 879 make_pointee_range(currentTopLevelTapi->documents())) { 880 assert(child.documents().empty()); 881 if (path == child.getInstallName()) { 882 auto file = make<DylibFile>(child, umbrella); 883 file->parseReexports(child); 884 return file; 885 } 886 } 887 } 888 889 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 890 return loadDylib(*dylibPath, umbrella); 891 892 return nullptr; 893 } 894 895 // If a re-exported dylib is public (lives in /usr/lib or 896 // /System/Library/Frameworks), then it is considered implicitly linked: we 897 // should bind to its symbols directly instead of via the re-exporting umbrella 898 // library. 899 static bool isImplicitlyLinked(StringRef path) { 900 if (!config->implicitDylibs) 901 return false; 902 903 if (path::parent_path(path) == "/usr/lib") 904 return true; 905 906 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 907 if (path.consume_front("/System/Library/Frameworks/")) { 908 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 909 return path::filename(path) == frameworkName; 910 } 911 912 return false; 913 } 914 915 static void loadReexport(StringRef path, DylibFile *umbrella, 916 const InterfaceFile *currentTopLevelTapi) { 917 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 918 if (!reexport) 919 error("unable to locate re-export with install name " + path); 920 } 921 922 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 923 bool isBundleLoader) 924 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 925 isBundleLoader(isBundleLoader) { 926 assert(!isBundleLoader || !umbrella); 927 if (umbrella == nullptr) 928 umbrella = this; 929 this->umbrella = umbrella; 930 931 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 932 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 933 934 // Initialize installName. 935 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 936 auto *c = reinterpret_cast<const dylib_command *>(cmd); 937 currentVersion = read32le(&c->dylib.current_version); 938 compatibilityVersion = read32le(&c->dylib.compatibility_version); 939 installName = 940 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 941 } else if (!isBundleLoader) { 942 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 943 // so it's OK. 944 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 945 return; 946 } 947 948 if (config->printEachFile) 949 message(toString(this)); 950 inputFiles.insert(this); 951 952 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 953 954 if (!checkCompatibility(this)) 955 return; 956 957 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 958 959 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 960 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 961 rpaths.push_back(rpath); 962 } 963 964 // Initialize symbols. 965 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 966 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 967 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 968 parseTrie(buf + c->export_off, c->export_size, 969 [&](const Twine &name, uint64_t flags) { 970 StringRef savedName = saver.save(name); 971 if (handleLDSymbol(savedName)) 972 return; 973 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 974 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 975 symbols.push_back(symtab->addDylib(savedName, exportingFile, 976 isWeakDef, isTlv)); 977 }); 978 } else { 979 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 980 return; 981 } 982 } 983 984 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 985 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 986 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 987 target->headerSize; 988 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 989 auto *cmd = reinterpret_cast<const load_command *>(p); 990 p += cmd->cmdsize; 991 992 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 993 cmd->cmd == LC_REEXPORT_DYLIB) { 994 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 995 StringRef reexportPath = 996 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 997 loadReexport(reexportPath, exportingFile, nullptr); 998 } 999 1000 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1001 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1002 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1003 if (config->namespaceKind == NamespaceKind::flat && 1004 cmd->cmd == LC_LOAD_DYLIB) { 1005 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1006 StringRef dylibPath = 1007 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1008 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1009 if (!dylib) 1010 error(Twine("unable to locate library '") + dylibPath + 1011 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1012 } 1013 } 1014 } 1015 1016 // Some versions of XCode ship with .tbd files that don't have the right 1017 // platform settings. 1018 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1019 "/usr/lib/system/libsystem_kernel.dylib", 1020 "/usr/lib/system/libsystem_platform.dylib", 1021 "/usr/lib/system/libsystem_pthread.dylib"}; 1022 1023 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1024 bool isBundleLoader) 1025 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1026 isBundleLoader(isBundleLoader) { 1027 // FIXME: Add test for the missing TBD code path. 1028 1029 if (umbrella == nullptr) 1030 umbrella = this; 1031 this->umbrella = umbrella; 1032 1033 installName = saver.save(interface.getInstallName()); 1034 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1035 currentVersion = interface.getCurrentVersion().rawValue(); 1036 1037 if (config->printEachFile) 1038 message(toString(this)); 1039 inputFiles.insert(this); 1040 1041 if (!is_contained(skipPlatformChecks, installName) && 1042 !is_contained(interface.targets(), config->platformInfo.target)) { 1043 error(toString(this) + " is incompatible with " + 1044 std::string(config->platformInfo.target)); 1045 return; 1046 } 1047 1048 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1049 1050 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1051 auto addSymbol = [&](const Twine &name) -> void { 1052 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1053 /*isWeakDef=*/false, 1054 /*isTlv=*/false)); 1055 }; 1056 // TODO(compnerd) filter out symbols based on the target platform 1057 // TODO: handle weak defs, thread locals 1058 for (const auto *symbol : interface.symbols()) { 1059 if (!symbol->getArchitectures().has(config->arch())) 1060 continue; 1061 1062 if (handleLDSymbol(symbol->getName())) 1063 continue; 1064 1065 switch (symbol->getKind()) { 1066 case SymbolKind::GlobalSymbol: 1067 addSymbol(symbol->getName()); 1068 break; 1069 case SymbolKind::ObjectiveCClass: 1070 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1071 // want to emulate that. 1072 addSymbol(objc::klass + symbol->getName()); 1073 addSymbol(objc::metaclass + symbol->getName()); 1074 break; 1075 case SymbolKind::ObjectiveCClassEHType: 1076 addSymbol(objc::ehtype + symbol->getName()); 1077 break; 1078 case SymbolKind::ObjectiveCInstanceVariable: 1079 addSymbol(objc::ivar + symbol->getName()); 1080 break; 1081 } 1082 } 1083 } 1084 1085 void DylibFile::parseReexports(const InterfaceFile &interface) { 1086 const InterfaceFile *topLevel = 1087 interface.getParent() == nullptr ? &interface : interface.getParent(); 1088 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1089 InterfaceFile::const_target_range targets = intfRef.targets(); 1090 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1091 is_contained(targets, config->platformInfo.target)) 1092 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1093 } 1094 } 1095 1096 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1097 // name, compatibility version or hide/add symbols) for specific target 1098 // versions. 1099 bool DylibFile::handleLDSymbol(StringRef originalName) { 1100 if (!originalName.startswith("$ld$")) 1101 return false; 1102 1103 StringRef action; 1104 StringRef name; 1105 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1106 if (action == "previous") 1107 handleLDPreviousSymbol(name, originalName); 1108 else if (action == "install_name") 1109 handleLDInstallNameSymbol(name, originalName); 1110 return true; 1111 } 1112 1113 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1114 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1115 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1116 StringRef installName; 1117 StringRef compatVersion; 1118 StringRef platformStr; 1119 StringRef startVersion; 1120 StringRef endVersion; 1121 StringRef symbolName; 1122 StringRef rest; 1123 1124 std::tie(installName, name) = name.split('$'); 1125 std::tie(compatVersion, name) = name.split('$'); 1126 std::tie(platformStr, name) = name.split('$'); 1127 std::tie(startVersion, name) = name.split('$'); 1128 std::tie(endVersion, name) = name.split('$'); 1129 std::tie(symbolName, rest) = name.split('$'); 1130 // TODO: ld64 contains some logic for non-empty symbolName as well. 1131 if (!symbolName.empty()) 1132 return; 1133 unsigned platform; 1134 if (platformStr.getAsInteger(10, platform) || 1135 platform != static_cast<unsigned>(config->platform())) 1136 return; 1137 1138 VersionTuple start; 1139 if (start.tryParse(startVersion)) { 1140 warn("failed to parse start version, symbol '" + originalName + 1141 "' ignored"); 1142 return; 1143 } 1144 VersionTuple end; 1145 if (end.tryParse(endVersion)) { 1146 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1147 return; 1148 } 1149 if (config->platformInfo.minimum < start || 1150 config->platformInfo.minimum >= end) 1151 return; 1152 1153 this->installName = saver.save(installName); 1154 1155 if (!compatVersion.empty()) { 1156 VersionTuple cVersion; 1157 if (cVersion.tryParse(compatVersion)) { 1158 warn("failed to parse compatibility version, symbol '" + originalName + 1159 "' ignored"); 1160 return; 1161 } 1162 compatibilityVersion = encodeVersion(cVersion); 1163 } 1164 } 1165 1166 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1167 StringRef originalName) { 1168 // originalName: $ld$ install_name $ os<version> $ install_name 1169 StringRef condition, installName; 1170 std::tie(condition, installName) = name.split('$'); 1171 VersionTuple version; 1172 if (!condition.consume_front("os") || version.tryParse(condition)) 1173 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1174 else if (version == config->platformInfo.minimum) 1175 this->installName = saver.save(installName); 1176 } 1177 1178 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1179 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1180 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1181 } 1182 1183 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1184 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 1185 for (const object::Archive::Symbol &sym : file->symbols()) 1186 symtab->addLazy(sym.getName(), this, sym); 1187 } 1188 1189 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1190 object::Archive::Child c = 1191 CHECK(sym.getMember(), toString(this) + 1192 ": could not get the member for symbol " + 1193 toMachOString(sym)); 1194 1195 if (!seen.insert(c.getChildOffset()).second) 1196 return; 1197 1198 MemoryBufferRef mb = 1199 CHECK(c.getMemoryBufferRef(), 1200 toString(this) + 1201 ": could not get the buffer for the member defining symbol " + 1202 toMachOString(sym)); 1203 1204 if (tar && c.getParent()->isThin()) 1205 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1206 1207 uint32_t modTime = toTimeT( 1208 CHECK(c.getLastModified(), toString(this) + 1209 ": could not get the modification time " 1210 "for the member defining symbol " + 1211 toMachOString(sym))); 1212 1213 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1214 // and become invalid after that call. Copy it to the stack so we can refer 1215 // to it later. 1216 const object::Archive::Symbol symCopy = sym; 1217 1218 if (Optional<InputFile *> file = 1219 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 1220 inputFiles.insert(*file); 1221 // ld64 doesn't demangle sym here even with -demangle. 1222 // Match that: intentionally don't call toMachOString(). 1223 printArchiveMemberLoad(symCopy.getName(), *file); 1224 } 1225 } 1226 1227 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1228 BitcodeFile &file) { 1229 StringRef name = saver.save(objSym.getName()); 1230 1231 // TODO: support weak references 1232 if (objSym.isUndefined()) 1233 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1234 1235 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1236 1237 // TODO: Write a test demonstrating why computing isPrivateExtern before 1238 // LTO compilation is important. 1239 bool isPrivateExtern = false; 1240 switch (objSym.getVisibility()) { 1241 case GlobalValue::HiddenVisibility: 1242 isPrivateExtern = true; 1243 break; 1244 case GlobalValue::ProtectedVisibility: 1245 error(name + " has protected visibility, which is not supported by Mach-O"); 1246 break; 1247 case GlobalValue::DefaultVisibility: 1248 break; 1249 } 1250 1251 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1252 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1253 /*isThumb=*/false, 1254 /*isReferencedDynamically=*/false, 1255 /*noDeadStrip=*/false); 1256 } 1257 1258 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1259 : InputFile(BitcodeKind, mbref) { 1260 obj = check(lto::InputFile::create(mbref)); 1261 1262 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1263 // "winning" symbol will then be marked as Prevailing at LTO compilation 1264 // time. 1265 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1266 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1267 } 1268 1269 template void ObjFile::parse<LP64>(); 1270